
CHAPTER 2

MODELING OF SLOSHING

remember, when discoursing about water,
to induce first experience, then reason.

- Leanardo Da Vinci

In this chapter, modeling of liquid sloshing in TLDs is presented. The first

approach is aimed at understanding the underlying physics of the problem based on a

“Sloshing-Slamming (S2)” analogy which describes the behavior of the TLD as a linear

sloshing model augmented with an impact subsystem. The second model utilizes certain

nonlinear functions known as impact characteristic functions, which clearly describe the

nonlinear behavior of TLDs in the form of a mechanical model. The models are supported

by numerical simulations which highlight the nonlinear characteristics of TLDs.

2.1  Introduction

The motion of liquids in rigid containers has been the subject of many studies in

the past few decades because of its frequent application in several engineering disciplines.

The need for accurate evaluation of the sloshing loads is required for aerospace vehicles

where violent motions of the liquid fuel in the tanks can affect the structure adversely

(Graham and Rodriguez, 1952; Abramson, 1966). Liquid sloshing in tanks has also

received considerable attention in transportation engineering (Bauer, 1972). This is impor-

tant for problems relating to safety, including tank trucks on highways and liquid tank cars

on railroads. In maritime applications, the effect of sloshing of liquids present on board,
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e.g., liquid cargo or liquid fuel, can cause loss of stability of the ship as well as structural

damage (Bass et al. 1980). In structural applications, the effects of earthquake induced

loads on storage tanks need to be evaluated for design (Ibrahim et al. 1988). Recently

however, the popularity of TLDs as viable devices for structural control has prompted

study of sloshing for structural applications (Modi and Welt 1987; Kareem and Sun 1987;

Fujino et al. 1988).

2.1.1  Numerical Modeling of TLDs

The first approach in the modeling of sloshing liquids involves using numerical

schemes based on linear and/or non-linear potential flow theory. These type of models rep-

resent extensions of the classical theories by Airy and Boussinesq for shallow water tanks.

Faltinson (1978) introduced a fictitious term to artificially include the effect of viscous dis-

sipation. For large motion amplitudes, additional studies have been conducted by Lepelle-

tier and Raichlen (1988); Okamoto and Kawahara (1990); Chen et al. (1996) among

others. Numerical simulation of sloshing waves in a 3-D tank has been conducted by Wu

et al. (1998).

The model presented by Lepelletier and Raichlen (1988) recognized the fact that a

rational approximation of viscous liquid damping has to be introduced in order to model

sloshing at higher amplitudes. Following this approach, a semi-analytical model was pre-

sented by Sun and Fujino (1994) to account for wave breaking in which the linear model

was modified to account for breaking waves. Two experimentally derived empirical con-

stants were included to account for the increase in liquid damping due to breaking waves

and the changes in sloshing frequency, respectively. The attenuation of the waves in the

mathematical model due to the presence of dissipation devices is also possible through a
21



combination of experimentally derived drag coefficients of screens to be used in a numeri-

cal model (Hsieh et al. 1988). Additional models of liquid sloshing in the presence of flow

dampening devices are reported, e.g., Warnitchai and Pinkaew (1998). The main disadvan-

tage of such numerical models is the intensive computational time needed to solve the sys-

tem of finite difference equations.

Numerical techniques for modeling sloshing fail to capture the nonlinear behavior

of TLDs. This is due to the inability of theoretical models to achieve long time simulations

due to numerical loss of fluid mass (Faltinsen and Rognebakke, 1999). Moreover, it is very

difficult to incorporate slamming impact in a direct numerical method. Accurate predic-

tions of impact pressures over the walls of the tanks requires the introduction of local

physical compressibility in the governing equations. The rapid change in time and space

require special treatment which is currently unavailable in existing literature. However,

recent work in numerical simulation of violent sloshing flows in deep water tanks are

encouraging and represent the state-of-the-art in this area, e.g, Kim (2001). However, until

the numerical schemes are more developed, one has to resort to mechanical models for

predicting the sloshing behavior. The chief advantages of a mechanical model are savings

in computational time and a good basis for design of TLDs.

2.1.2  Mechanical Modeling of TLDs

For convenient implementation in design practice, a better model for liquid slosh-

ing would be to represent it using a mechanical model. This is helpful in combining a TLD

system with a given structural system and analyzing the overall system dynamics. Some of

the earliest works in this regard are presented in Abramson (1966). Most of these are lin-

ear models based on the potential formulation of the velocity field. For shallow water
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TLDs, various mechanisms associated with the free liquid surface come into play to cause

energy dissipation. These include hydraulic jumps, bores, breaking waves, turbulence and

impact on the walls (Lou et al. 1980). The linear models fail to address the effects of such

phenomena on the behavior of the TLD.

Sun et al. (1995) presented a tuned mass damper analogy for non-linear sloshing

TLDs. The interface force between the damper and the structure was represented as a

force induced by a virtual mass and dashpot. The analytical values for the equivalent mass,

frequency and damping were derived from a series of experiments. The data was curve-fit-

ted and the resulting quality of the fit was mixed due to the effects of higher harmonics.

Other non-linear models have been formulated as an equivalent mass damper system with

non-linear stiffness and damping (e.g., Yu et al. 1999). These models can compensate for

the increase in sloshing frequency with the increase in amplitude of excitation. This hard-

ening effect is derived from experimental data in terms of a stiffness hardening ratio. How-

ever, none of these models explain the physics behind the sloshing phenomenon at high

amplitudes.

In contrast with the preceding models, Yalla and Kareem (1999) presented an

analogy which attempts to explain the metamorphosis of linear sloshing to a nonlinear

hardening sloshing system and the observed increase in the damping currently not fully

accounted for by the empirical correction for wave breaking. At high amplitudes, the

sloshing phenomenon resembles a rolling convective liquid mass slamming/impacting on

the container walls periodically. This is similar to the impact of breaking waves on bulk-

heads observed in ocean engineering. None of the existing numerical and mechanical
23



models for TLDs account for this impact effect on the walls of the container. The sloshing-

slamming (S2) is described in detail in the following section.

2.2  Sloshing-Slamming (S2) Damper Analogy

The sloshing-slamming (S2) analogy is a combination of two types of models: the linear

sloshing model and the impact damper model.

2.2.1  Liquid Sloshing

A simplified model of sloshing in rectangular tanks is based on an equivalent mechanical

analogy using lumped masses, springs and dashpots to describe liquid sloshing. The

lumped parameters are determined from the linear wave theory (Abramson, 1966). The

equivalent mechanical model is shown schematically in Fig. 2.1(a). The two key parame-

ters are given by:

; n=1, 2........ (2.1)

; n=1, 2...... (2.2)

where n is the sloshing mode; mn is the mass of liquid acting in that mode; ωn is the fre-

quency of sloshing; r = h/a where h is the height of water in the tank; a is the length of the

tank in the direction of excitation; Ml is the total mass of the water in the tank; and mo is

the inactive mass which does not participate in sloshing, given by .

Usually, only the fundamental mode of liquid sloshing (i.e., n = 1) is used for anal-

ysis. This model works well for small amplitude excitations, where the wave breaking and

mn M l
8 2n 1–( )πr{ }tanh

π3
r 2n 1–( )3

----------------------------------------------- 
 =

ωn
2 g 2n 1–( )π 2n 1–( )πr{ }tanh

a
------------------------------------------------------------------------=

m0 M l mn
n 1=

∞

∑–=
24



the influence of non-linearities do not influence the overall system response significantly.

This model can also be used for initial design calculations of TLDs (Tokarcyzk, 1997).

2.2.2  Liquid Slamming

An analogy between the slamming of liquid on the container walls and an impact

damper is proposed. An impact damper is characterized by the motion of a small rigid

mass placed in a container firmly attached to the primary system, as shown in Fig. 2.1(b)

(e.g., Masri and Caughey, 1966; Semercigil et al. 1992; Babitsky, 1998). A gap between

the container and the impact damper, denoted by d, is kept by design so that collisions take

place intermittently as soon as the displacement of the primary system exceeds this clear-

ance. The collision produces energy dissipation and an exchange of momentum. The pri-

mary source of attenuation of motion in the primary system is due to this exchange of

momentum. This momentum exchange reverses the direction of motion of the impacting

mass. The equations of motion between successive impacts are given by

(2.3)

(2.4)

The velocity of the primary system after collision is given as (Masri and Caughey, 1966)

(2.5)

where e is the coefficient of restitution of the materials involved in the collision, µ=m/Μ is

the mass ratio, x and z represent the displacement of the primary and secondary system,

and the subscripts ac and bc refer to the after-collision and before-collision state of the

M ẋ̇ C ẋ Kx+ + Fe t( )=

mż̇ 0=

ẋac
1 µe–( )
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25



variables. The velocity of the impact mass is reversed after each collision. The numerical

simulation of this model is discussed in the next section.

Figure 2.1 (a) Equivalent mechanical model of sloshing liquid in a tank (b) Impact
damper model

2.2.3  Proposed Sloshing-Slamming (S2) Analogy

The experimental work on the sloshing characteristics of TLDs has been reported

by Fujino et al. (1992); Reed et al. (1998); Yu et al. (1999), etc. The key experimental

results are summarized in Figs. 2.2 (a) and (b), where the jump frequency and the damping

ratio are shown to increase with the amplitude of excitation. The jump phenomenon is typ-

ical of nonlinear systems in which the system response drops sharply beyond a certain fre-

quency known as the jump frequency. These results have been taken from Yu et al. (1999)

where the increase in damping and the change in frequency have been plotted as a function

of non-dimensional amplitude given as , where is the amplitude of excitation

and  is the length of the tank in the direction of excitation.
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Figure 2.2 (a) shows that there is an increase in the jump frequency (κ ) at higher

amplitudes of excitation for the frequency ratios ( = ωe/ωf) greater than 1 suggesting a

hardening effect, where ωe is the frequency of excitation and ωf is the linear sloshing fre-

quency of the damper. It has been noted that as the amplitude of excitation increases, the

energy dissipation occurs over a broader range of frequencies. This feature points at the

robustness of TLDs. The coupled TLD-structure system exhibits certain nonlinear charac-

teristics as the amplitude of excitation increases. Experimental studies suggest that the fre-

quency response of a TLD, unlike a TMD, is excitation amplitude dependent. The

increased damping (introduced by wave breaking and slamming) causes the frequency

response function to change from a double-peak to a single-peak function. This has been

observed experimentally by researchers, e.g., Sun and Fujino, 1994.

Figure 2.2 Variation of (a) jump frequency and (b) damping ratio of the TLD with
the base amplitude (Yu et al. 1999).
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Figure 2.3 Frames from the sloshing experiments video at high amplitudes: a part
of water moves as a lumped mass and impacts the container wall. (Video Courtesy:

Dr. D.A. Reed)
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Figure 2.4 Schematic diagram of the proposed sloshing-slamming (S2) analogy

As will be shown herein, the experimental observations that at higher amplitudes,

the liquid motion is characterized by slamming/impacting of water mass (Fig. 2.3). This

includes wave breaking and the periodic impact of convecting lumped mass on container

walls. Some of the energy is also dissipated in upward deflection of liquid along the con-

tainer walls. The S2 damper analogy is illustrated schematically in Fig. 2.4. Central to this

analogy is the exchange of mass between the sloshing and convective mass that impacts.

This means that at higher amplitudes, some portion of the mass m1 (the linear sloshing liq-

uid), is exchanged to mass m2 (the impact mass), which results in a combined sloshing-

slamming action.

The level of mass exchange is related to the change in the jump frequency as

shown in Fig. 2.2(a). A mass exchange parameter is introduced, which is an indicator
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of the portion of linear mass m1 acting in the linear mode. Since the total mass is con-

served, this implies that the rest of the mass is acting in the impact mode. For example,

=1.0 means that all of the mass m1 is acting in the linear sloshing mode. After the mass

exchange has taken place, the new masses and in the linear sloshing mode and the

impact mode, respectively, are given by

(2.6)

(2.7)

At low amplitudes, there is almost no mass exchange, therefore, the linear theory

holds. However, as the amplitude increases, γ decreases and the slamming mass increases

concomitantly. Moreover, since m1 is decreasing, the sloshing frequency increases, which

explains the hardening effect. The mass exchange parameter can be related to the jump

frequency ratio. Since , therefore using Eq. 2.7, one can obtain

. The empirical relations as shown in Fig. 2.2(a) for relating the mass

exchange parameter to the amplitude of excitation can be introduced to the proposed

scheme. This scheme can be further refined should it become possible to quantify more

accurately the mass exchange between the sloshing and slamming modes from theoretical

considerations. The equations of motion for the system shown in Fig. 2.4 can be written as

(2.8)
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where . After each impact, the velocity of the convecting liquid is changed

in accordance with Eq. 2.5. An impact is numerically simulated at the time when the rela-

tive displacement between m1 and m2 is within a prescribed error tolerance of d/2, i.e.,

. In this study the error tolerance has been assumed as .

Since the relative displacements have to be checked at each time step, a time domain inte-

gration scheme is employed to solve the system of equations. In order to construct the fre-

quency response curves, the maximum steady-state response was observed at each

excitation frequency and the entire procedure was repeated for the complete range of exci-

tation frequencies.

2.2.4  Numerical Study

A numerical study was conducted using the parameters employed in the experi-

mental study (Fujino et al. 1992). These parameters are listed in Table 2.1. It should be

noted that the initial mass ratio, prior to the mass exchange, has been assumed to take on a

very small value, i.e., = 0.01, which is essential to realize the system in Fig. 2.4

described by Eq. 2.8. This assumption is not unjustified since experimental results show

the presence of nonlinearity in the transfer function, albeit small, even at low amplitudes

of excitation (e.g., at Ae = 0.1 cm, κ = 1.02). Figure 2.5 shows the changes that take place

in the frequency response functions as the mass exchange parameter is varied. This can

also be viewed as the amplitude dependent variation in the frequency response function. It

should be noted that the frequency response function undergoes a change from a double-

peak to a single-peak function at higher amplitudes of excitation. This model gives similar

results as Fujino et al. 1992, however, one has to note that this is a mechanical model as

Fo M Aeωe
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opposed to a numerical model described in Fujino et al. 1992. These results demonstrate

that the frequency response function of the combined system derived from the sloshing-

slamming model is in good agreement with the experimental data both at low and high

amplitudes of excitation. Note that uncontrolled and controlled cases in Fig. 2.5 refer to

structure without and with TLD.

Figure 2.5 Comparison of experimental results with S2 simulation results: (a), (b):
experimental results (Fujino et al. 1992); (c), (d): simulation results for  = 1.0

and  = 0.9
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TABLE 2.1  Parameters of the model

2.2.5  Base Shear Force

It has been said before that the sloshing exhibits the presence of the jump phenom-

enon as the amplitude of excitation increases. This jump phenomenon is typical of most

nonlinear systems, for e.g., duffing, vanderpol oscillators, etc. A typical transfer function

of a nonlinear system is shown in Fig. 2.6(a). The non-dimensionalized experimental base

shear of TLD is plotted for various amplitudes of excitation in Fig 2.6(b) (Fujino et al.

1992). The presence of jump and hardening phenomenon can be clearly observed. Fur-

thermore, the range of frequencies over which the TLD is effective increases as the base

amplitude increases.

The S2 damper analogy cannot be directly applied to the liquid damper alone due

to the way it is formulated since to determine the post-impact velocity, one requires the

knowledge of the dynamics of the primary system. Therefore, in order to formulate a sin-

gle model which explains the experimental results for both damper characteristic and the

coupled structure-damper system, one can take advantage of certain impact characteristics

which describe the effects of nonlinearities imposed by the slamming mass. When repeti-

tive impacts occur as part of the vibratory motion of a linear system, the problem becomes

nonlinear. Having recognized this, one can search for such impact-characteristic functions

Parameter value Parameter value

Main mass M 168 Kg breadth of tank, b 32 cm

Main mass damping 0.32 % height of water, h 2.1 cm

Natural freq. of main mass 5.636 rad/s Coefficient of restitution, e 0.4

Length of tank, a 25 cm Impact Clearance d/(Fo/k) 20

Mass ratio m1/M 0.01 Initial mass ratio m2/m1 0.01
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which would produce the same nonlinearities in the linear system. This is studied in the

next section.

Figure 2.6  (a) Jump phenomenon in nonlinear systems (b) Variation of the non-
dimensionalized base shear force with the frequency ratio (experimental results

taken from Fujino et al. 1992).

2.3  Impact Characteristics model

In earlier section on sloshing-slamming damper analogy, the impact of the liquid

on the container walls was simulated using the solution of differential equations, also

known as the point-wise mapping method. The impact was modeled as a collision between

the slamming (impact) mass and the tank wall as a discontinuous function. However, from

the extensive work done in the area of vibro-impact systems, it is known that the dynamic

model studied is a limiting case of a hardening type of nonlinear system not only in terms
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0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

5

10

15

20

25

N
o
n
-
d
i
m
e
n
s
i
o
n
a
l
 
S
l
o
s
h
i
n
g
 
F
o
r
c
e

Ae=0.1cm
Ae=0.25cm
Ae=0.5cm
Ae=1.0cm

ωe/ωf

jump
frequency

(a) (b)

ω

34



model the impact behavior by considering impact characteristics instead of simulating

impacts by numerical integration schemes (Pilipchuk and Ibrahim, 1997; Babitsky, 1998).

Hence, the basic character of the nonlinear behavior for vibro-impact systems obtained

using “exact” methods are similar to typical nonlinear hardening systems. In fact, a very

simple model can phenomenologically describe the interaction between the liquid mass

and the tank wall with a nonlinear function. Having recognized this, one can search for

such impact characteristic functions which would produce the same effect as the solution

of differential equations. This equivalence was demonstrated for harmonic as well as ran-

dom excitations (Masri and Caughey, 1965). It is to be noted that in this case, we will not

distinguish the liquid mass into impact mass and sloshing mass as done in the previous

section. The nonlinear model is developed for the entire liquid mass. Consider a oscillator

model given as:

(2.9)

where are the impact characteristics of the system, x is the displacement of the

lumped mass; is the velocity of the lumped mass; m, c and k are the mass, damping and

stiffness terms of the oscillator; Fo is the excitation amplitude = . One can assume

the impact characteristics as a combination of different nonlinear functions of the dis-

placement and velocity. In particular, Hunt and Crossley (1975) presented nonlinear

impact characteristics whereby one can interpret the coefficient of restitution as damping

in vibro-impact. They suggest the following form of the impact system:

(2.10)
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where b1, b2, p1 and p2 are parameters of the model. However, for the sake of keeping the

model simple, we assume the impact characteristics to be dependent on the displacement,

i.e., , while maintaining the damping to be a nonlinear function of the

amplitude of excitation. Accordingly Eq. 2.9 can be expressed in the following non-

dimensional form as:

(2.11)

where is the linear sloshing frequency and is the nonlinear damping of the

TLD. In this study, we will focus exclusively on shallow water TLDs, i.e. h/a < 0.15,

where h = depth of water and a = length of the tank in the direction of the excitation.

Various functions were considered for modeling the impact characteristics, e.g.,

hyperbolic sine function, power law function, and bi-linear hardening type function. Fig-

ure 2.7 shows the power law function used for modeling the impact characteristics. The

power law curve is used in this study since it allows for a finite value of the impact charac-

teristic function at the boundaries of the wall, i.e., . Note that the ordinate is the

non-dimensionalized displacement of the liquid sloshing mass.

The interaction force is written as a function of displacement of the sloshing mass:

(2.12)

(2.13)

where  and η are the parameters of the impact characteristic function .

Φ x ẋ,( ) Φ x( )=

ẋ̇ 2ω f ς Ae( ) ẋ Φ x( )+ + ωe
2
Ae ωet( )sin=
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Feff x( ) Flin Fnon lin–+=
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Figure 2.7 Non dimensional interaction force curves for different η

2.4  Equivalent Linear Models

Equivalent linear models are useful for initial approximation of the periodic solu-

tion of nonlinear systems. Moreover, one can represent these systems in transfer function

or state-space form to simplify the analysis by utilizing the linear systems theory. In the

next sub-sections we will briefly look at equivalent linear models when the external excita-

tion is harmonic and random.

2.4.1  Harmonic Linearization

The nonlinear impact characteristics can be linearized as,

(2.14)

The basic idea is to first define an error function and minimize it in the mean square sense

over an infinite time interval. One can write the error function as,
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(2.15)

One can assume the solution of the form:

 and (2.16)

Utilizing the fact that  ;  and

and recognizing the following properties of the solution:

 ;  and (2.17)

one can arrive at the following equations

(2.18)

(2.19)

(2.20)

where  and  for harmonic motion.

2.4.2  Statistical Linearization

In this case also, one can define a error functional similar to Eq. 2.15 as:

(2.21)
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where represents the expected value of the random variable function .

Using similar procedure as before and recognizing that ; and

, one can obtain the following expressions:

(2.22)

(2.23)

(2.24)

where it is assumed that and are independent Gaussian processes with probability dis-

tribution function defined by,

(2.25)

and the nonlinear function can be represented in a separable form, i.e.,

(2.26)

In the case of a power law nonlinearity given by , using Eqs. 2.18-2.20,

one can obtain the coefficients of equivalent linearization (for harmonic excitation) as,

 ;  and (2.27)
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=
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and for random excitation, using Eqs. 2.22-2.24,

;  and (2.28)

The range of validity of this equivalent linearizations is discussed in the next chap-

ter in the context of TLCDs.

2.5  Concluding Remarks

In this chapter, a sloshing-slamming (S2) damper analogy of TLD is presented.

This analogy presents insights into the underlying physics of the problem and reproduces

the dynamic features of TLDs at both low and high amplitudes of excitation. At low

amplitudes, the S2 damper model serves as a conventional linear sloshing damper. At

higher amplitudes, the model accounts for the convection of periodically slamming

lumped mass on the container wall, thus characterizing both the hardening feature and the

observed increase in damping.

Next, based on the understanding of the sloshing and impact of the liquid, explicit

impact characteristics are introduced into the equations of motion in order to derive a sim-

pler mechanical model. These impact characteristics introduce the necessary nonlineari-

ties into the system. Such mechanical models will be useful for design and analysis of

TLD systems. Finally, equivalent linearization technique is used to derive linear models

based on the nonlinear TLD models.

λ 0= υ σx
2η

2η 2k 1–( )–( )
k 1=

η

∏= ψ 0=
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