TABLE OF CONTENTS

LIST	OF TA	BLES	vi
LIST	OF FI	GURES	viii
ACKN	NOWL	EDGEMENTS	xiv
CHAF	PTER 1	1: INTRODUCTION	1
1.1	Introdu	uction	1
1.2	Literat	ture Review	4
1.3	Applic 1.3.1 1.3.2	cations Ship/Offshore applications Structural Applications	7 7 11
1.4	Motiva	ation of Present Work	16
1.5	Organ	ization of Dissertation	18
CHAI	PTER 2	2: MODELING OF SLOSHING	20
2.1	Introd	uction	20
	2.1.1	Numerical Modeling of TLDs	21
	2.1.2	Mechanical Modeling of TLDs	22
2.2	Sloshi	ng-Slamming (S2) Damper Analogy	24
	2.2.1	Liquid Sloshing	24
	2.2.2	Liquid Slamming	25
	2.2.3	Proposed Sloshing-Slamming (S2) Analogy	
	2.2.4	Numerical Study	
	2.2.5	Base Snear Force	
2.3	Impac	t Characteristics model	34
2.4	Equiva	alent Linear Models	
	2.4.1	Harmonic Linearization	
	2.4.2	Statistical Linearization	

2.5	Concluding Remarks	40
CHA	APTER 3: TUNED LIQUID COLUMN DAMPERS	41
3.1	Introduction	41
3.2	Modeling of Tuned Liquid Column Dampers	43
	3.2.1 Equivalent Linearization:	44
	3.2.2 Accuracy of Equivalent linearization	45
3.3	Optimum Absorber Parameters	47
	3.3.1 White Noise excitation	50
	3.3.2 First Order Filter (FOF)	53
	3.3.3 Second Order Filter (SOF)	55
	3.3.4 Example	56
3.4	Multiple Tuned Liquid Column Dampers (MTLCDs)	57
	3.4.1 Effect of Number of dampers	59
	3.4.2 Effect of damping ratio of dampers	59
	3.4.3 Effect of Frequency range	60
3.5	Concluding Remarks	63
CHA	APTER 4: BEAT PHENOMENON	65
4.1	Introduction	65
4.2	Behavior of SDOF system with TLCD	
	4.2.1 Case 1: Undamped Combined System	68
	4.2.2 Case 2: Linearly Damped Structure with Undamped Secondary S	System71
	4.2.3 Case 3: Damped Primary and Secondary System	74
4.3	Experimental Verification	79
4.4	Concluding Remarks	80
CHA	APTER 5: SEMI-ACTIVE SYSTEMS AND APPLICATIONS	81
5.1	Introduction	81
5.2	Gain-scheduled Control	82
5.2	5.2.1 Determination of Optimum Headloss Coefficient	
5 2	Ambigations	
5.5	5.3.1 Example 1: SDOF-TLCD system under random white poise	00 86
	5.3.2 Example 2: Application to Offshore Structure	80 88
5 1	Clinned Ontimal System	
3.4	5.4.1 Control Strategies	92

	5.4.2 Example 3: MDOF system under random wind loading	99
	5.4.3 Example 4: MDOF system under harmonic loading	102
5.5	Concluding Remarks	106
CHA	APTER 6: TLD EXPERIMENTS	108
6.1	Introduction	108
6.2	Experimental Studies	110
6.3	System Identification	112
	6.3.1 Nonlinear System Identification	113
	6.3.2 Combined Structure-damper analysis	116
6.4	Impact Pressure Studies	118
	6.4.1 Single-point pressure measurement	119
	6.4.2 Multiple-point pressure measurements	
	6.4.5 Shallow water versus deep water slosning	125
65	Usedware in the loop Simulation	127
0.5	6.5.1 Experimental study	
6.6	Concluding Remarks	131
0.0	Conordaning recinaries	
СНА	APTER 7. TI CD EXPERIMENTS	132
7 1	Introduction	132
7.1		124
1.2	7.2.1 Effect of tuning ratio	134
	7.2.2 Effect of damping	
	7.2.3 Effect of amplitude of excitation	138
	7.2.4 Equivalent damping	140
7.3	Experimental Validation	143
7.4	Concluding Remarks	147
CHA	APTER 8: DESIGN, IMPLEMENTATION AND RELL ISSUES	ABILITY 148
8.1	Introduction	148
8.2	Comparison of various DVAs	150
	8.2.1 Implementation comparisons	150
	8.2.2 Cost comparison	155
8.3	Risk-based Decision Analysis	157

	8.3.1	Decision analysis framework	159
	8.3.2	Reliability Analysis	162
	8.3.3	Cost and Utility Analysis	165
	8.3.4	Risk-based Decision Analysis	166
8.4	Design	of Dampers	167
	8.4.1	Design Guidelines	167
	8.4.2	Control Strategy	169
	8.4.3	Design Procedure	170
	8.4.4	Technology	174
8.5	Conclu	uding Remarks	176
CHAF	PTER 9): CONCLUSIONS	177
APPENDIX			
REFE	RENC	ES	184

LIST OF TABLES

TABLE 2.1	Parameters of the model
TABLE 3.1	Example forcing functions
TABLE 3.2	Comparison of optimal parameters for TMD and TLCD52
TABLE 3.3	Optimum parameters for white noise excitation for different mass ratios.53
TABLE 3.4	Optimum absorber parameters for FOF for different parameter v_1
TABLE 3.5	Optimum absorber parameters for FOF for various mass ratios54
TABLE 3.6	Optimum absorber parameters for SOF for different values of b_1
TABLE 3.7	Optimum absorber parameters for SOF for various mass ratios57
TABLE 3.8	Optimum absorber parameters
TABLE 3.9	Optimum parameters for MTLCD configurations
TABLE 5.1	Comparison of different control strategies: Example 1
TABLE 5.2	Numerical parameters used: Example 2
TABLE 5.3	Comparison of various control strategies: Example 3101
TABLE 5.4	Comparison of various control strategies: Example 4106
TABLE 6.1	Time lag and impact influence factor for different sensor locations122
TABLE 7.1	Performance of semi-active system as compared to uncontrolled and passive system

TABLE 8.1	Component comparison of different DVAs	156
TABLE 8.2	Comparison of different systems for varying wind conditions	159
TABLE 8.3	Random Variables used in Reliability analysis	164
TABLE 8.4	Probability of Failure under different wind speeds	164
TABLE 8.5	Costs and Normalized Utility Analysis	165
TABLE 8.6	Utility analysis based on the decision analysis	166

LIST OF FIGURES

Figure 1.1	(a) Frahm anti-rolling tank (b) nutation dampers in satellite applications5
Figure 1.2	(a) Bi-directional TLCD (b) V-shaped TLCD7
Figure 1.3	Types of passive/ controllable-passive tanks for ships
Figure 1.4	(a) Free surface damping tanks (b) Semi-active control for structure with open bottom tanks
Figure 1.5	Aqua dampers (Courtesy: MCC Aqua damper literature)11
Figure 1.6	(a) Schematic of TLDs installed in SYPH (b) Actual installation in the building (taken from Tamura et al. 1995)
Figure 1.7	(a) Liquid damper with pressure adjustment concept (b) photograph of Hotel Cosima, Tokyo
Figure 1.8	Millennium tower: passive and active TLCD concept14
Figure 1.9	(a) Shanghai Financial Trade Center (b) 7 South Dearborn Project15
Figure 1.10	TLDs installed in chimneys16
Figure 2.1	(a) Equivalent mechanical model of sloshing liquid in a tank (b) Impact damper model
Figure 2.2	Variation of (a) jump frequency and (b) damping ratio of the TLD with the base amplitude (<i>taken from Yu et. al 1999</i>)27
Figure 2.3	Frames from the sloshing experiments video at high amplitudes: a part of water moves as a lumped mass and impacts the container wall. (<i>Video Courtesy: Dr. D.A. Reed</i>)
Figure 2.4	Schematic diagram of the proposed sloshing-slamming (S ²) analogy29

Figure 2.5	Comparison of experimental results with S2 simulation results: (a), (b): experimental results; (c), (d): simulation results for $\Omega = 1.0$ and 0.9 32
Figure 2.6	(a) schematic of the jump phenomenon (b)Variation of the non- dimensionalized base shear force with the frequency ratio. (<i>experimental</i> <i>results taken from Fujino et al. 1992</i>)
Figure 2.7	Non dimensional interaction force curves for different η
Figure 3.1	Schematic of the Structure-TLCD system
Figure 3.2	Exact (Non-linear) and Equivalent Linearization results
Figure 3.3	Time histories for $\xi = 75$ 46
Figure 3.4	Variation of dynamic magnification factor with the head-loss coefficient and frequency ratio for a TLCD
Figure 3.5	Comparison of optimum absorber parameters for a TLCD with varying α and a TMD
Figure 3.6	Transfer function of the filters and the primary system: (a) first order filters (b) second order filters
Figure 3.7	MTLCD configuration
Figure 3.8	Effect of number of dampers on the frequency response of SDOF-MTLCD system
Figure 3.9	Effect of damping ratio of the dampers on the frequency response of SDOF-MTLCD system
Figure 3.10	Effect of frequency range on the frequency response of SDOF-MTLCD system
Figure 4.1	Different coupled system (a) Vibration absorber (b) Coupled penduli system (c) Electrical system (d) Fluid coupling within two cylinders66
Figure 4.2	Uncontrolled and Controlled response of a structure combined with (a) TLD (b) TLCD
Figure 4.3	Different combined systems

Figure 4.4	Phase plane portraits of the undamped coupled system
Figure 4.5	Time histories of primary system displacement for $\alpha=0$ and $\alpha=0.6$ 70
Figure 4.6	Variation of ω_A and ω_B and α s a function of α
Figure 4.7	Time histories of response for ζ_1 =0.005 and ζ_1 =0.0573
Figure 4.8	Anatomy of the damped response signature74
Figure 4.9	Time histories of response for ξ = 0.2, 2 and 5075
Figure 4.10	Modal frequencies and modal damping ratios of combined system as a function of the damping ratio of the TLCD76
Figure 4.11	Phase-plane 3D plots (a) uncoupled system (b) case 1: undamped system (c) case 2: system with damping in primary system only (d) case 3: system with damping in both primary and secondary systems
Figure 4.12	Experimental setup for combined structure-TLCD system on a shaking table
Figure 4.13	Experimental free vibration response with different orifice openings ($\theta = 0$ fully open)
Figure 5.1	Gain scheduling concept
Figure 5.2	Flowchart of the two algorithms (a) iterative method (b) direct method84
Figure 5.3	Iterative method (a) convergence of response quantities (b) optimum headloss coefficient
Figure 5.4	Variation of optimum headloss coefficient with loading intensity: white noise excitation
Figure 5.5	Example 1: SDOF system under random excitation
Figure 5.6	(a) Single degree of freedom idealization of the offshore structure (b) Concept of Liquid Dampers in TLPs
Figure 5.7	Optimal Absorber parameters as a function of loading conditions

Figure 5.8	(a) Variation of Optimal headloss coefficient with loading conditions for different wave spectra (b) Spectra of structural acceleration at $U_{10}=20$ m/s for different ξ
Figure 5.9	Semi-active TLCD-Structure combined system93
Figure 5.10	Schematic of the control system98
Figure 5.11	Schematic of 5DOF building with semi-active TLCD on top story100
Figure 5.12	Wind loads acting on each lumped mass101
Figure 5.13	Displacements and Acceleration of Top Level under various control strategies
Figure 5.14	Variation of performance indices with maximum headloss coefficient 104
Figure 5.15	Displacement of Top Floor under various control strategies104
Figure 5.16	Variation of headloss coefficient with time105
Figure 5.17	Variation of RMS displacements, RMS accelerations, maximum story shear and maximum inter-story displacements105
Figure 6.1	(a) Schematic of the experimental setup (b) pressure sensor locations 110
Figure 6.2	Sample time-histories of the shear force at $A_e = 0.3$ cm and 2.0 cm 113
Figure 6.3	Nonlinear Optimization Scheme114
Figure 6.4	Curvefitting the parameters of the impact characteristics model115
Figure 6.5	(a) Experimental plots of non-dimensional sloshing force as a function of excitation frequency for different amplitudes (b) Simulated curves after optimization
Figure 6.6	Response of the structure for different amplitudes117
Figure 6.7	Pressure time histories for various frequency ratios ($A_e = 1.0$ cm)119
Figure 6.8	Probability distribution function of the peak impact pressures120

Figure 6.9	(a) Anatomy of a single pressure pulse (b) wavelet scalogram of the pressure signal
Figure 6.10	(a) Pressure pulses at different locations on the wall (b) Wavelet coscalograms with sensor 2 as reference
Figure 6.11	Typical sloshing wave with pressure pulse and wave mechanism schematic for (a) shallow water ($h/a = 0.12$) and (b) deep water ($h/a = 0.25$) case125
Figure 6.12	Variation of the peak pressure coefficient with height of the tank wall126
Figure 6.13	Hardware-in-the-loop concept for structure-liquid damper systems128
Figure 6.14	Schematic of the experimental setup for the HIL simulation129
Figure 6.15	Hardware-in-the-loop simulation for random loading case
Figure 7.1	(a) Photograph of the Electro-pneumatic actuator (b) Schematic diagram of the experimental set-up
Figure 7.2	(a) Transfer functions for different tuning ratios (b) Variation of H_2 norm with tuning ratio137
Figure 7.3	Transfer functions for different valve angle openings
Figure 7.4	Variation of transfer functions for different amplitudes of excitation 139
Figure 7.5	(a) Optimization of H_2 norm (b) look-up table for semi-active control140
Figure 7.6	(a) Comparison of transfer functions: (a) $\theta = 40 \text{ deg}$, $\zeta_f = 9 \%$ (optimal damping) (b) $\theta = 60 \text{ deg}$, $\zeta_f = 30\%$ (non-optimal damping)141
Figure 7.7	3-D plot of transfer function as a function of effective damping and frequency (a) experimental results (b) simulation results142
Figure 7.8	Excitation time histories, valve angle variations and the resulting accelerations for uncontrolled, passive and semi-active systems for time-history 1
Figure 7.9	Excitation time histories, valve angle variations and the resulting accelerations for uncontrolled, passive and semi-active systems for time-history 2

Figure 8.1	Implementation ideas for tuned liquid dampers (a) bridge towers (b) tall buildings
Figure 8.2	TMD system installed in the Citicorp Building, New York City (taken from Wiesner, 1979)
Figure 8.3	(a) Single-stage (b) multi-stage Pendulum-type TMDs (c) TMDs with laminated rubber bearings <i>(taken from Yamazaki et al. 1992)</i> 152
Figure 8.4	Equipment schematic for a building-mounted TLCD155
Figure 8.5	Variation of RMS accelerations of the top floor with increasing wind velocity
Figure 8.6	Elements of Decision analysis160
Figure 8.7	Decision Tree for Building Serviceability166
Figure 8.8	Semi-active control strategy in tall buildings170
Figure 8.9	(a) Equivalent white noise concept (b) Variation of equivalent white noise with wind velocity
Figure 8.10	Electro-pneumatic valve (courtesy Hayward Controls)174
Figure A.1	(a) Variation of Valve Conductance (b) Variation of headloss coefficient with the angle of valve opening

ACKNOWLEDGEMENTS

I would like to first thank my advisor and *guru*, Prof. Ahsan Kareem, who provided encouragement, support and friendship throughout the length of my stay at Notre Dame. The confidence he placed in me has been instrumental in my professional development. I would also like to thank my committee members, particularly Prof. Bill Spencer and Prof. Jeff Kantor, who guided me through many concepts in dynamics and control. I would also like to thank Prof. Yahya Kurama and Prof. Steven Skaar for their valuable guidance and constructive comments. I would also like to thank the staff in the Department of Civil Engineering and Geological Sciences, particularly Tammy, Molly and Chris. Our laboratory technician, Brent Bach, helped me in most stages of the experiments.

Next, I would like to thank my family, both in India and the U.S., who have constantly supported me during my years in graduate school. Thank you Amma, Daddy, Kumar, Chinni and others. I don't know what I would have done without my friends: Cass, Vicky, Adrish and all the other long lasting friendships I made at Notre Dame. Finally, many thanks to the wonderful campus of the University of Notre Dame whose lakes, Grotto and Fischer graduate apartments provided a home away from home and a wonderful place to grow and learn.