
CHAPTER 4

BEAT PHENOMENON

It is far easier to write differential equations than to perceive
 the nature of their solutions -- if the latter exist at all.

- Anonymous

This chapter examines a phenomenon which occurs very commonly in combined

structure-liquid damper systems. Transfer of energy takes place in the coupled system

which could induce vibrations in the primary structure instead of suppressing them. This

chapter focusses on understanding the phenomenon from a mathematical point of view.

Numerical and experimental results are presented in this chapter to elucidate the beat phe-

nomenon in combined structure-liquid damper systems.

4.1  Introduction

The beat phenomenon has been discussed in many classical texts on vibration

(e.g., Den Hartog, 1956). Figure 4.1 shows coupling present in different mechanical and

electrical systems. It is well known that beats occur when two frequencies are close

together. This usually occurs when the coupling is very soft in comparison to the main

“springs”. In an electrical analogue, this means larger capacitance of the coupling than the

main capacitances. Transfer of energy takes place in the coupled system which could

induce vibration in the primary system instead of suppressing them.

Experimental studies involving a TLCD combined with a simple structure have

provided insightful understanding into the behavior of liquid damper systems. The motiva-

tion of this paper is portrayed in Figs. 4.2 (a) and (b), which show the free vibration decay
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of a combined structure-TLD and -TLCD in the laboratory. The controlled response

exhibits the classical beat phenomenon characterized by a modulated instead of an expo-

nential decay in the signature.

Figure 4.1 Different coupled system (a) Vibration absorber (b) Coupled penduli
system (c) Electrical system (d) Fluid coupling within two cylinders

However, beyond a certain level of damping in the TLCD, this beat phenomenon

ceases and the structural response resembles a SDOF decay. Of course, as a limiting case

one might expect this to happen because when the damping is very high in the secondary

system, the combined system essentially behaves as a SDOF system. However, the critical

damping at which this disappearance of beat phenomenon is initiated is not understood.

(a) (b)

(d)
(c)
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This chapter delves into better understanding the beat phenomenon for the combined

structure-TLCD system.

Figure 4.2 Uncontrolled and Controlled response of a structure combined with (a)
TLD (b) TLCD
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4.2  Behavior of SDOF system with TLCD

In this section, three different cases are considered as shown in Fig. 4.3. These are

undamped combined system; damped primary system with undamped secondary system;

and damped primary and secondary system. We will look at each case in detail. In order to

keep the discussion general, the subscripts 1 and 2 are introduced instead of s for structure

and f for the damper, as in Chapter 3.

Figure 4.3 Different combined systems

4.2.1  Case 1: Undamped Combined System

The coupled equations of motion without damping in the primary and secondary system

(Fig 4.3 (a)) can be obtained from Eq. 3.6 by setting damping in each system equal to zero,

(4.1)

 The modal frequencies of this system are given by:
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where

It is obvious from Eq. 4.2 that, for an uncoupled system (i.e., for α=0), the eigenvalues

reduce to:

; (4.3)

The coupling parameter α in the mass matrix is responsible for the beat phenomenon.

Figure 4.4 shows the phase plane portraits for the primary system for different values of α.

Unless mentioned otherwise, all units of displacements, frequencies and velocities are m,

rad/sec and m/sec, respectively. The first portrait shows that with no coupling there is only

one frequency at which the structure responds, and as the coupling parameter increases

there is interference between the two states of the primary system, namely,  and .

Figure 4.4 Phase plane portraits of the undamped coupled system
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For all simulations in this chapter, the following parameters have been kept constant, ω1=1

Hz, µ=0.01 and ω2=0.99Hz. Figure 4.5 shows the time histories of the displacement of

the undamped primary system for α=0 and α=0.6. When coupling is present between the

two systems, the displacement signature is amplitude modulated.

Figure 4.5 Time histories of primary system displacement for α=0 and α=0.6

To understand this phenomenon better, one can consider the solution of the system of

equations given in Eq. 4.1. After some mathematical manipulation the displacement of the

primary system for the initial conditions, ; ; and

, is given by:

(4.4)
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where and , which means that the resulting function is an

amplitude-modulated harmonic function with a frequency equal to and the amplitude

varying with a frequency of . This undamped combined system case has been exam-

ined in texts on vibration (e.g., Den Hartog, 1956).

4.2.2  Case 2: Linearly Damped Structure with Undamped Secondary System

In this section, a linearly damped primary system with undamped secondary system as

shown in Fig. 4.3(b) is considered. Accordingly, the equations of motion are given by:

(4.5)

This system has two complex conjugate pairs of eigenvalues,

  and ,

where are the modal frequencies and are the modal damping ratios. The aver-

age frequency and the beat frequency are plotted in Fig. 4.6 for different damping ratios of

the primary system. At α = 0, the beat frequency (i.e. the difference in modal frequencies)

tends to be zero. As the coupling is increased, there is an increase in the beat frequency

which causes the beat phenomenon. From this analysis, one can conclude that there is no

beat phenomenon when the difference in the modal frequencies approaches zero. Figure

4.6 also shows the effect of introducing damping in the primary system. At high levels of

damping ratio, there is a wider range of coupling term α which results in the beat fre-

quency being equal to zero. This means that, over this range of the coupling term, there is

ωA ϖ1 ϖ2+= ωB ϖ2 ϖ1–=

ωB

ωA

1 µ+ αµ
α 1
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ẋ1

ẋ2
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hardly any beat phenomenon. For α = 0.3, beat phenomenon is present when the damping

ratio in the primary system is 0.005, but it disappears when the damping ratio is 0.05. Fig-

ure 4.7 shows the effect of damping in the primary system on the response of the primary

system. As the damping ratio increases, the response dies out in an exponential decay.

However, the beat phenomenon still exists. This poses difficulty in the estimation of sys-

tem damping from free vibration response time histories.

Figure 4.6 Variation of  and  as a function of α
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Figure 4.7 Time histories of response for ζ1=0.005 and ζ1=0.05

At this stage, the effect of a decrease in beat frequency on the response signal can

be further examined. Figure 4.8 shows that as ωB approaches zero, TB (the time period of

the beat frequency) becomes very large. The parameter influencing the decay function is

(for a SDOF system, ). As a result, due to the damping in the primary sys-

tem, the response dies out before the next peak of the beat cycle arises. Therefore, the

response resembles that of a damped SDOF system.
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Figure 4.8 Anatomy of the damped response signature

4.2.3   Case 3: Damped Primary and Secondary System

In this section, the system represented by Fig 4.3 (c) is considered, where now an orifice in

the middle of the U-tube imparts damping to the system. In this case, the following equa-

tions of motion apply:

(4.6)
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ẋ1

ẋ2
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tion, the damping simply caused an exponential decay of the beat response. However, in

this case, the beat phenomenon disappears after a certain level of the headloss coefficient.

Since an analytical solution is not convenient for this equation due to the quadratic nonlin-

earity in the damping associated with the secondary system, a linearized version (see sec-

tion 3.2.1) of this system is generally considered. Therefore, Eq. 4.6 is recast as:

(4.7)

Figure 4.9 Time histories of response for ξ= 0.2, 2 and 50
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The modal frequencies and damping ratios of the system defined in Eq. 4.7 are plotted in

Fig. 4.10 as a function of equivalent damping ratio, . Figure 4.10 explains the disap-

pearance of the beat phenomenon due to coalescing of the modal frequencies after a cer-

tain value of the equivalent damping ratio. As seen in the previous chapter, this change in

equivalent damping ratio is realized through changing of the headloss coefficient. The

resulting beat frequency approaches zero and hence beat phenomenon ceases to exist. This

is similar to a previous case where there was no beat phenomenon for coupling term α = 0,

in which case the beat frequency was zero.

Figure 4.10 Modal frequencies and modal damping ratios of combined system as a
function of the damping ratio of the TLCD
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Figure 4.11 shows the three dimensional plots of state space portraits as a function of time.

Figure 4.11(a) shows the evolution for an uncoupled system in which the amplitude of

response is constant. Figures 4.11(b) and (c) show the cases discussed in sections 4.2.1

and 4.2.2. The final plot, Fig. 4.11(d), shows case 3 in which no beat phenomenon occurs

in the coupled system.

Figure 4.11 Phase-plane 3D plots (a) uncoupled system (b) case 1: undamped
system (c) case 2: system with damping in primary system only (d) case 3: system

with damping in both primary and secondary systems
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4.3  Experimental Verification

In order to further validate the observations made in section 4.2, a simple experi-

ment was conducted using the experimental setup shown in Fig. 4.12. A TLCD is mounted

on a SDOF structure. The TLCD was designed with a variable orifice, to effectively

change the headloss coefficient. At θ = 0 degrees, the valve is fully opened and the head-

loss is increased with an increase in the angle of rotation, θ. In Fig. 4.13, one can note the

presence of a beat pattern for low headloss coefficients. However, as the headloss coeffi-

cient is increased, the beat phenomenon disappears and an exponentially decaying signa-

ture is obtained. A similar observation was made in Fig. 4.9 for simulated time histories.

Figure 4.12 Experimental setup for combined structure-TLCD system on a
shaking table
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Figure 4.13 Experimental free vibration response with different orifice openings
(θ = 0 fully open)

4.4  Concluding Remarks
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the modal frequencies of the coupled system. However, beyond a certain level of damping
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attributed to the coalescing of the modal frequencies of the combined system to a common

frequency beyond a certain level of damping in the secondary system.
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