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Atmospheric flows are turbulent. Experimental analysis of wind-induced vibration

problems must address this issue by either matching turbulence characteristics completely

or by acknowledging uncertainty in conclusions as a result of imperfect simulations.

Because the former is for all practical purposes currently impossible, the latter must be

understood as fully as possible.

This experimental study of the effects of turbulence on long-span bridge

aerodynamics examined the anatomy of turbulence effects on the self-excited forces

responsible for flutter and investigated the spanwise correlation of the overall

aerodynamic lift and moment. A forced-vibration technique was used with a model of

rectangular cross section instrumented with 64 pressure transducers. Spanwise coherence

measurements were made on both stationary and oscillating models in a series of smooth

and turbulent flows.

Unsteady pressure distributions were examined to observe turbulence-induced

changes in the self-excited forces. This allowed a clearer understanding of turbulence
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effects than was possible by observing only integrated quantities such as flutter

derivatives. For the cross section studied, turbulence stabilized the self-excited forces.

Regions of maximum pressure amplitudes were observed to shift toward the leading edge

with increasing turbulence intensity—similar to the behavior observed in pressure

distributions on stationary bodies. This upstream shifting was responsible for the bulk of

the changes in the overall stability characteristics.

Spanwise correlation was quantified for both total aerodynamic forces and for

self-excited and buffeting components separately. Self-excited forces showed essentially

unity coherence for the entire spanwise separation range studied (B4.2 ). This supports

the assumption common in analytical estimates of fully correlated self-excited forces. It

does not, however, support the hypothesis that the stabilizing effect of turbulence

observed in full aeroelastic tests is due to a turbulence-induced decrease in the spanwise

coherence of the self-excited forces. In the future, greater spanwise separations need to be

tested for full understanding of this behavior. Spanwise correlation of the buffeting force

components showed exceptional similarity between stationary and oscillating model tests.
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CHAPTER 1.   INTRODUCTION

Atmospheric flows are turbulent. Any study of wind-induced vibration problems

must confront this issue either by matching turbulence characteristics completely or by

acknowledging uncertainty in conclusions as a result of imperfect simulations. Because

the former is for all practical purposes currently impossible, the latter must be understood

as fully as possible.

To introduce this study of turbulence effects on bridge aerodynamics, a summary

is provided of the importance of turbulence effects on different types of flow-induced

vibrations with specific attention to bridges. The scope will then be narrowed to look

specifically at flutter studies of long-span bridges. The motivation for the current work is

then described in a discussion of the state of current knowledge of the effects of

turbulence on long-span bridge flutter. Finally, a brief outline of the rest of the

dissertation is provided.

1.1 Turbulence and Flow-Induced Vibration

Wind-tunnel testing of bridge decks remains an integral component of long-span

bridge design because of the complexity of the flow-structure interactions. Matching

atmospheric conditions in a wind tunnel requires matching Reynolds numbers, turbulence

intensities, integral scales, spectral characteristics of the velocity fluctuations, shear,

anisotropy, etc. With atmospheric conditions producing turbulence scales ranging from
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0.5 to 10 times typical bridge deck widths (Simiu & Scanlan, 1986, Tuenissen, 1970; and

Counihan, 1975) and full-scale Reynolds numbers as much as three orders of magnitude

higher than that of test conditions, only a fraction of the turbulence characteristics can be

matched in a wind tunnel experiment. As a result, one must try to understand where

matching is a necessity and where it is an unnecessary because the essential details of the

flow are sufficiently captured. The high cost of simulating every turbulent parameter

motivates one to understand the effects of imperfect simulation.

Flow-induced vibration problems that must be understood in this turbulent

environment are often classified into three distinct types—buffeting, vortex-induced

vibration, and flutter. Turbulent buffeting refers to the random, unsteady pressures that a

body experiences due to the random, unsteady velocity fluctuations in a turbulent flow.

The reaction of the body is a direct result of unsteadiness in the incident flow. Vortex-

induced vibration results from the shedding of large-scale vortices into the wake of a

body at a specific frequency which—at certain velocities—coincides to some degree with

a natural frequency of the structure. The interaction of the shed vortices with the body is a

nonlinear vibration problem resulting in amplitudes potentially large enough to cause

damage. Flutter results from an interaction between the elastic behavior of a body and the

change in the aerodynamic pressures that this behavior affects. The elastic deformation

changes the aerodynamic pressures and vice versa—these pressure forces can be called

“motion-induced” or “self-excited” forces. Flutter is the term given the unstable

interaction scenario where oscillatory perturbations which would otherwise be attenuated

are amplified to damaging proportions.
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While each of these phenomena warrants investigation for any potential long-span

bridge deck design, the changes in the flutter problem—or more specifically, the changes

in the self-excited or “motion-induced” forces—resulting from turbulence in the incident

flow were the main focus of this study. Although the self-excited forces were the primary

focus, this work covered bridge aerodynamics as a whole. Therefore, measurements of

both flutter and buffeting forces were made and both were included in the overall

analysis. The next section provides a brief overview of aeroelastic analysis for long-span

bridges.

1.2 Flutter of Bluff Bodies/Bridges

Aeroelasticity and bluff-body aerodynamics blend together in the study of long-

span bridge aerodynamics. Engineering long suspension bridges to be stable in high

winds involves the elastic structural dynamics of a large structure, the bluff-body

aerodynamics of the bridge deck’s shape, and the interaction of these phenomena—i.e.

aeroelasticity. This section briefly summarizes the historical and mathematical

foundations of modern analysis of bridge aerodynamics.

Flutter is the unstable interaction of an elastic body with a fluid flow where energy

drawn from the flow increases the energy of the body’s oscillations. Under non-flutter

conditions, both structural and aerodynamic damping attenuate perturbations to a body’s

motion. When a critical flutter condition is reached (commonly just a minimum

freestream velocity), the aerodynamic forces that result from the body’s motion interact
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with the motion itself so as to cancel the structural damping and actually amplify the

oscillations.

Analytical methods of studying flutter were motivated by aircraft flutter problems

in the first part of the twentieth century. The early analytical formulations of motion-

induced forces provided a theoretical framework for later experimental efforts—including

those of bridge decks. The basis of these models was the use of infinitesimal sheets of

vorticity to model both the vorticity bound to the airfoil—modeled as a flat plate—and

that shed into its wake. Using this approach, several authors have derived the relationship

between an oscillating flat plate and the unsteady forces on it. Theodorsen’s 1935 paper is

often considered the foundation of flutter theory (for excellent summaries and derivations

of flutter theory, see Fung (1993), Dowell et al., 1995, and Bisplinghoff et al., 1996).

With plunging and pitching degrees of freedom represented as h  and α ,

respectively, the relationships for unsteady lift, L , and moment, M , took the form of

linear functions of h , α , and their first and second derivatives:

( )( )KChhhfL ,,,,,, &&&

&&& ααα=

( )( )KChhhgM ,,,,,, &&&

&&& ααα=

where ( )KC  is the Theodorsen circulation function and K  is the reduced frequency of

the oscillations. Reduced frequency is defined as UBK ω=  with ω  being the frequency

of oscillation, B  the deck width, and U  the freestream velocity. This analytical

relationship—when used in conjunction with the mechanical properties of the body—can

predict the mean flow speed at which flutter will occur. The most common approach to

these stability predictions is to study infinitesimal motions assuming that if small motions

(1-1)

(1-2)
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are stable, then large ones will be stable as well (for a good introduction, see Bisplinghoff

et al., 1996). Since large deformations are undesirable, it is commonly considered

sufficient to study small motions and ensure they are stable. Bringing a dynamic analysis

such as this to bear on long-span bridge design problems did not occur in earnest until

after the infamous collapse of the Tacoma Narrows Bridge in 1940.

Before the Tacoma Narrows failure, long-span bridges were designed with

primary consideration given to static wind loads. Appropriation of the tools, both

analytical and experimental, developed for studying aircraft flutter began seriously only

after this particular display of the significance of dynamic wind loading. While the images

of the steel and concrete of the Tacoma Narrows bridge twisting like a toy in the wind

have made its collapse the most famous in history, it was not the first bridge to suffer

such a fate. Unfortunately, a number of bridges in the nineteenth century failed due to

wind action without due change in subsequent bridge design practice (for examples, see

Steinman (1954), Scanlan & Wardlaw (1978)).

Scanlan (1993) provides a summary of the early attempts to study dynamic wind

loads on bridge decks. Efforts employing Theodorsen's flutter formulation proved

unsatisfactory because the separated flow experienced by many bridge decks made

Theodorsen's circulation function—derived for a thin airfoil with fully attached flow—

inapplicable. Most bridge decks can be classified as bluff bodies because of the separated

flow they experience over significant portions of their surface. Flow separation from a

bluff body is illustrated schematically in Figure 1-1. The figure shows shear layers

separating from the leading and trailing edges of a rectangular cross section. This highly

complex unsteady flow structure involves separated regions where large suction pressures
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are generated, shear layers which may or may not reattach, and vortex-like structures that

shed from the leading and trailing edges. This flow scenario is further complicated by

interactions with body motion. Clearly, a thin-airfoil model and its accompanying

analytical tools are inadequate for this scenario.

Figure 1-1 Schematic illustration of vortex structures forming from shear layers
separating from the leading and trailing edges of a rectangular cross section.

To go beyond the thin airfoil model, Ukeguchi et al. (1966) and Sabzevari &

Scanlan (1968) et al. worked to find aerodynamic, motion-related coefficients for

sinusoidal motions of bridge decks in smooth flow. The contribution of Scanlan &

Tomko (1971), however, has become one of the most widely-used formulations for

modern bridge flutter analysis. With thin-airfoil theory as a basis, it is an analytical

framework that requires the use of empirical aerodynamic data to describe the complex

lift and moment generation mechanisms of separated flows over bodies. What follows

here is a brief overview of this formulation.

Assuming a section of a body—such as that shown in Figure 1-2—to have two

main degrees of freedom (DOF), call them heaving (or vertical) and torsional

displacements h  and α , respectively, one can write a linear system of equations:
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( )tL
m

hhh hhh

1
2 2 =++ ωωζ &&&

( )tM
I

1
2 2 =++ αωαωζα ααα &&&

where hζ  and αζ  are the damping ratios for the vertical and torsional degrees of freedom,

respectively, αω  and hω  are the natural frequencies for the vertical and torsional degrees

of freedom, respectively, m  is the mass per unit span of the bridge deck, I  is the mass

moment of inertia per unit span of the bridge deck, and ( )tL  and ( )tM  are the time-

varying lift and moment per unit span on the bridge deck, respectively. Dots represent

derivatives with respect to time.

α(t)

h(t)
L(t)

M(t)

B

D

Figure 1-2 Model of the cross section of a streamlined bridge deck with two degrees of
freedom—one for heaving and one for torsion.

The time-dependent forces, lift and moment, in equations (1-3) and (1-4) are

typically separated into self-excited and buffeting components as follows:

( ) ( ) ( )tLtLtL bse +=

( ) ( ) ( )tMtMtM bse +=

(1-3)

(1-4)

(1-5)

(1-6)
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where the subscript “se” refers to self-excited and the subscript “b” refers to buffeting.

The self-excited components are those forces that result from the motion of the body

itself and require no other outside forcing. The buffeting components are the unsteady

forces resulting from the natural unsteadiness of a turbulent flow and are independent of

the body motion. For linear fluid-structure interaction problems, the buffeting forces can

be ignored during examinations of motion stability.

To express the time-varying, self-excited lift and moment, Scanlan & Tomko

(1971) used expressions similar to the following form (note the similarity to the generic

forms of equations (1-1) and (1-2)):

( ) ( ) ( ) ( ) ( ) 







+++=

b

h
kHkkHk

U

b
kkH

U

h
kkHbqtLse

*
4

2*
3

2*
2

*
12 αα&&

( ) ( ) ( ) ( ) ( ) 







+++=

b

h
kAkkAk

U

b
kkA

U

h
kkAbqtM se

*
4

2*
3

2*
2

*
1

22 αα&&

where 2

2
1

Uq ρ=  is the dynamic pressure, U  is the mean wind velocity, 2Bb =  is half

the bridge deck width, k  is the reduced frequency of the bridge motion defined as:

Ubk ω= , and the coefficients *
iH  and *

iA  are referred to as “flutter derivatives” or

“aerodynamic coefficients.” Note that, similar to the formulation for thin-airfoils, the self-

excited or aeroelastic lift and moment are given in terms of the two degrees of freedom,

their first derivatives in time, and the reduced frequency. Unlike the thin-airfoil work, the

coefficients in this formulation are found experimentally.

The model’s attractiveness lies in the fact that it can be adapted to a host of

different bridge deck sections as a generic framework with which to utilize experimental

(1-7)

(1-8)
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aerodynamic data. This framework clearly delineates the experiments necessary to test a

given bridge design for aeroelastic stability. Although the aerodynamic problem is

nonlinear, it can be addressed to a certain extent by these linear analytical techniques for

two reasons described by Simiu & Scanlan (1986). First, the structure itself “is usually

treatable as linearly elastic and its actions dominate the form of the response….” Second,

the incipient motion “separates the stable and unstable regimes” and “may be treated as

having only small amplitude.” These two assumptions enable the use of these tools in

bridge stability calculations.

While equations (1-7) and (1-8) make up an empirical framework for the self-

excited forces, another empirically-based framework is often employed for the buffeting

forces. Similar to the history of bridge flutter analysis, concepts for bridge buffeting

analysis were borrowed from aircraft studies. Like the work of Sears (1941) and

Liepmann (1952) for thin airfoils, Davenport (1962) developed an analysis technique for

bridge buffeting. Based on Davenport’s general work, expressions for buffeting forces

commonly take the following form:

( ) ( ) ( ) ( )





 +′+−=

U

tw
CC

U

tu
CbUtL

bwbu LDLLLb χχρ 22
2
1 2

( ) ( ) ( ) ( )





 ′+=

U

tw
C

U

tu
CbUtM

bwbu MMMMb χχρ 22
2
1 22

where bL  and bM  are the buffeting components of the lift and moment, respectively, LC ,

MC , and DC , are the static lift, moment, and drag coefficients, respectively, of the bridge

deck (and primes denote derivatives with respect to angle of attack), u  and w  are the

turbulent velocity fluctuations in the longitudinal and vertical directions, respectively, and

(1-9)

(1-10)
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buLχ , 
bwLχ , 

buMχ , and 
bwMχ  are aerodynamic frequency response. The effectiveness of

turbulent velocity fluctuations at generating aerodynamic force on a bridge deck is

quantified using these frequency response functions—for example, the relationship

between buffeting lift and u  fluctuations is characterized by 
buLχ . The functions are

dependent on frequency, bridge deck shape, and turbulence parameters. While the thin

airfoil counterpart to these functions, the Sears function (Sears, 1941), is derived

analytically, these functions are found experimentally (like the flutter derivatives).

“Aerodynamic admittance” is the term commonly used for the absolute magnitudes of

these functions.

1.3 Aerodynamic Analysis Applied to Bridge Design Problems

Designing long-span bridges for aerodynamic stability involves three major steps

(among others). The analysis framework described in the previous section is used directly

in two of these steps. The steps include section model tests, analytical estimates of full-

bridge response, and full aeroelastic model tests. This section describes each of these

design stages to provide the background information necessary for understanding the gaps

in the current knowledge of turbulence effects presented in the following section. The

descriptions here focus mainly on the self-excited forces and flutter analysis.

Section model tests are conducted early in the design process. Section models are

rigid, small-span replicas of candidate bridge cross section shapes. Their size allows them

to represent even small geometric details of the bridges. Such model tests are relatively

inexpensive compared to full-aeroelastic bridge models and allow economical
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aerodynamic testing of a large number of potential designs. The two DOF analytical

models discussed in section 1.2 are perfectly suited to section model testing.

The most common aerodynamic output of section model tests are the flutter

derivatives and the aerodynamic admittance described in section 1.2. Experimental

aerodynamic data required for identifying flutter derivatives can be and has been obtained

in numerous ways. A wind-tunnel model can be described as “an analog simulator that

reveals aerodynamic mechanisms affecting bridge stability and general response. The

‘reading’ of this simulator is done by examining its flutter derivatives” (Jones et al.,

1995). Methods of “reading” the flutter derivatives can be divided into two major

categories: those that use freely-vibrating models and those that force the model motion.

Flutter derivatives are extracted from freely-vibrating models by utilizing system

identification techniques to identify the model’s dynamic properties—a combination of

it’s mechanical properties and the modifications to them due to the flutter derivatives—

from vibration data. Models can also be forced to move in a prescribed motion while the

aerodynamic forces are obtained directly through either force or pressure measurements.

The flutter derivatives are then identified from the formulations (1-7) and (1-8) knowing

the forces and displacements.

References reporting self-excited forces identified from free-vibration

experiments include Scanlan & Tomko (1971), Huston (1986), Poulsen et al. (1992),

Sarkar et al. (1994), and Bogunoviº Jakobsen & Hjorth-Hansen (1995). Researchers

identifying self-excited forces using forced-vibration techniques include Larose et al.

(1993), Li (1995), Matsumoto (1996), Matsumoto et al. (1992, 1995), Falco et al. (1992),

and Ukeguchi et al. (1966). Sarkar et al. (1993) compared the results of a number of these
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different techniques—free and forced vibration methods—and found results to be

consistent with each other. Aerodynamic admittance is often obtained from pressure

measurements or force-balance measurements on stationary models (for example, Larose

& Mann, 1998).

Physical interpretations such as “aerodynamic damping” or aerodynamic stiffness”

are often given to the effects of the self-excited forces. These physical interpretations of

the flutter derivatives can make the classifications of the different types of flutter more

intuitively clear. Combining the torsional equation of motion, (1-4), with the aeroelastic

moment expression, (1-8), one obtains the expressions (1-11) and (1-12) below for the

coefficients of α&  and α , respectively. Aerodynamic effects combine with the structural

contribution to damping in the coefficient of α&  as shown here:

( ) ( )
U

b
kkAbqI *

2
222 −ααωζ

And aerodynamic effects alter the coefficient of α  as shown here:

( ) ( )kAkbqI *
3

222 2−ω

If one interprets expression (1-11) as the “effective damping” and expression (1-12) as

the “effective frequency,” then the terms involving *
2A  and *

3A can be understood as

aerodynamic contributions to damping and frequency of the structure. The remaining

terms of equation (1-8) serve to couple the pitching motion to the plunging motion

aerodynamically. Analogous statements can be made about the aerodynamic effects on

the plunging motion involving the *
iH  terms.

Examples of the *
2A  coefficient for two different bridge decks are given in Figure

1-3. In light of the aerodynamic damping expression of expression (1-11), it is evident

(1-11)

(1-12)
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that for the original Tacoma Narrows deck section a value of *
2A  of sufficient magnitude

could reduce or even eliminate the effect of the structural damping thus resulting in an

unstable “negative damping” situation. This negative damping results in a flutter mode

commonly known as single degree of freedom (SDOF) flutter. The Tacoma Narrows

Bridge, with this positive trend of its *2A  coefficient , suffered an SDOF torsional flutter

condition that resulted in its catastrophic failure. A number of researchers (Scanlan &

Wardlaw, 1978; Scanlan et al., 1974; Nakamura, 1988) have hypothesized the physical

mechanism of this SDOF torsional flutter being related to the shedding of a large vortex-

like structure from the leading edge of the body as it undergoes a change in angle of

attack (such as shown in Figure 1-1). The suction on the body caused by this structure

causes an abrupt increase in the aerodynamic moment before it asymptotes to its steady

state value as the fluid structure convects downstream and away from the body. Since the

effect of this moment is to increase the same motion that initiated it, the situation is

unstable.
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Figure 1-3 Plot of *
2A  for two bridge deck sections and an airfoil illustrating how cross

section shape can affect aerodynamic damping through this coefficient (Data from
Scanlan & Tomko, 1971).

Figure 1-3 shows that not all bridge deck sections have positive trends in their *
2A

values. These sections, like an airfoil, cannot experience flutter in a single mode but only

experience flutter when multiple modes couple aerodynamically. In light of the flutter

derivative formulation, this coupling occurs through the *
2H , *

3H , *
1A , and *

4A

coefficients. This manifestation of flutter is commonly called “classical” flutter.

While the above physical interpretations of the flutter derivatives are helpful to

some extent, they do not provide particularly useful insight into the physical mechanisms

of flutter. They provide some measure of how given geometrical changes in cross section

affect the aeroelastic stability of a design but do not, in themselves, serve as guides to

particular design changes. Rather than identify the flutter derivatives directly, the present
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work measured pressure magnitudes and phases across the deck section to determine

aeroelastic stability characteristics.

Once section model testing has rendered aerodynamic data from a potential bridge

shape, full-bridge response estimates are made by analytically extending the section

model data to three dimensions. Estimation of full-bridge response is often based on the

approach of Scanlan (1978a, 1978b, 1987). Using structural analysis techniques, the

vibration modes of a full bridge are obtained. These modes are calculated neglecting the

aerodynamic stiffness effects modeled by the flutter derivatives (assuming that the small

ratio of air inertia to structural inertia results in negligible effects on the structural mode

shapes). As an example, Figure 1-4 shows the first and second swaying, bending, and

twisting modes of the Great Belt East Bridge (Larsen & Jacobsen, 1992). The full-bridge

vibration mode shapes are then used to generalize the aerodynamic forces. Scanlan (1987)

points out that while the vibration modes most likely to participate in flutter may have

been identifiable intuitively for older, more basic, suspension bridge designs, this is not

the case for modern cable-stayed bridges having modes “less likely to be ‘pure’ in one

single degree of freedom.” This emphasizes the need to have some formal approach to

identifying the critical modes of a structure out of the dozens computed from structural

analysis.
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Figure 1-4 First and second mode shapes of the Great Belt East Bridge (Denmark) in the
swaying, bending, and twisting directions (from Larsen & Jacobsen, 1992).

Two such formal approaches (based on Scanlan (1987), Scanlan & Jones (1990),

and Katsuchi et al. (1999)) are outlined here. The first approach seeks a single mode of

the structure which is the dominant flutter mode. Scanlan (1987) has observed that bridge

flutter generally involves the dominant action of a single mode. The alternative to this is a

“classical” type flutter where the frequencies of multiple bridge modes coalesce into a

single flutter mode. While single-mode flutter is the critical condition for the majority of

spans in existence today, increasingly longer spans become increasingly more susceptible

to coupled flutter. The recently completed Akashi-Kaikyo Bridge with its 1991m main

span was the first bridge in the world exhibiting a coupled bending-torsion flutter mode

as its critical mode. With even longer spans being planned, a multi-mode, coupled
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analysis is essential. A description of a multi-mode, coupled approach will follow the

single-mode approach here.

The dimensionless, generalized coordinates of a full bridge are written as:

[ ] ( )tQI iiiiiiii =++ ξωξωζξ 22 &&&

where iI  is the generalized inertia and iξ  is the dimensionless, generalized coordinate

associated with the thi  full-bridge vibration mode, and ( )tQi  is the generalized force. The

displacement of the bridge deck at a spanwise position x  is written as:

( ) ( ) ( )∑=
i

ii xttx αξα ,

( ) ( ) ( )∑=
i

ii Bxhttxh ξ,

where ( )xhi  and ( )xiα  are dimensionless components of the full-bridge vibration mode

shapes at x  in the vertical and torsional directions, respectively. The generalized force is

then defined by:

( ) ( )∫ +=
span iii dxMBLhtQ α

where bse LLL +=  and bse MMM +=  are the lift and moment, respectively, per unit

span at x . Note that an actual analysis of full-bridge dynamics would include the swaying

component of the deck, sometimes modeled as ( )xp  with the drag force D . For brevity

and for continuity with the previously-discussed formulation of the flutter derivatives,

this degree of freedom was omitted here.

It is important to observe that the calculation of the generalized force involves the

spanwise dependence of lift and moment. In this formulation, it is assumed that the

motion-induced forces on a specific spanwise deck location depend only on the shape and

(1-13)

(1-14)

(1-15)
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motion of that specific point and the flow immediately upstream of it. This is one aspect

of what is commonly called a “strip theory” assumption. Substituting (1-7) and (1-8) into

equation (1-15), coupled with the strip theory assumption, results in the following

expression for the generalized self-excited forces:

( ) ( )∑ +++=
j

AA
h

H
h

H
hhj

i

ijijijij

se GGGG
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A
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4
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where the G  terms are defined by the following integral which combines the structural

and aerodynamic coupling among the various modes:

( ) ( ) ( )∫=
span nmp

T

sr dxxsxrxTG p

nm

*
*

where ( )4,3,2,1or *** == pHAT ppp , hsr =,  or α  and inm =,  or j . Since flutter for a

single mode is being sought, the cross coupling terms (i.e. those terms for which ji ≠ ) in

equation (1-16) can be dropped to simplify the expressions. With this simplification an

effective damping expression can be written analogous to that described in equation

(1-11). This expression can be written:

( ) ( ) ( ) ( )[ ]i

ii

i

ii

i

ii
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ρ
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where iζ  is the effective damping for mode i , 
U

B
K i

i

ω= , and iω  is the effective

frequency of mode i . The effective frequency can be written in a form analogous to

equation (1-12) as follows:

(1-16)

(1-17)

(1-18)
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In many cases, iω  is assumed to be equal to iω . The first term of equation (1-18) is the

generalized structural damping of mode i  while the remaining terms are the aerodynamic

contribution to the damping. The flutter criterion then is: 0≤iζ . From an examination of

this inequality for each bridge mode over a series of velocities, one can determine the

flutter susceptibility of each mode.

As stated, for the longer bridge spans being built and being planned, this single-

mode approach is inadequate. A number of researchers have developed multi-mode,

coupled analysis techniques for flutter and buffeting analysis (Jain et al., 1995; Miyata et

al., 1994; Katsuchi at al., 1999; Chen et al., 2000). The frequency-domain approach of

Jain et al. (1996) and Katsuchi et al. (1999) is outlined here, but the advantages of time-

domain approaches (such as Chen et al. 2000, 2000a) will be discussed later in this

chapter and in subsequent chapters. The first step is to expand equation (1-13) to include

all the bridge modes. This requires matrix notation as follows:

bQBîîAîI =+′+′′

where I  is an identity matrix, î  is the generalized coordinate vector, primes denote

derivatives with respect to time, bQ  is the generalized buffeting force vector. The

matrices A and B are expressed as:

( ) [ ]*
2

*
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*
2

*
1

2
2

4
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(1-19)

(1-20)

(1-21)
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The first terms of the ijA  and the ijB  expressions represent structural damping and

stiffness, respectively. The remaining terms represent the aerodynamic contributions to

damping and frequency and the coupling among the various bridge modes. Equations

(1-20) through (1-22) simplify to the single mode formulation for ji = . Again it should

be noted that for the sake of the clarity of these examples, the sway component has been

left out of these formulations. Including the drag force and the sway component would

add to the number of terms in equations (1-21) and (1-22) but would not change their

fundamental character.

Taking a Fourier transform of the above formulation allows equation (1-20) to be

written in the frequency domain as:

bQE =ξ

where the matrix E  is a combination of the A  and B  matrices of equations (1-21) and

(1-22), respectively, and the overbar here denotes the Fourier transform. This formulation

of the problem allows consideration of buffeting response including the effects of the

aerodynamic contributions to damping and stiffness and the effects of coupling—the

latter a necessity for extremely long spans such as Akashi-Kaikyo.

Multi-mode, coupled flutter analysis then consists of solving the following

eigenvalue problem:

0=ξE

where the solution is found by identifying the value of K  for which the determinant of E

vanishes. This involves two equations—one for the real part and one for the imaginary

(1-22)

(1-23)

(1-24)



21

part—which must be satisfied simultaneously. Since both the critical flow speed and

critical flutter frequency are unknown, one solution assumes a value of the reduced

frequency, K , and solves for ω . Iteration is required to find values of K  for which to

real and imaginary parts of the determinant vanish for the same ω  (this process is similar

to that known as “Theodorsen’s method” for the two DOF case discussed in section 1.2).

The critical flutter speed for a given mode is then obtained from the definition of the

reduced velocity, UBK ω= . This process is repeated for each of the bridge modes being

considered. The critical flutter speed for the overall bridge is obviously, then, the lowest

of those obtained for the individual modes. It should be noted that it is not necessarily

trivial using this method to track how a bridge’s structural modes/frequencies are being

altered as different mean wind speeds, U , are considered.

Buffeting analysis consists of combining the spectral description of the incident

turbulent flow with aerodynamic admittance functions to obtain buffeting forces. An in-

depth summary of such analyses will not be provided here, but—as discussed for flutter

analysis—it has been found that very long bridge span lengths (such as the 1991m

Akashi-Kaikyo Bridge) require multi-mode, coupled analysis techniques to obtain proper

buffeting response estimates (Jain et al., 1995; Miyata et al., 1994; Katsuchi at al., 1999;

Chen et al., 2000).

The next step in the design of a long-span bridge is an aeroelastic model of the

complete bridge. Large wind tunnels are required for such testing. For example, the

Boundary Layer Wind Tunnel of the Public Works Research Institute in Tsukuba,

Japan—where the Akashi-Kaikyo Bridge was tested—has a test section 41m wide, 4m

high, and 30m long (Miyata & Yamaguchi, 1993). Bridge models are designed to match
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as closely as possible the first few modes of bending, swaying, and twisting motions. This

testing is very expensive, and is only conducted after extensive section model

aerodynamic testing and analytical work has brought the design to a near-final state.

The background of aerodynamic testing of long-span bridges provided by this

section is the basis for understanding the next section concerning work to improve the

state of the art of bridge flutter analysis. Both inconsistencies and experimental work

needed to address gaps in current understanding are addressed.

1.4 Motivation for Study of Turbulence Effects

Inconsistencies in past studies and gaps in our understanding of the turbulence

effects on long-span bridge stability provided the primary motivation for this project. The

inconsistencies manifest themselves in both experimental and numerical simulation

results. This section highlights some inconsistencies exhibited in past experimental

results and then discusses some gaps in our understanding of turbulence effects—

particularly related to spanwise coherence of self-excited forces. The need for physical

insights concerning turbulence effects is then presented, and finally, the limitations of the

linear approach most often used for bridge analysis is addressed along with the need for

nonlinear analysis techniques with corresponding nonlinear experimental data.

Designing a long-span bridge often includes section-model tests to identify stable

shapes from candidate bridge decks followed by full, aeroelastic model tests to finalize

the design. Section models are used mainly to obtain flutter derivatives for stability

estimates while the full, aeroelastic model tests provide further validation of stability
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while, hopefully, elucidating full-bridge dynamics. This section presents experimental

results from both types of tests that illustrate the gaps in the current understanding of how

turbulence affects the motion-induced forces on a bridge deck.

Results from three studies where the flutter derivatives were identified will be

presented here. Scanlan & Lin (1978) and Huston (1986) involved section model tests

while Larose, Davenport, and King (1993) employed taut-strip models—which,

consisting of a long, flexible span pulled taut across a wind tunnel to simulate the

fundamental modes of the full bridge, lies somewhere between section models and full,

aeroelastic models.

Not many studies have focused explicitly on the effects of turbulence on

aeroelastic forces. One of the first to do so was Scanlan & Lin (1978) who used a spring-

mounted section model in grid-generated turbulence. Their model simulated a trussed

deck section by having holes drilled into the sides of an inverted U-shaped beam.

The results of this study did not reveal a significant difference in the flutter

derivatives between smooth and turbulent flow as illustrated in Figure 1-5 for the *
2A

flutter derivative. Their study concluded, “Results under the two flow conditions do not

differ drastically in this instance exhibiting, in fact, similar trends throughout” (Scanlan &

Lin, 1978). Each flutter derivative had only slightly and yet consistently greater

magnitudes in turbulent flow—from this it follows that the actual lift and moment

magnitudes will have greater magnitudes for the turbulent.
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Figure 1-5 Flutter derivative *2A  from the simulated trussed deck section model of
Scanlan & Lin (1978). The section model is shown in the inset.

Huston (1986) focused specifically on the effects of large incident turbulence

length scales on the self-excited forces. Integral scales encountered by a prototype bridge

can be several times larger than the bridge deck width, so wind tunnel bridge studies—

where the common passive means of turbulence generation produce integral scales that

are often the same size or smaller than the deck width—often suffer from scale

mismatches.

The approach employed two sets of flapping airfoils—the first set flapped in

phase with each other to produce vertical gusting and the other set had adjacent airfoils

flapping out of phase with respect to each other to produce horizontal gusting. The two

primary flows used in the section-model tests were “neutral,” where the above-mentioned

airfoils were held fixed in order to generate a somewhat smooth flow, and “low-pass,”
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where a white noise signal, low-pass filtered at 2 Hz, was used to drive both sets of

airfoils.

Although Huston employed the term “gusting” over “turbulence” most of the

time, it is unclear how closely these gusting flows resemble atmospheric flows. For the

neutral mode of operation, uI  and wI  were measured to be around 2% while for the low-

pass flows, they were 30% and 25%, respectively. Length scales were calculated for the

horizontal and vertical velocity fluctuations by finding the frequency associated with the

centroids of the respective autospectra. The neutral mode produced horizontal and

vertical scales of approximately B1  to B5.2  while the low-pass mode generated vertical

scales in the range of B5  to B12  in the horizontal and B2 to B20  in the vertical (the

ranges of these values result from the fact that different flow velocities were used in each

case). It should be noted, however, that the vertical scale is taken as the horizontal

correlation of the vertical velocity fluctuation (that is, wxL ).

Tests on a model of the Golden Gate Bridge deck section, shown in Figure 1-6,

yielded the most interesting results. The *
2A  derivative for this deck showed a significant

destabilizing change comparing the results in the relatively smooth neutral flow to the

results in the large-scale gustiness of the low-pass flow. A positive trend in the *
2A  values

is considered destabilizing because of the resulting negative contribution to damping (as

discussed in section 1.2). This result differs with the general conclusion of Scanlan & Lin

(1978) but no hypothesis for explaining the difference was or has been offered in the

literature.
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Figure 1-6 Flutter derivative *2A  of the Golden Gate deck section in flows generated by
the neutral and low-pass modes of Huston’s (1986) active turbulence generation

mechanism.

The work of Larose, Davenport and King (1993) using a taut-strip model of the

Great Belt East Bridge deck section did not focus specifically on the effects of turbulence

on self-excited forces, but did show some interesting effects of turbulence on flutter

derivatives. This bridge deck, shown with the plot of *
2A  versus reduced velocity in

Figure 1-7, is a closed box girder which behaves more like an airfoil than do trussed

girder decks. Values for *2A  show similar values for smooth flow and turbulent boundary

layer flow while two grid-generated turbulent flows gave significantly different values. In

addition, the turbulent boundary layer case showed an increase in the magnitude of the

derivatives—especially for the *iA  values—while the grid turbulence cases showed a
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decrease in magnitude. This differs from the results of Scanlan & Lin (1978) discussed

above.

The grid-generated turbulent flows showed decreases in flutter derivative

magnitudes for increasing turbulence intensity. However, the fact that the grid 2 flow and

the boundary layer flow had similar longitudinal turbulence intensities but significantly

different flutter derivatives shows a dependence on parameter(s) other than turbulence

intensity. Scales and spanwise coherence were suggested as possible controlling

parameters. Understanding these changes from a physical standpoint are difficult when

only the flutter derivatives are available.
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Figure 1-7 Flutter derivative *2A  for the Great Belt East Bridge deck section taken from
the taut-strip model test results of Larose et al. (1993). The deck model’s cross section is

shown in the inset.



28

The difference between smooth and turbulent flow results for full, aeroelastic

models of bridges have quite often been illustrated using results from the study of the

Lions’ Gate Bridge—for example, Irwin & Schuyler (1977). Figure 1-8 (from Scanlan &

Wardlaw (1978)) summarizes this work showing the rms response of a single location on

the deck of a full, aeroelastic bridge model in both smooth and turbulent flow. A distinct

flutter boundary is evident for smooth flow and a gradual rise in response amplitudes

without such a distinct flutter boundary is observed for turbulent flow. The figure also

shows how well the critical flutter velocity predicted by section model tests of the same

deck compared with the full model in smooth flow.

Figure 1-8 RMS response of a full bridge model of the Lions’ Gate Bridge in both smooth
and turbulent flow. The critical flutter velocity predicted from section model test results is

also shown (from Scanlan & Wardlaw, 1978).

Data such as these has led many researchers to conclude that the flutter boundaries

found in smooth flow are conservative. The proposed physical explanation for this has
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been that turbulent flow reduces the spanwise correlation of the motion-induced forces

from their smooth-flow values thus reducing the possibility of unstable motion. Although

this hypothesis has been mentioned by a number of researchers, no direct experimental

work has addressed this issue. A demonstration of the analytical plausibility of this idea

was put forth by Scanlan & Jones (1990) and more rigorously by Scanlan (1997).

Scanlan’s (1997) approach can be summarized as follows. Consider the single model

flutter criterion for a bridge mode for which the twisting motion is dominant. As in

section 1.3 using this would be described by comparing the coefficients of iξ& , the first

derivative of the generalized coordinate of mode i , from equations (1-13) and (1-16)

considering only the torsional flutter derivative *
2A :
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where the left hand side of equation (1-25) represents the aerodynamic contribution to

damping and the right hand side represents the structural damping. Because the structural

frequencies are usually not changed significantly by aerodynamic effects, one can assume
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A form for the spanwise coherence is then assumed that is similar to that for turbulent

velocity coherence as follows:

( ) ( ) ( )( ) LxxceKAxKAxKA 21
2*

22
*
21

*
2 ,, −−=

where L  is the bridge span length. It is obvious how the spanwise coherence expression

of equation (1-28) will decrease the likelihood of flutter by decreasing the value of the

left hand side of the flutter criterion in equation (1-27). This will always be the effect of a

diminution of spanwise coherence for a single mode flutter analysis such as this—the

effectiveness of the self-excited force is decreased. However, the effects of such spanwise

coherence are not so obvious for multi-mode, coupled flutter analyses. While decreases in

spanwise coherence may stabilize a deck by reducing negative damping effects, it may

also destabilize a deck by reducing favorable damping. The impact of such effects will

become more important as bridges with longer spans are designed and multi-mode flutter

becomes more probable.

As mentioned above, the spanwise coherence of self-excited forces has never been

addressed experimentally before. Experimental work is needed to understand the role that

turbulence plays in the spanwise coherence of the self-excited forces not only for the

analysis of flutter susceptibility but also for the analysis of buffeting—specifically, how

mode coupling and damping are affected by changes in the spanwise behavior of the

aeroelastic forces.

The influence of nonlinear effects is another topic requiring further research. The

flutter analysis techniques described in section 1.3 are linear. They are based on a

linearization of nonlinear aerodynamic phenomena. Their frequency dependent

coefficients are experimentally determined for bodies oscillating with small

(1-28)
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displacements—essentially a linearization around a specific set of parameter values. This

approach captures the nonlinear effects without an explicit nonlinear model.

Studies related to the Messina Straits crossing project (connecting the island of

Sicily to the Italian peninsula) have illustrated the importance of nonlinear aerodynamic

loading (Diana et al., 1993, 1998, 1999; Falco et al., 1992). Structural changes necessary

to extend bridge spans from current distances of 1990m to the 3300m to required cross

the Messina Straits complicate the aerodynamic properties of bridges. Therefore

experimental investigation of such nonlinear aerodynamic properties is necessary along

with complementary analytical techniques to incorporate such data into bridge response

estimates. Chen et al. (2000a) have developed a time domain analytical model which

incorporates nonlinearities of both structural and aerodynamic origin. An important

aspect of this particular approach is that flutter and buffeting analysis is performed

simultaneously rather than separately—like the frequency domain approach described in

section 1.3. This allows interaction between the response induced by buffeting and that

induced by self-excited forces. Without such interaction, importance sources of nonlinear

effects are ignored.

In terms of experimental work needed, it is logical to extend the linearization

already practiced to a wider range of parameters to gain insight into where nonlinear

effects manifest themselves. Analysis with extended linearization means that functions

such as flutter derivatives need to be identified for a range of parameters such as angle of

attack and vibration amplitude. This type of analysis will show where superposition of

aerodynamic loads is warranted, where nonlinearities exist, and hopefully, what nonlinear

models might describe the behavior.
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Where the flutter derivatives given in equations (1-7) and (1-8) are given only as a

function of K , the larger aerodynamic problem is nonlinear with dependence on a greater

number of parameters. This nonlinear dependence might give the flutter derivatives the

following representation:

( )iijii SLIhKfH ,,,,,, 00
* αα=

( )iijii SLIhKfA ,,,,,, 00
* αα=

where α  is the average angle of attack of the motion, 0α  is the amplitude of the torsional

motion, 0h  is the amplitude of the heaving motion, and iI , ijL , and iS  are the turbulence

intensity, integral length scale in the thj  direction, and small-scale spectral density

parameter of the thi  component of velocity, respectively. A similar parametric study was

proposed by Huston (1986) who suggested that an appropriate experimental program

might be useful to determine whether the motion-dependent forces are simple functions

of the turbulence statistics.

An important application for the work of this study is to improve numerical

predictions of bridge responses. Current numerical efforts can be divided into two main

groups. The first group attempts to model the actual flow about bridge decks (for a review

of computational fluid dynamics in general see Murakami & Mochida, 1999; for an

example of the use of discrete vortex simulation, see Larsen & Walther, 1997). These

approaches hold great promise as design tools, but prediction accuracy and computational

resource requirements remain as significant difficulties to be overcome. An experimental

effort such as the current work adds to the base of knowledge from which such methods

can be validated.

(1-29)

(1-30)
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The second group does not employ traditional CFD methods but rather attempts

use experimentally-obtained aerodynamic coefficients and generate stability predictions

for a number of turbulent flow scenarios (Beliveau et al., 1977; Lin, 1979; Lin &

Ariaratnam, 1980; Tsiatas & Gasparini, 1987; Bucher & Lin, 1988; Tsiatas & Sarkar,

1988; Lin & Li, 1993; Shinozuka & Billah, 1993; Billah & Shinozuka, 1994; Bartoli et

al., 1995; Li & Lin, 1995; Pandey & Ariaratnam, 1998). The common thread running

through each of these studies is that of modeling the inflow turbulence as a random

dynamic pressure. This means replacing 2

2
1

Uq ρ=  with ( )( )2

2
1

tuUq += ρ  in equations

(1-7) and (1-8) where ( )tu  is a random variable with characteristics matched to those of

the relevant turbulent flow.

Although different researchers may handle the mathematics differently, what is

lacking in each is a complete representation of the effects of different scales. While a

random dynamic pressure may capture large-scale turbulent fluctuations adequately it

cannot include the effects of the smaller scales changing the fundamental flow structure

and pressure producing mechanisms. In one of the first attempts at stochastic analysis of

the flutter problem in turbulent flow, Y.K. Lin (1979) acknowledges this in the following:

Another important assumption used in the analysis is that the scale of turbulence

in the wind is much larger than the lateral dimensions of the bridge. In such a case

the flow pattern around the bridge is expected to be similar to that associated with

a nonturbulent flow. However, if the turbulence scale is of the same order of

magnitude or even smaller than the lateral dimensions of the bridge, the flow

pattern, and thus the lift and drag curves, can change greatly.
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Thus, the change in flow structure caused by turbulence is not entirely understood and

better insight into this phenomenon could be of fundamental importance to stochastic

modeling efforts of this type.

1.5 Outline for the rest of the dissertation

Inconsistencies such as those mentioned in the previous section exist perhaps

because so few studies have been done of the mechanics of how turbulence affects the

motion-induced forces on a bridge deck. While several bridge decks have been examined

in smooth and a variety of turbulent flows, few studies have been done to understand

mechanisms causing the differences. To pursue such an understanding, this dissertation

proceeds as follows. Chapter 2 summarizes the approach taken in the current work to

address the motivating issues raised in this chapter. This summary includes some

discussion of the literature on the effects of turbulence on generic bluff body flow

structure and how this work guided the research into motion-induced forces. Chapter 3

outlines the experimental equipment used to implement the work of chapter 2 including

the turbulence-generation techniques, the design of the model and its accompanying

motion-driving mechanisms, and the velocity and pressure measurement methods.

Chapter 4 presents the velocity measurement data including statistical

characteristics of each incident flow used in this study. Results of pressure measurements

on stationary models are reported in Chapter 5. These results were used to validate the

system integrity, place the current measurements in the context of the existing literature

concerning stationary rectangular cylinders, and develop a preliminary picture of the flow
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structure about a rectangular cylinder that would be useful for interpreting the results of

subsequent dynamic tests. Chapter 6 contains sectional pressure data from dynamic tests.

These data include force and pressure spectra, pressure amplitude and phase distributions,

flutter derivatives, and other statistical distributions. Spanwise coherence and correlation

results are presented in chapter 7.

Although only chapter 8 is formally called a “discussion” chapter, each chapter

containing results contains a certain amount of commentary which, when taken as a

whole, builds a picture of the “anatomy” of the effects of turbulence on bridge

aerodynamics. Chapter 8 brings all of the former three chapters of results together into a

more complete picture. Chapter 9 summarizes the major conclusions of the work and

proposes research goals for future study.
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CHAPTER 2.   APPROACH AND BACKGROUND 

 The current approach addresses the issues raised in Chapter 1 with a wind tunnel 

model equipped with a large number of pressure taps, oscillating in a series of smooth 

and turbulent flow. This chapter describes the approach taken in this project to 

experimental bridge aerodynamics analysis and then summarizes existing literature on 

bluff body aerodynamics as background. The synopsis of the approach provided here is 

an introduction to the various components of the work—each of which will be dealt with 

in greater depth in subsequent chapters. 

 

2.1 The Current Approach 

 For this study of the effects of turbulence on bridge decks, a section model and 

accompanying motion-driving mechanisms were constructed. The specifications of this 

equipment relate back to the problem motivation in Chapter 1. Streamwise pressure 

distributions were measured—rather than total force—to allow examination of the 

anatomy of the aerodynamic forces rather than just their integrated effects. Pressure taps 

were arranged to allow measurement of pressures at two spanwise positions 

simultaneously. Quantifying the spanwise coherence of buffeting and self-excited forces 

on an oscillating model was thus possible. This study represents the first such study of 

the spanwise coherence of self-excited forces on oscillating bridge models. 
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 At the outset, one must recognize the host of length scales present in this flow-

structure interaction problem. Complex interactions between these fluid and structural 

scales underlie the measured aerodynamic quantities.  

 Fluid scales include the thickness of the shear layer and the reattachment length. 

Scales in the incident turbulent flow include the largest and smallest scales that are 

present—often quantified using the turbulence integral scales and a small-scale spectral 

density parameter, respectively. Structural scales include not only the overall dimensions 

of the bridge deck—it’s vertical height, streamwise width, and spanwise length—but also 

dimensions of various structural members such as trusses, guard rails, and traffic barriers. 

Even smaller scales are present in terms of surface roughness of the bridge components. 

For example, the road surface, the presence of railroad tracks, and the use of gratings all 

play a role in the development of the overall flow structure. 

 The relative importance of each of these scales is worthy of study, but 

differentiating the effects of individual scales is problematic. One example of this 

difficulty is found when trying to identify the effect of turbulence scale while holding 

turbulence intensity constant. Holding the turbulence intensity constant requires that any 

increase in, say, large-scale turbulent energy be balanced by decreases in the energy 

content of different scales. Aerodynamic structure changes resulting from these changes 

cannot be attributed exclusively to the large-scale increase or the small-scale decrease. 

 To focus on flow mechanisms without the complexities of actual bridge deck 

shapes, a rectangular cross section with a smooth surface was studied. This eliminated 

most of the structural length scales—all but the overall dimensions. The relative 

importance of every fluid scale, as mentioned above, was not differentiated. Rather, 



 38

various flow scales were quantified and reported to provide an overall picture of the 

various flow scenarios. Further details of these flow parameters are provided in Chapter 

4. Detailed studies of each scale’s effect would require specialized experiments beyond 

the scope of this study. 

 A model of rectangular cross section ( 67.6=DB , where B  is the streamwise 

dimension and D  is the frontal dimension of the body) was chosen for two main reasons. 

It was chosen, as mentioned above, to reduce the number of length scales involved and 

study flow mechanisms without the geometric complexities of actual bridge decks. It was 

also chosen to take advantage of the large amount of literature relating to the 

aerodynamics of rectangular shapes. Because a significant portion of the lift generated 

over a bridge deck can be attributed to mechanisms involving separated flows, a bluff 

body with rectangular cross section was used to examine the effects of turbulence on 

flow structures involving separated flows. Subsequent phases of this work will involve 

actual bridge deck sections. 

 To test a wide range of dynamic conditions, the motion driving mechanism 

designed and built was capable of driving pitching and plunging motions with variable 

amplitudes at changing mean angles of attack. In this, the first project with this 

equipment, testing consisted of torsional motion at zero-mean angle of attack. Full 

integration of all the dynamic capabilities of the system will require further work beyond 

the scope of this project. 

 Observing the effects of turbulent scale required that a series of turbulent flows be 

generated having constant turbulence intensity and varying integral scales. Tests were 

conducted in each turbulent flow, and analysis techniques were developed to track the 
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turbulence-induced changes in the unsteady forces. One such technique was the 

identification of the amplitude and phase of the self-excited pressure signals at each 

streamwise location. What follows is a brief derivation of this approach and how it also 

produces conventional flutter derivatives for comparison with the literature. 

 Rather than extract flutter derivatives directly from free-vibration data, this 

method obtains streamwise pressure amplitude and phase distributions from forced 

oscillation experiments. This approach is similar to that of Matsumoto et al. (1996). 

While these distributions can be integrated to provide conventional flutter derivatives, 

they also provide insight into the mechanisms involved in the turbulence effects. 

 The amplitude and phase distributions for the surface pressures are defined 

according to the following equations. For torsional motion described in terms of the 

angular position, α , in equation (2-1), each position along the model has a pressure 

fluctuation at the model oscillation frequency described by equation (2-2).  

( ) ( )tft απαα 2cos0=  

( ) ( ) ( )( )xtfxCtxC pp ψπα α −−= 2cos, *
0  

where 0α  is the oscillation amplitude, αf  is the model’s torsional oscillation frequency, 

( )txCp ,  is the pressure fluctuation function (normalized by the dynamic pressure), and 

( )xψ  is the phase defined as the lag between the maximum angle of attack and the 

maximum negative pressure at a specific location, x . These quantities are illustrated in 

Figure 2-1 where the pressure signal is shown together with the angular displacement of 

the model. 

 

(2-1) 

(2-2) 
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Figure 2-1 Illustration of the definitions of pressure amplitude, ( )xCp
* , and pressure 

phase, ( )xψ , with respect to the body oscillation. 

 

The amplitude of these pressure fluctuations are given in terms of a pressure coefficient, 

( )xCp
* , defined according to equation (2-3). 

( ) ( )
0

*
*

αq
xpxCp =  

where ( )xp*  is the amplitude of the pressure fluctuation, q  is the dynamic pressure, and 

0α  is the amplitude of the angular oscillation. 

 Integrating the pressure function, (2-2), over the surface can render the self-

excited moment as follows: 

( ) ( ) ( )( )xdxxtfxCqtM
b

b
mpse ∫

−

−−= ψπα 2cos2 *
0  

Substituting bxx =*  and rearranging terms yields: 

(2-3) 

(2-4) 
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 The expression for the self-excited lift, ( )tLse , is derived similarly. With self-

excited lift and moment defined according to equations (1-7) and (1-8), respectively, 

torsional motion flutter derivatives can be derived from the amplitude and phase 

distributions using equations (2-6) through (2-9) as follows: 
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where k  is the reduced frequency defined as Ubk αω=  where αα πω f2= . 

 Pressure amplitude and phase as defined above are discussed at length in 

subsequent chapters. They complement the statistical and spectral analysis also presented 

for the unsteady pressures developed by various turbulent flows. The large amount of 

work done for bluff bodies of rectangular cross section provided a foundation from which 

the above analysis could extend. This literature is briefly summarized in the following 

section. 

 

(2-5) 

(2-6) 

(2-7) 

(2-8) 

(2-9) 
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2.2 Background of Bluff-Body Aerodynamics 

 Civil engineering structures provide a wide variety of applications for bluff body 

aerodynamics. Because bridges and buildings often have rectangular shapes, a large 

amount of wind tunnel work has been done studying varieties of rectangular bodies and 

the shear layers separating from them. Most of this work has been done for stationary 

bodies, but some has been for such prisms in motion. Because this study of turbulence 

effects on bridge aerodynamics employs a rectangular cylinder, relevant results from the 

literature are highlighted here. A brief outline of bluff body flow structure about a 

rectangular body will be followed by a presentation of relevant parameters and a 

summary of the effects of these parameters on quantities of aerodynamic interest. 

 To aid the description of parameters and definitions in this summary of bluff-

body flow structure, Figure 2-2 shows a schematic diagram of flow over a body with 

rectangular cross section. The separated shear layers are the most important components 

of this flow. Shear layers separate from the sharp leading edges, roll up periodically to 

form vortex-like structures, and usually reattach near some distance, Rx , downstream. 

Although this reattachment is highly unsteady—the line in the diagram represents only a 

time mean separating streamline—it separates the surface of the body into regions of 

mostly separated and mostly attached flow. The pressure distribution has large negative 

values in the separated region (i.e. the “separation bubble”) and recovers to much higher 

pressures downstream of reattachment. 

 

 



 43

Reattachment region

Separation bubble

Entrainment into
shear layer

xR

U

Reverse flow

Time mean dividing streamline

 

Figure 2-2 Schematic illustration of flow separation and the resulting pressure field 
around a bluff body with rectangular cross section. 

 

 Plotting various statistical distributions of surface pressures versus streamwise 

position provides insight into the physics of the flow structure. In fact, such distributions 

are the most common method of tracking turbulence-induced changes in the flow 

structure. Mean pressure distributions map out the approximate region of separation with 

large negative pressures within the separation bubble. Saathoff & Melbourne (1989) 

report that in smooth flow the maximum in the rms pressure distribution is located 

approximately at the reattachment line. This maximum moves a bit upstream of the 

reattachment line for turbulent incident flows. 

 Distributions of the peak pressures give a measure of the greatest pressure 

magnitudes experienced at any single point. The upstream portion of the separation 

bubble experiences the largest peak pressures. Saathoff & Melbourne (1989, 1997) 

attribute this to the rolling up of the separated shear layer into a vortex that causes large 

negative pressures on the surface beneath it. This phenomenon occurs in both smooth and 

turbulent flows but creates stronger vortices in turbulent flow. Examining the distribution 
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of the skewness of the pressure signals at various streamwise locations complements the 

observations of the peak distribution. Negatively skewed signals correspond to the region 

near the maximum peak pressures. Nearer the reattachment point, positively skewed 

pressures occur, which Kiya & Sasaki (1983) suggest is indicative of irrotational fluid 

from outside the separation bubble crashing down into the surface with the reattaching 

shear layer. 

 Studying how turbulence affects the pressure distributions around bluff bodies 

requires quantification of the turbulence itself. A number of parameters are used for this 

purpose. Although the importance of the Reynolds number, Re, will be discussed later, 

the relevant length scale for its calculation is the frontal dimension of the body, D . 

Turbulence intensity, defined as the rms value of a particular velocity component’s 

fluctuation normalized by the mean free stream velocity, U , is a measure of the total 

energy of the turbulent fluctuations. Researchers most often report longitudinal 

turbulence intensity, uI  because it is the easiest to measure with a hot wire anemometer. 

For this same reason, the longitudinal integral scale, uxL , is most often reported as a 

measure of the average size of the turbulent “eddies.” An integral scale, ijL , is a measure 

of the dimension in the jth direction of the eddies responsible for the fluctuations of the ith 

velocity component. The autocorrelation coefficient function calculated from a time 

series of longitudinal velocity fluctuations (again, easily measurable with a hot wire 

anemometer) can be transformed using Taylor’s approximation (Hinze (1959)) into a 

spatial correlation function. The area under this function is a measure of uxL . 

Spectral shape information—how the energy of a flow is distributed over its 

various scales—is not often reported in either bridge or bluff body studies. Although the 
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integral scale—the largest scale present in a flow—is often the only measure of scale 

reported, research has suggested that energy at smaller scales may be more effective at 

causing the effects attributed to turbulence in general. A parameter to gage the small-

scale content of a turbulent flow is the small-scale spectral density parameter first 

proposed by Melbourne (1979) and used subsequently by Tieleman & Akins (1990). It is 

defined as follows: 

 ( ) ( )6
2 10

U
ffGS uu

u =  

where uuG  is the power spectral density of the longitudinal velocity fluctuations and f  is 

the frequency of these fluctuations. This useful parameter is essentially a scale-specific 

turbulence intensity in which the scale is selected with an appropriate value of the 

parameter a . In the frequency relation, DaUf = , a  is chosen as an appropriate ratio 

to the body dimension, D . Work by Gartshore (1973), Melbourne (1979), Bearman & 

Morel (1983), and Tieleman & Akins (1990) have emphasized the effectiveness of scales 

on the order of the thickness of the separated shear layer (which is estimated to be 

approximately 10D ) at altering shear layer behavior. 

 The role of turbulence in the aerodynamics of stationary bluff bodies has been 

extensively documented in the literature (e.g., Gartshore, 1973; Lee, 1975; Kareem & 

Cermak, 1979; Hillier & Cherry, 1981; Bearman & Morel, 1983; Nakamura & Ohya, 

1984; Kiya & Sasaki, 1983, 1985; Nakamura & Ozono, 1987; Saathoff & Melbourne, 

1989, 1997; Kareem, 1990; Nakamura, 1993; Li & Melbourne, 1995; and others). Past 

research into how turbulence affects the bluff-body flow structure illustrated in Figure 

2-2 will now be summarized. Numerous researchers have studied the effects of 

(2-10) 
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turbulence on flows over bluff bodies with rectangular cross sections. Some studies have 

involved finite afterbodies and some have involved afterbodies of sufficient length—i.e. 

“infinite” length—to eliminate interaction between the two separated shear layers and to 

allow study of the separation/reattachment structure exclusively. Data discussed here will 

include that measured from bodies with “infinite” afterbodies because of the similarity to 

data from bodies with a sufficient minimum afterbody length ( 64 ≤≤ DB ). Because 

most research in this field has reported only longitudinal turbulence intensities and 

integral scales, these are the only values referred to in most of this summary. In addition, 

the terms “turbulence intensity” and “integral scale” will refer to the longitudinal values 

unless otherwise indicated. 

 Mean and rms pressure distributions are the two most commonly measured 

quantities for flow over rectangular bluff bodies. Examples of such distributions for a 

blunt flat plate—i.e. a rectangular prism with an “infinite” afterbody—from Li & 

Melbourne (1995) are plotted in Figure 2-3. These distributions exhibit a basic hump 

shape that is typical of a flow with a separated region followed by reattachment. 

Increases in turbulence intensity alter mean pressure distributions in two basic ways that 

have been reported by many number of researchers (e.g. Hillier & Cherry, 1981; Kiya & 

Sasaki, 1983; Saathoff & Melbourne 1989, 1997; and others). Greater values of uI  

increase the maximum negative pressure experienced on the surface and cause an 

upstream “shift” in the flow structure. The maximum value occurs closer to the leading 

edge while the pressure recovery downstream of the maximum becomes steeper. While 

most researchers have found little effect of integral scale on mean pressures for scales up 

to D2 , Li & Melbourne (1995) found that scale effects increase in flows of greater 
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turbulence intensity. Their work, along with that of Nakamura & Ozono (1987) testing 

values up to D24 , shows that as uL  increases beyond D2  the trend described above 

reverses. Instead of greater magnitudes and steeper recoveries, the pressures have smaller 

magnitudes and more gradual recoveries—a trend toward the distributions observed for 

smooth flows. One explanation put forth is that turbulent flows with extremely large 

integral scales behave similarly to smooth flows with slowly varying velocities that are 

not able to alter the mean flow structure. 

 Examples of rms pressure distributions are plotted in Figure 2-4. The basic shape 

of the rms pressure distributions feature an upstream “shift” similar to that observed in 

the mean pressure distributions. Greater turbulence intensities result in rms pressure 

distributions with maximum values occurring nearer the leading edge. While this shift 

does not seem to be significantly affected by scale, the rms values of these distributions 

increase with both intensity and scale. The most significant increases occurred in the 

hump region near the leading edge. Like the mean pressures, the rms pressures were 

increased by turbulence scale increases more dramatically in flows of greater intensity. 

However, Li & Melbourne (1995) reported that these increases occurred only for scale 

less than approximately D8.3 . Beyond these scales, no further increase in the rms values 

was observed (up to integral scales of D2.10 ). 
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Figure 2-3 Streamwise distribution of mean pressure coefficient for smooth and turbulent 
flows about a blunt flat plate with “infinite” afterbody (from Li & Melbourne, 1995). 
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Figure 2-4 Streamwise distribution of rms pressure coefficient for turbulent flows about a 
blunt flat plate with “infinite” afterbody. 
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 The shift in the statistics described above is accompanied by a shift in the 

reattachment point. In smooth flow, the mean reattachment point is located near D4.4  

and moves upstream with increasing turbulence intensity—near D4.2  for %8=uI . 

Figure 2-5 displays reattachment length data from Saathoff & Melbourne (1997). 

Reattachment is often observed using oil surface-flow visualization—using the upstream 

and downstream motion of the oil to identify a mean reattachment point within a 

reattachment zone. Kiya & Sasaki (1983, 1983a) supplemented this technique using a 

split-film probe to monitor reverse-flow intermittency near the surface. By measuring the 

integral scales of vortices in the reattachment zone they found that the size of the zone 

scales with the size of these vortices. Their measurements of surface pressure spectra in 

the reattachment zone showed a shift in energy from large scales to smaller scales with 

increased turbulence intensity. Kiya & Sasaki (1983) also observed that pressures in the 

reattachment zone exhibited a positive skewness. Probability density functions (PDF’s) 

of pressure signals in separated regions are in general negatively skewed. The positive 

skewness of the reattachment zone was postulated is due to the flux of outer irrotational 

fluid toward the surface (Kiya & Sasaki, 1983). 

 Physically, the shifts in the mean and rms pressure distribution are associated 

with increased curvature of the separating shear layer. As already described, a shorter 

reattachment length accompanies this increased curvature. A number of researchers have 

attributed these shear layer behavior changes to the increased entrainment of the shear 

layer due to free stream turbulence (Gartshore, 1973; Bearman & Morel, 1983; Kiya & 

Sasaki, 1983). Enhanced entrainment draws more fluid out of the separation bubble thus 

lower pressure within the bubble and shortening the reattachment length. Employing 
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pulsed-wire anemometry in the separation bubble of a flat plate normal to the free stream 

(with a long splitter plate), Castro & Haque (1987, 1988) found that entrainment from the 

separation bubble is, in fact, increased with increased free stream turbulence. 
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Figure 2-5 Reattachment length versus longitudinal turbulence intensity for a blunt flat 
plate. 

 

 Negative peak pressure magnitudes generated beneath the separated shear layers 

of bluff bodies also has engineering significance—both for estimating maximum 

structural loads and for understanding the flow physics. Saathoff & Melbourne (1989, 

1997) have studied these maximum pressures for blunt flat plates. Their work shows that 

the maximum peak pressures occur near Rx25.0 —thus showing the familiar “shift” 

toward the leading edge observed in a the mean and rms distributions. The values of the 

peak pressures increase with both turbulence intensity and integral scale. 
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 Using flow visualization obtained simultaneously with surface pressure signals, 

Saathoff & Melbourne (1997) observed that peak pressures occurred when a strong 

vortex was formed from the rolling up of the separating shear layer. It was hypothesized 

that incident turbulence modifies this process by controlling the perturbations of the shear 

layer that create the vortices. Higher turbulence intensities create stronger perturbations 

of the shear layer creating larger vortices. Larger vortices generate greater pressure 

magnitudes. Larger turbulence scales were hypothesized to increase the time of the 

perturbation thus increasing the total amount of shear layer vorticity entrained into the 

vortices. 

 The same mechanism hypothesized for the increase in peak pressures also 

contributes to the increased spanwise correlation of surface pressures—that is, increased 

strength of vortices shed from the leading edge shear layers corresponds to greater 

organization in the spanwise direction. Saathoff & Melbourne (1995, 1997) found 

spanwise correlations to increase with integral scale. This was not a new finding. A 

number of researchers have studied the relationship between incident flow scales and the 

spanwise pressure correlations measured on bluff bodies. In addition to the work of 

Saathoff & Melbourne, Sankaran & Jancauskas (1993) and Kimura et al. (1996) have 

studied spanwise pressure correlation on rectangular cross sections. Larose et al. (1993) 

and Larose & Mann (1998) have studied spanwise force correlation on bridge deck 

sections. In each case, it is reported that as incident turbulent scales increase, spanwise 

coherence increases. Perhaps more importantly, turbulent scales greater than some 

minimum produced spanwise surface pressure coherence greater than that of the incident 

flow. Because spanwise correlations play such an important role in gust loading of 
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structures and in the extrapolation of section model results to full scale, turbulence effects 

on the correlation of pressures along the span must be understood. Again, it should be 

mentioned that the above studies of spanwise coherence and correlation were all 

conducted on stationary bodies.  

 With respect to turbulence scales, two items are worthy of mention before 

proceeding. As mentioned previously, the work of Gartshore (1973), Melbourne (1979), 

Bearman & Morel (1983), and Tieleman & Akins (1990) have emphasized the 

effectiveness of scales on the order of the thickness of the separated shear layer. In 

particular, Gartshore (1973) showed that a small rod upstream of the stagnation 

streamline of a bluff body was sufficient to produce drag behavior similar to that of 

bodies in grid-generated turbulent flow. The relative importance of the various turbulent 

scales would be valuable knowledge when planning an experiment.  

 Quantifying the relative importance of turbulent scales is problematic. To isolate 

the effect of scale, one should keep the turbulence intensity constant. With turbulence 

intensity constant, however, increases in the energy associated with large scales must be 

offset by decreases in small-scale energy. As a result, flow structure changes due to 

large-scale energy increases cannot be differentiated from changes due to small-scale 

energy decreases. With this in mind, the approach taken for this project was to report all 

such scales and refrain from assigning causal relationships between specific scales and 

specific aerodynamic effects.  

 With this background of the current approach and of turbulence effects on bluff 

body aerodynamics as a foundation, subsequent chapters of this dissertation will describe 

this project in detail. 
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CHAPTER 3.   EXPERIMENTAL SETUP

This chapter describes the equipment used in the present study including the

facilities, the model and its motion-driving system, the computer data acquisition system,

and all relevant instrumentation.

3.1 The Atmospheric Wind Tunnel

Both the atmospheric wind tunnel and the turbulence-generation equipment are

described in this section. The basic layout of the atmospheric wind tunnel is shown in

Figure 3-1 below. A 5 ft. by 5 ft. by 49 ft. open-return test section is connected to a

centrifugal fan powered by a 30 hp motor. Air entering the inlet passes through two anti-

turbulence screens and a set of flow straighteners, through a 3.48:1 contraction section

and, finally, through an additional set of flow straighteners. The turbulence intensity of

the resulting flow in the test section is less than 0.5%.

Turbulent flows were generated using conventional biplane, square-mesh grids.

Constructed of wood, these grids each had a solidity ratio of 0.32 (where solidity ratio is

the projected solid area of the grid per unit total area) but had mesh sizes of 7.5 and 21.25

inches (where mesh size, M , is the center to center distance of the grid bars). The smaller

and larger mesh grids were constructed from conventional 2x2 and 2x6 lumber,

respectively (the actual dimensions of 2x2’s are 1.5 in. by 1.5 in. while the dimensions of

2x6’s are 1.5 in. by 5.375 in.). Grids of different geometries at various distances upstream
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of the model generated a wide range of turbulence parameters. Figure 3-1 indicates the

grid positions used in this study. The smaller-mesh grid generated an %6=uI  and an

%12=uI  case using the two grid positions closest to the model — Mx 1.14=  and

Mx 67.6= , respectively. The larger-mesh grid generated %6=uI  and %12=uI  cases

from the two further grid positions — Mx 9.21=  and Mx 5.13= , respectively. Chapter 4

will present velocity measurements and a complete analysis of these four turbulent flows.

Figure 3-1 also shows that this wind tunnel is equipped with a “turbulence

generating box” where turbulence can be generated using lateral jets (as shown in the

figure). This technique was not employed for the present study.

             Inlet and
Contraction Section

Lateral Jet Fans

Lateral Jets

      Flow
Straighteners

Main Fan

Model Location

Main Flow

Access
 Door

  Plenum
Chambers

      Flow
Straighteners

   Grid
Locations

Pitot Probe   Grid
Location

Figure 3-1 Top view schematic diagram of the atmospheric wind tunnel (dimensions are
to scale).

3.2 Model

All pressure measurements were made on a model having a rectangular cross

section. Constructed of Plexiglas, the model had a frontal height, D , of 1.5 in., a

streamwise width, B , of 10 in., and a span, L , of 42 in. End plates of height 7D
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extended 25. D  and 5D  from the model’s leading and trailing edges, respectively. A

drawing and a picture of the model are shown in Figure 3-2. The top face of the model is

fixed in place with screws and is removable to allow for placement and connection of

pressure sensors and tubing.

U

B

D

L

∆y

Figure 3-2 Diagram showing the layout of pressure taps on the surface of the model.
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Figure 3-3 Photograph of the upper surface of the model. Through the upper surface, the
pressure taps, pressure transducers, and all associated wiring is visible.

Figure 3-2 shows the locations of a large number of pressure taps on the model’s

surface. Twenty-one streamwise sets of taps were distributed across the span—both top

and bottom. The middle five rows are separated by 1 in. while the outer rows have a 2 in.

separation. Each row consists of 32 taps—16 on top and 16 on the bottom. Six taps were

distributed in the first 1D  of the streamwise width, B , while the remaining 10 taps were

equally spaced across the rest of the width. The photograph in Figure 3-3 shows the top

surface of the model showing the arrangement of pressure transducers and wiring inside.

A schematic view of the model’s cross section is illustrated in Figure 3-4 to show

explicitly how the pressure taps are distributed in the streamwise direction.
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U

Pressure tap locations

Figure 3-4 Diagram of pressure model cross section showing streamwise placement of
pressure taps.

Sixty-four pressure sensors were fixed inside the model connected to the pressure

taps with 14-in. lengths of plastic tubing (inner diameter 0.050 in.). Because the number

of sensors accommodates the taps of two different spanwise positions at once, the taps

were constructed with stainless steel tubes to allow for convenient rearranging of the

tubing to vary the spanwise separation. Unfortunately, the large number of tubes in the

relatively small model increased the probability of crimping the tubes when the cover was

replaced following rearrangement. When a signal was lost due to crimping, one of two

actions was taken. Either the pressure distribution containing the lost signal was ignored,

or the lost signal was accounted for by interpolating between adjacent pressure signals.

Appendix A contains further details involving the tubing and describes the calibration

procedures for both the sensors and the tubing.

3.3 Motion Driving Equipment

To fulfill the goals expressed in Chapter 2, the motion driving mechanism had to

meet several specifications. Pitching and heaving motion was required at variable
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amplitudes and at variable mean angles of attack. This section describes the equipment

designed and built to meet these needs.

Linkages driven by electric servo motors drove the motion. Figure 3-5 shows a

schematic of these electro-mechanical mechanisms, and Figure 3-6 shows a picture of the

pressure model mounted in this apparatus. The model was mounted between two

“carriage pieces” containing bearings to allow both pitching motion and linear motion

along guide rails. Both the pitching motion and the plunging motion were driven using

specially-designed linkages. The plunging motion was created using push rods driven

eccentrically from a motor mounted beneath the tunnel. Pitching motion was driven from

a motor mounted to the outside wall of the wind tunnel. This motor was connected to a

four-bar linkage mechanism designed to rotate a shaft sinusoidally. This shaft was then

connected to the center shaft of the model for pitching. To allow for both pitching and

plunging motions simultaneously, this shaft connection was made through a double U-

joint. This joint could then flex with the plunging motion and still allow pitching control.

Extensive linkage analysis (Kimbrell, 1991) was performed on these mechanisms to

predict force and torque requirements and to insure that the motion would be sinusoidal.

The two servomotors were controlled using a National Instruments PC-based

controller board (Model PCI-Servo-4A) which can be programmed from LabVIEW

(software which will be described in more detail in the next section). This allowed

versatile integration and coordination of the model motion with the data acquisition

process.
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Model

Guide Rails

Servo Motors

End Plates

Push Rods

Double Flex Coupling
End Plates

Tunnel Wall

Guide Rail Support Structure

Streamwise View Side View

Push Rod

Linear Potentiometer

Rotary Potentiometer

Oscillation Linkage

Gears

Figure 3-5 Schematic diagram of mechanisms for pitching and plunging the section
model.

Figure 3-6 Picture of pressure model mounted on its motion driving mechanisms in the
atmospheric wind tunnel.



60

Position information for the two degrees of freedom was obtained in two different

ways. The vertical position of the model was measured using a linear potentiometer. With

its resistance varying with the position of the piston, it produced a voltage proportional to

vertical position of the model. Angular position was acquired using a rotational

potentiometer mounted to the end of the model opposite of the drive end. Calibrations of

these measurement techniques are described in Appendix D.

The flexible coupling driving the pitching motion proved to be a difficult design

problem. To reach low reduced velocities, the frequency of oscillation had to be quite

high (for example, the lowest reduced velocity considered in this case was 1.3=rU

which required an oscillation frequency of Hz5.7=αf ). The couplings tested were either

showing too much play or exhibiting resonance behavior within the frequency range to be

tested. After a number of different design iterations—including double U-joint couplings,

several sizes of flexible couplings, and a rigid shaft—a design was chosen that would

allow testing, but under less than optimal conditions. The design involved flexible

couplings which when combined with the pressure model exhibited a resonant response

peak near 5.5 Hz. This resulted in a change in oscillation amplitude as the frequency was

changed. Figure 3-7 shows how this dependence on frequency translated into an

amplitude dependence on reduced velocity over the range tested for this project. For most

aspects of this research, this amplitude change was unimportant. Discussions of

subsequent chapters will make clear where having non-constant amplitude was an

important issue with respect to the analysis.



61

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30
Reduced Velocity (U /fB )

T
or

si
on

al
 O

sc
ill

at
io

n 
A

m
pl

itu
de

 (
de

g)

Figure 3-7 Torsional oscillation amplitude versus reduced velocity.

3.4 Data Acquisition Equipment

A computer data acquisition system was used for all the experiments. The

subsequent sections describing velocity and pressure measurement transducers all

terminate with the computer hardware described here.

A Pentium Pro PC formed the heart of the system running data acquisition

hardware made by National Instruments (NI). To accommodate the high channel count

required for this work, the hardware consisted of both a 16-bit multifunction board

(Model PCI-MIO-16XE-10) residing in the computer and nine boards (Model SCXI-

1140) that simultaneously sample and hold (SSH) multiple channels of voltages in a

stand-alone chassis. This system “holds” 72 channels of voltages simultaneously while

the computer board digitizes each one sequentially. This holding circuitry allowed each
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channel to be sampled with minimal time lag between the first and last channels. Because

the maximum sampling rate of the analog-to-digital converter (ADC) was 100 kHz, the

maximum sampling rate for any one of the 72 channels was 1388 Hz (the sampling rate

used for this study was 1000 Hz). The SSH hardware’s droop rate—a measure of how

quickly a voltage decays once it is “held”—is specified as 10 mV/sec, which is

insignificant for these sampling rates. The hardware was controlled with NI’s LabVIEW

software, a graphical programming language enabling interactive data acquisition.

Pentium-class PC

Data Acquisition Card      8-Channel
Sample and Hold
      Modules

Shielded Cables

   Rotational
Potentiometer

Static and 
Dynamic Pressure

Transducers

Pressure
Transducers

mounted inside
model

External Chassis

Power
Supplies

Ground
Lines

Figure 3-8 Schematic diagram of the data acquisition system including the 72-channel
sample and hold equipment and the PC-based data acquisition card.
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3.5 Pressure Measurements

Sixty-six pressure transducers were utilized to measure the dynamic and static

pressures in the wind tunnel and the pressure distributions about the model. Two types of

pressure transducers were used: Honeywell Microswitch sensors (Model 163PC) with a

range of 620 Pa and SenSym sensors (Model ASCX01DN) with a range of 6900 Pa. Both

sensors measured differential pressures, were temperature compensated, and had onboard

voltage amplification. The Sensym transducers were mounted within the model to

measure pressure distributions while the Honeywell sensors were used to measure the

static and dynamic pressures of the flows with a Pitot-static probe. Appendix A describes

the sensors in greater detail and the calibration procedures followed for each.

The dynamic pressure—used to normalize all the model pressure measurements

and to calculate mean flow velocity—was measured using a Pitot probe (of diameter

165=pD in.) mounted D8  upstream of the model, D67.6  down vertically from the

center of the tunnel, and D33.3  laterally from the center of the tunnel. The static pressure

line of this same Pitot probe was connected via long plastic tubing to the static pressure

ports of the pressure transducers inside the model.

All pressure data were acquired in ensembles of 4096 points sampled at 1000 Hz.

Stationary model tests consisted of 60 ensembles (245.8 seconds) while oscillating model

tests consisted of 12 ensembles (49.2 seconds). The effective number of ensembles for

calculation of sectional quantities, however, was greatly increased because of the four

different measurement locations and the five repetitions of the experiments for the

different spanwise separations (see Appendix D).
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3.6 Velocity Measurements

Velocity measurements were made two ways. One is the well-known method

using a Pitot-static probe to measure mean dynamic pressure (as described in the previous

section) and obtain velocity with the use of Bernoulli’s equation. This method was only

used to set the mean flow speed in the wind tunnel.

Thermal anemometry was the other velocity measurement technique employed,

and was used for measuring all the turbulence quantities. Hot film probes of X

configurations were used to measure two components of turbulent velocity fluctuations—

the streamwise component and the vertical component. TSI’s IFA 100 anemometer was

used with TSI Model 1241 X probes. More details concerning this equipment—including

descriptions of calibration methods—can be found in Appendix B.

To measure horizontal or vertical profiles of turbulence parameters, the probes

could be mounted on a velocity traverse mechanism as shown in Figure 3-9. This traverse

mechanism, driven with a stepper motor, was mounted vertically or horizontally in the

tunnel depending on the profile to be measured. Velocity coherence measurements—

requiring two probes—were made by mounting one probe on a fixed support and the

other on the traverse. The geometry of the probe holders required that the stationary probe

be mounted with a 90°-angle adapter to allow the probes to come within 0.25 in of each

other. Computer control of the traverse allowed for automated traverse runs.
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Tunnel Centerline

Pressure Model
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Tunnel Walls

∆y

Figure 3-9 Top view schematic diagram of the traverse mechanism for hot film probes set
up for horizontal traverses in the wind tunnel.
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CHAPTER 4.   VELOCITY MEASUREMENTS 

 A host of different velocity measurements were taken to quantify the 

characteristics of the turbulent flows used in this study. This chapter summarizes flow 

characteristics using a number of commonly-used parameters, reports on flow profiles 

indicative of wind tunnel test section uniformity, and provides spectral data on each flow 

to show how turbulent energy is distributed among the various scales present in the flow. 

 

4.1 Summary of Incident Turbulent Flows 

 As described in Chapter 3, the turbulent flows used in this study were generated 

with biplane grids. Grids of different sizes generated various integral scales while 

different grid-to-model distances controlled the turbulence intensity. To study the effect 

of the various turbulent scales, flows of different integral scales but constant turbulence 

intensity were produced. Table 1 lists the longitudinal and vertical turbulence intensities, 

the longitudinal and transverse integral scales, and the small-scale spectral density 

parameters for each flow. Each turbulent flow is referred to with a number corresponding 

to its turbulence intensity (e.g. “6” for 6%) and a letter corresponding to flows with 

different integral length scales for that turbulence intensity. Except for Su, all values 

reported in the table result from averaging over the middle B2  of the test section. 
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Table 4-1 TURBULENT FLOW PARAMETERS 
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4.2 Velocity Profiles 

 To quantify the wind tunnel’s flow uniformity, flow profiles were measured with 

the model absent. Although the flow’s behavior in the lateral direction is of primary 

interest in this study, preliminary vertical profiles were measured to validate the 

existence of a reasonably sized region of uniform flow. Figure 4-1 contains vertical 

profiles of mean longitudinal velocity. These profiles, measured at the center of the 

tunnel and at distances of B1  and B2  to either side, show uniformity well within ±2% in 

the B4  by B4  center region of the test section. Longitudinal turbulence intensity 

profiles—measured at the same positions as mean velocity—are shown in Figure 4-2. 

Most of the center region has a turbulence intensity at or below 0.5%, but near By 2−=  
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it rises to more then 1.0%. This may be caused by the difference in tunnel walls from one 

side to the other. While the By 3+=  wall is made of Plexiglas, the By 3−=  wall consists 

of plywood with the access door. It is reasonable to assume that the rougher By 3−=  

wall would generate a thicker boundary layer and increase the turbulence intensity on 

that side. Efforts to reduce the turbulence intensity by sealing and smoothing the access 

door’s seam were unsuccessful, so the slightly larger turbulence intensity was accepted as 

an unavoidable characteristic of the wind tunnel. 

 Once the uniformity of the atmospheric tunnel’s flow was verified for the vertical 

direction, attention was focused on lateral flow profiles. Lateral profile measurements 

were taken along the stagnation line of the model—with the model absent—for each flow 

considered. Profiles of mean velocity, mean flow angle, turbulence intensity, and integral 

length scale are presented here. 

 The mean flow profile for smooth flow is shown in Figure 4-3. This profile shows 

an excellent uniform profile—within ±2%—in the spanwise direction over the middle 

B4  of the test section. The edges of the profile exhibit slightly higher velocities before 

decreasing to zero in the wall boundary layers. These higher velocities can most likely be 

attributed to imperfect design of the inlet section of the wind tunnel itself. 

 Inserting grids into the wind tunnel exaggerated the high-velocity edges seen in 

the smooth-flow profile. Removing the inlet section of the tunnel, however, improved the 

profiles somewhat, so for each subsequent test involving grids, the inlet was removed. 

Grids without the inlet produced mean velocity profiles as shown in Figure 4-4 and 

Figure 4-5, for 6% and 12% turbulence intensities, respectively. While the smaller scale 

cases (the “a” cases) have quite a uniform profile for both turbulence intensities, the 
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larger scale cases—generated by the larger grid—show some significant spanwise 

velocity variations. Considering the velocity differences between each spanwise pressure 

measurement location, the greatest velocity difference was 10%. As stated, these 

nonuniformities are a characteristic of the facility and were unavoidable for this study.  

 The use of an X-probe allowed measurement of profiles of the mean flow angles. 

Smooth flow angle profiles are shown in Figure 4-6. Flow angle profiles for the “6” cases 

and the “12” cases are shown in Figure 4-7 and Figure 4-8, respectively. In most cases 

the angles were within ±0.5° and in every case were within ±1.0°. 

 Both longitudinal and vertical turbulence intensities were quantified for each flow 

using local rms values of velocity fluctuations and local mean velocities. Figure 4-9 

shows that smooth flow turbulence intensities were less than 0.4% over the majority of 

the span. Longitudinal turbulence intensity profiles are shown in Figure 4-10, and vertical 

intensity profiles are shown Figure 4-11. The nonuniformities in these profiles are quite 

similar to those of the mean velocity profiles which could be expected since local mean 

velocities were used to normalize them. 

 Integral scale variations over the model span can be observed from the profiles of 

uxL  and wxL  in Figure 4-12 and Figure 4-13, respectively. uxL  is a measure of the 

longitudinal dimension of the eddies responsible for longitudinal velocity fluctuations, 

while wxL  is a measure of the longitudinal dimension of eddies responsible for vertical 

velocity fluctuations. Each of these quantities was estimated from the areas under the 

autocorrelation curves of the associated velocity fluctuations. This area—integrated to 

the first zero-crossing—is associated with a time scale which was converted to a length 
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scale by multiplying by the mean velocity (Taylor’s approximation). Each 

autocorrelation curve is shown in Section 4.4. 

 The longitudinal scales of the larger grid cases—the “b” cases—varied as much 

as 1.5D while the smaller grid cases varied only 0.3D. The vertical scales, however, did 

not vary as much—only 0.7D for the larger grid and 0.1D for the smaller grid. Profiles 

such as these were only possible for the longitudinal integral scales because they could be 

done with single-probe time series. The transverse scales reported in Table 4-1 have 

single values because they required two-probe experiments at a number of spanwise 

separations. 
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Figure 4-1 Vertical profiles of mean longitudinal velocity in smooth flow at various 
lateral distances from the center of the tunnel. 
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Figure 4-2 Vertical profiles of longitudinal turbulence intensity in smooth flow at various 
lateral distances from the center of the tunnel. 
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Figure 4-3 Spanwise profile of mean longitudinal velocity for smooth flow 
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Figure 4-4 Spanwise profile of mean longitudinal velocity for turbulent flows with 
turbulence intensity of 6% 
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Figure 4-5 Spanwise profile of mean longitudinal velocity for turbulent flows with 
turbulence intensity of 12% 
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Figure 4-6 Spanwise profile of mean flow angle for smooth flow 
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Figure 4-7 Spanwise profiles of mean flow angle for turbulent flows with turbulence 
intensity of 6% 
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Figure 4-8 Spanwise profiles of mean flow angle for turbulent flows with turbulence 
intensity of 12% 
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Figure 4-9 Spanwise profile of turbulence intensity for smooth flow 
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Figure 4-10 Spanwise profiles of longitudinal turbulence intensity for all turbulent flows 
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Figure 4-11 Spanwise profiles of vertical turbulence intensity for all turbulent flows 
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Figure 4-12 Spanwise profiles of longitudinal integral scale for each turbulent flow 
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Figure 4-13 Spanwise profiles of vertical integral scale for each turbulent flow 

 



 77

4.3 Spectral Measurements 

 As discussed in Chapter 2, the turbulence intensity and integral scale do not fully 

describe a turbulent flow. Because studies of bluff-body aerodynamics have shown the 

strong influence that small-scale turbulence can have, the spectral distribution of 

turbulence scales was also quantified for this study. Power spectral density plots for the 

u  component of velocity at 6% and 12% turbulence intensity are shown in Figure 4-14 

and Figure 4-15, respectively. Each figure shows curves with equal areas beneath them 

and demonstrates how the energy is redistributed among scales when the integral scale is 

changed with the turbulence intensity held constant. 

 The ordinate in each case is UfD . This allows easy location of the reference 

point for the small-scale spectral density parameter. Choosing scales on the order of the 

thickness of the separated shear layer means this parameter is calculated from values at 

10=UfD . The plot shows how significantly the small scale energy content of the flow 

changes when the integral scale is changed (also shown in Table 4-1). 

 Figure 4-16 and Figure 4-17 show the power spectral density functions of the w  

component of velocity for the Case 6 and Case 12 flows, respectively. Spectral shapes 

and magnitudes are quite similar to their u  component counterparts, except for slightly 

less low-frequency content for the w  fluctuations. This difference is also reflected in 

Table 4-1 where the wxL  and wyL  integral scales are also smaller than the corresponding 

u  component scales. 
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Figure 4-14 Power spectral density plots of the u velocity component for the Case 6 
flows. 
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Figure 4-15 Power spectral density plots of the u velocity component for the Case 12 
flows. 
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Figure 4-16 Power spectral density plots of the w velocity component for the Case 6 
flows. 
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Figure 4-17 Power spectral density plots of the w velocity component for the Case 12 
flows. 
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4.4 Correlation Measurements 

 The importance of the spanwise correlation of aerodynamic forces in 

extrapolating section model tests to full-scale predictions has already been discussed. 

Because the relation between the spanwise correlation between the incident flow field 

and that of the forces on the body is important to clarify, streamwise and spanwise 

velocity correlations were measured.  

 The autocorrelation coefficient functions for the longitudinal velocity fluctuations 

for flows of 6% and 12% turbulence intensity are displayed in Figure 4-18 and Figure 

4-19, respectively. Of course, given the larger grid size the “b” case curves have greater 

areas beneath them than the curves for the “a” cases. Also, comparing cases 6a to 12a and 

cases 6b to 12b, one finds very similar curves—which should be the case for flows 

generated using the same grids. Analogous observations can be made from Figure 4-20 

and Figure 4-21, the autocorrelation curves for the vertical velocity fluctuations for 6% 

and 12%, respectively. 

 To quantify incident flow correlation in the bridge model’s spanwise direction, 

two-probe velocity coherence measurements were made for several spanwise separations. 

To aid comparison to the streamwise correlation functions, these coherence functions 

were converted with an inverse fast Fourier transform (IFFT) to correlation functions. 

Plotting the maxima of these correlation functions at each separation renders the 

spanwise correlation curves shown in Figure 4-22 to Figure 4-25. Figure 4-22 and Figure 

4-23 show the curves for u , and Figure 4-24 and Figure 4-25 the curves for w . 
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 In each case, an exponential curve has been fit to the data. From these fits, values 

of the integrals of these curves were made to estimate the spanwise length scales listed in 

Table 4-1.  
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Figure 4-18 Streamwise correlation coefficients for u -components of flows with 6% 
turbulence intensity. 
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Figure 4-19 Streamwise correlation coefficients for u -components of flows with 12% 
turbulence intensity. 
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Figure 4-20 Streamwise correlation coefficients for w -components of flows with 6% 
turbulence intensity. 
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Figure 4-21 Streamwise correlation coefficients for w -components of flows with 12% 
turbulence intensity. 
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Figure 4-22 Spanwise correlation coefficients with exponential curve fits for u-
components of flows with 6% turbulence intensity. 
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Figure 4-23 Spanwise correlation coefficients with exponential curve fits for u-
components of flows with 12% turbulence intensity. 
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Figure 4-24 Spanwise correlation coefficients with exponential curve fits for w-
components of flows with 6% turbulence intensity. 
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Figure 4-25 Spanwise correlation coefficients with exponential curve fits for w-
components of flows with 12% turbulence intensity. 
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CHAPTER 5.   PRESSURE FIELDS ON STATIONARY MODEL 

 

5.1 Summary of Pressure Analysis Methods 

 This chapter discusses the measurements made on stationary models. These tests 

had two purposes. The first goal was mainly for validation—not only to meet certain 

obvious physical specifications but also to compare measurements made for this study 

with the current literature. With this accomplished, the more important goal of gleaning 

flow structure information pertinent to the physical mechanisms of the dynamic forces 

was pursued. In this chapter, results of preliminary tests of the measurement system 

integrity are presented, statistical quantities corresponding to the pressure fluctuations are 

given, and pressure spectra are presented. 

 

5.2 Preliminary Tests 

 Stationary model tests were conducted for several reasons. The effectiveness of 

the end plates was ascertained from spanwise pressure measurements on a stationary 

model. The mean angle of attack for the tests was set using stationary-model pressure 

distributions. Finally, pressure statistics measured on stationary models in the various 

flow fields yielded a data set with which both the work of other researchers and the 

subsequent dynamic test results could be compared. 
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 Tests of end-plate effectiveness consisted of spanwise pressure distributions on 

the upper and lower surfaces at two spanwise locations— 11.0=Bx  and 79.0=Bx . 

These two locations were chosen so that one profile would be from inside the separation 

bubble and one profile would be from outside it. Reattachment is generally observed to 

occur just upstream of the peak in the RMS pressure distribution (see for example, Kiya 

& Sasaki (1983). In this case, this peak occurs near 56.0=Bx  as shown later in Figure 

5-6 of the next section. 

 Figure 5-1 shows spanwise mean pressure profiles at the above-mentioned 

locations. Two objectives were to be met with this test. First, a reference angle of attack 

for the model had to be located such that the mean pressures on the upper and lower 

surfaces were equal, i.e. such that the mean lift was zero. This criterion was met—as 

shown in the figure—with a geometric angle of attack, Gα , of –1°. Geometric angle of 

attack refers to the angle measured with a protractor on the surface of the model. All 

subsequent mention of angle of attack will correspond to angles measured with respect to 

this geometric reference. This determination of the reference angle of attack was repeated 

with spanwise tests as described later in this section. 

 The second objective was to verify a uniform pressure profile along the span. 

Variations near 11.0=Bx  amounted to about 3% while those near 79.0=Bx  were 

greater than 10%–the greater percentage for the latter due in part to smaller mean values 

at 79.0=Bx . With respect to the dynamic pressure, these variations were less than 4%. 

The profile also suggests that there may be some slight periodicity to the variations, 

particularly for the downstream case. This periodicity may be a result of incoming flow 



 88

nonuniformities (including variations in the incident flow described in Chapter 4) and/or 

of endplate effects. 

 Figure 5-2 contains spanwise profiles of the RMS pressure distributions 

corresponding to the same position as the mean values in Figure 5-1. Within the spanwise 

range of B0.1+  to B4.1−  (the range where spanwise coherence measurements—

presented in Chapter 7—were taken), these values have a standard deviation of 6% with 

respect to local mean pressures and less than 1% with respect to the dynamic pressure. 
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Figure 5-1 Spanwise distributions of mean pressure coefficients at two streamwise 
locations, 11.0=Bx  and 79.0=Bx . 
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Figure 5-2 Spanwise distributions of RMS pressure coefficients at two streamwise 
locations, 11.0=Bx  and 79.0=Bx . 

 

 Because of the possibility that incident flow angles could vary from one flow to 

another, tests were done to verify the reference angle of attack (as discussed above) for 

each flow. Because the work in this study focuses mainly on dynamic pressures, the RMS 

distributions were examined for this test. Good matches for the upper and lower surface 

RMS pressure distributions were obtained with a geometric angle of attack of –1° for 

each case. One example of these tests is shown in Figure 5-3 where the upper and lower 

surface distributions for Case 12b are plotted. Except for one value near the peak where 

the mismatch was near 3% of dynamic pressure, the match was excellent.  

 Figure 5-4 presents the RMS pressure coefficients along with data from the 

literature. The data from the current project compare well with previous research. More 

specifically, the various data sets show consistency in terms of the location of the 
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maximum in the distribution moving toward the leading edge with increasing turbulence 

intensity and in terms of greater turbulence scales resulting in greater RMS values. 
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Figure 5-3 Streamwise distribution of RMS pressures for upper and lower surfaces at the 
model centerline measured to set the reference angle of attack. 
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Figure 5-4 Streamwise distributions of RMS pressure fluctuations compared with data 
from the literature. 

 

5.3 Statistical Distributions of Pressure 

 An understanding of the behavior of the statistical pressure distributions in 

turbulent flows provides a foundation for studying the behavior of dynamic pressures. 

This section shows the distributions of the mean, RMS, and peak pressure coefficients, 

( ) 22 UppCp ρ∞−= . The distributions of the skewness and kurtosis coefficients are 

also shown to provide information on the non-Gaussian characteristics of the pressures 

along the streamwise direction. 

 Figure 5-5 shows the streamwise distribution of mean pressure values for each of 

the five flow cases. As the turbulence intensity is increased from smooth flow, the 

minimum pressure decreases and occurs nearer to the leading edge. The pressure 

recovery also becomes steeper. From their extreme values, the pressure coefficients 
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return to –0.4 near B6.0  in smooth flow, near B4.0  for %6=uI , and near B3.0  for 

%12=uI . For the range of integral scales included in these cases, there is only a slight 

effect of scales. With increasing integral scale, the pressure values increased slightly 

without changing the shape or the steepness of the curve significantly. 

 Figure 5-6 and Figure 5-7 show the distributions of the RMS and peak pressure 

coefficients, respectively. Both of these distributions show similar behavior with respect 

to turbulence intensity and scale. In both cases, increasing turbulence intensity 

corresponds to larger magnitudes in the distribution and to the location of maxima 

moving nearer the leading edge. The general hump-like shape of the distributions does 

not change—rather, they can be described as being “compressed” toward the leading 

edge. In this sense, the behavior is similar to that observed for the mean pressure 

distributions. 

 With respect to scales, however, the RMS and peak pressure distributions have a 

greater sensitivity to turbulence scale than do the mean pressure distributions. While 

turbulence intensity changes the streamwise position of the distribution maxima, 

turbulence scale changes the amplitudes of the distributions. For example, this behavior 

can be seen in Figure 5-6 for the Case 6 distributions—both having a turbulence intensity 

of 6%. Both maxima are located near B28.0  but the change in uxL  from D8.1  to D9.4  

corresponds to a change in the RMS value from 0.27 to 0.33 (an increase of ~20%). This 

same trend also manifests itself in the peak pressure distributions as shown in Figure 5-7. 

Data from a number of other sources show these same trends for RMS and peak pressures 

with respect to turbulence intensity and scale (Hillier & Cherry, 1981; Kiya & Sasaki, 

1983; Saathoff & Melbourne, 1985, 1997; Li & Melbourne, 1995). The physical 



 93

significance of these trends for this study is that the location of the maximum in the RMS 

distributions occurs just upstream of the mean reattachment position (Kiya & Sasaki, 

1983). 

 The skewness and kurtosis coefficients for the pressure fluctuations were also 

quantified. These distributions are shown in Figure 5-8 and Figure 5-9, respectively. The 

skewness coefficient is defined as the third central moment, the skewness, of a random 

variable normalized by that variable’s standard deviation raised to the third power. This 

can be written as:  

( )
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where ip  represents individual pressure samples, p  is the mean pressure, N  is the 

number of samples in the data set, and pσ  is the standard deviation of the pressure data. 

The kurtosis coefficient, uK , is calculated similarly but with the fourth moment 

normalized by the fourth power of the standard deviation. The skewness coefficient is a 

measure of the degree of symmetry or lack of symmetry of a random variable about its 

mean. While a symmetric probability distribution has a skewness of zero, a positive or 

negative skewness is possible. The kurtosis coefficient quantifies how narrow or how flat 

the probability distribution is. A Gaussian distribution has a kurtosis coefficient of 

three—a coefficient greater than three corresponds to a distribution more peaked than 

Gaussian while a coefficient less than three corresponds to a distribution flatter than 

Gaussian. 

 Figure 5-8 shows the distribution of the skewness coefficient for each flow case. 

As discussed in Chapter 2, regions of negative skewness are associated with separated 

(5-1) 
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flow, and positive skewness has been observed in regions of flow reattachment. The basic 

shape of the distributions is that of a negative skewness near the leading edge followed 

by an increase in values toward zero followed further downstream by another decrease to 

negative values. Only the smooth flow and %6=uI  cases show regions of positive 

skewness. Scale effects manifested themselves as shifts toward more negative values for 

greater turbulence scales. These shifts were small near the leading edge, but downstream 

of the “rise toward zero” mentioned above, they were quite significant with greater 

changes occurring for %12=uI  than for %6=uI . For Case 12, these downstream 

skewness values went from –0.33 to –1.33 for a scale change from D3.1  to D9.4 . 

 Kurtosis values, Figure 5-9, also showed significant changes with turbulence 

scale. Like the other statistical distributions, these scale effects were also more 

pronounced in flows of greater turbulence intensity. Maximum Case 12 kurtosis values 

increased from 4.6 to 6.8 from the “a” to the “b” case. The skewness and kurtosis 

distributions share the trait that their regions of greatest sensitivity to turbulence scale are 

further downstream than those of the RMS and peak distributions. The kurtosis values 

showed the greatest changes with different inflow conditions beyond Bx 3.0= . 
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Figure 5-5 Mean pressure distributions for a stationary model in all flow cases. 
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Figure 5-6 RMS pressure distributions for a stationary model in all flow cases. 
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Figure 5-7 Peak pressure distribution for a stationary model in all flow cases. 
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Figure 5-8 Skewness coefficient distribution for a stationary model in all flow cases. 
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Figure 5-9 Kurtosis coefficient distribution for a stationary model in all flow cases. 

 

5.4 Pressure Spectra 

 Pressure spectra were calculated from the signals at each pressure tap. These 

spectra are presented in figures containing two rows of eight spectra each. These spectra 

correspond to streamwise positions from the leading edge to the trailing edge of the 

model. 

 Figure 5-10 contains the spectra for a stationary model in smooth flow. Every 

streamwise position shows a significant peak near 02.0=UfD  (in this case, 

Hz2.3=f ). This frequency lies in the same range as the “low frequency flapping” 

motion measured by Cherry et al. (1984) in their studies of the separated shear layer 

about a blunt flat plate. They reported the frequency of this motion with the expression 

RxUF 11.0flap =  (where flapF  is the frequency in Hz, U  is the mean freestream velocity, 
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and Rx  is the reattachment length). For a reattachment length of DxR 9.4=  (Cherry et 

al., 1984), this expression predicts a low-frequency shear layer motion for the current 

tests to be 3.6 Hz. Cherry et al. (1984) suggested that this was related to some overall 

bubble growth-decay mechanism. The presence—and significance—of unsteadiness in 

this frequency range is discussed in Chapter 8. 

 A second distinct peak at 19.0=UfD  is prominent for all locations up to 

Bx 19.0= . Increases in broad band energy levels for 06.0>UfD  bury this peak for all 

locations downstream of B19.0 . Further downstream—beyond the probable location of 

reattachment ( Bx 6.0≅ )—a broader peak emerges near 17.0=UfD . Near 

reattachment, the broad band energy levels for 06.0>UfD  reach a maximum from 

which they decrease further downstream. This fact was also reflected in the RMS 

pressure distributions already presented in section 5.3. 

 Spectra for Case 6a and 6b flows are presented in Figure 5-11 and Figure 5-12, 

respectively. Broad band energy levels are higher than those for smooth flow over the 

entire frequency range with Case 6b exhibiting higher energy at the lower frequencies 

than Case 6a. As in smooth flow, the broad band energy reaches a maximum near 

reattachment (i.e. near the location of maximum RMS pressure fluctuations) which is 

near Bx 28.0≅ . Away from this location the broad band levels decrease enough to reveal 

the various salient peaks under consideration here. The Case 6a results show a broad 

peak near 20.0=UfD  for Bx 87.0> . Case 6b results in this region exhibit an even 

broader peak with a slightly higher middle frequency of about 21.0=UfD . Similar 

statements can be made of the Case 12a and 12b results in Figure 5-13 and Figure 5-14, 
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respectively. Case 12a flow produces a peak near 20.0=UfD  while the larger scales of 

Case 12b flow resulted in a broader peak near 21.0=UfD . 

 These frequencies are higher than those found near the trailing edge of the model 

in smooth flow. Some sense can be made of this frequency shift when one considers the 

scaling relationship suggested by Sigurdson (1995) for the shedding of large scale 

structures from a separation bubble. Although this relationship was the result of work on 

a flat faced circular cylinder aligned coaxially with the free stream, the scaling was 

shown to apply to a wide range of separating and reattaching flow scenarios. This scaling 

relationship can be written as follows: 

constantshed =
sU
hF

 

where shedF  is the shedding frequency, h  is the maximum height of the shear layer above 

the surface of the model, and sU  is the separation velocity (the velocity just outside the 

shear layer at separation). The separation velocity can be estimated from the following 

equation using Bernoulli’s equation: 

( )21
sp

s C
U
U

−=
∞

 

where ∞U  is the mean freestream velocity and 
sp

C  is the pressure coefficient at 

separation (which, in this case, is estimated from the pressure coefficient measured 

nearest to the leading edge). From the mean pressure coefficients of Figure 5-5 and 

equation (5-3), one can predict that the separation velocity will be higher for the turbulent 

flows than for smooth flow. Also, due to the turbulence-induced reduction of the radius 

of curvature of the separated shear layer (as discussed in Chapter 2), the height of the 

(5-2) 

(5-3) 
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shear layer from the body, h , will be less. Both of these trends, when viewed in light of 

the scaling of equation (5-2), result in a higher frequency of shedding as observed for the 

turbulent-flow cases. 

 In addition to the effect that incident flow turbulence has on the shedding peak 

near 20.0=UfD , it also changes the behavior near the low-frequency peak near 

02.0=UfD  discussed earlier. In each turbulent flow, a harmonic of this peak appears at 

04.0=UfD . This harmonic was present but far weaker in smooth flow. In turbulent 

flow, this harmonic has an amplitude nearly the same as the primary peak. This may be 

the result of the invigorating effects of the perturbations of the shear layer due to 

turbulence. 
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Figure 5-10 Power spectral densities for pressure signals on a stationary body in smooth flow. 
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Figure 5-11 Power spectral densities for pressure signals on a stationary body in Case 6a flow. 
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Figure 5-12 Power spectral densities for pressure signals on a stationary body in Case 6b flow. 
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Figure 5-13 Power spectral densities for pressure signals on a stationary body in Case 12a flow. 



 

 

105 

  

     

fD/U

fG
(f

)

x=0.012B

+2
  0
−2

−3 −2 −1 0

x=0.037B

x=0.062B

x=0.088B

x=0.11B

x=0.14B

x=0.19B

x=0.28B

  

     

fD/U

fG
(f

)

x=0.36B

+2
  0
−2

−3 −2 −1 0

x=0.45B

x=0.53B

x=0.62B

x=0.70B

x=0.79B

x=0.87B

x=0.96B

 

Figure 5-14 Power spectral densities for pressure signals on a stationary body in Case 12b flow. 
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CHAPTER 6.   PRESSURE FIELDS ON OSCILLATING MODELS—SECTION 

RESULTS 

 The primary goal of the experiments with dynamic models was to identify 

turbulence-induced modifications to the self-excited forces observed at a single section. 

Experiments consisted of measuring pressure during pitching motions in the series of 

turbulent flows described in Chapter 4. This chapter includes a short summary of the 

pressure analysis methods used here followed by a presentation of the results of these 

analyses. These results include the power spectral densities of both the integrated forces 

and the individual pressure signals, the pressure amplitude and phase distributions, the 

flutter derivatives corresponding to these amplitudes and phases, and the streamwise 

distributions of various statistical quantities of the pressure fluctuations. 

 

6.1 Summary of Pressure Measurement Experiments 

 The test data in this chapter were taken during torsional oscillations of the model 

at various reduced velocities, rU . Reduced velocity is defined as: 

Bf
UUr
α

=  

where U  is the mean free stream velocity, αf  is the model’s torsional oscillation 

frequency, and B  is the model dimension in the streamwise direction (the “bridge deck 

width”). Altering either the oscillation frequency or the flow velocity can vary the 

(6-1) 
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reduced velocity. Because of the possibility that Reynolds number changes could alter 

the flow structure in a way indistinguishable from that of turbulence-induced 

modifications, the reduced velocity was always varied by changing the oscillation 

frequency. 

 The mean flow velocity for all tests reported in this dissertation was 6.0 m/s. This 

value was chosen as a balance between the need for large dynamic pressures to get good 

signals from the pressure transducers and the need for a low velocity to reach the desired 

range of rU . The dynamics of the servo motor and oscillation mechanism dictated a 

maximum torsional oscillation frequency of 7.5 Hz which set the minimum reduced 

velocity at 3.1—a satisfactory value for this study. The range of rU  tested was then 3.1-

25 with a gap between 3.1 and 8 determined by the resonance of the oscillation 

mechanism described in Chapter 3.  

 

6.2 Force and Pressure Spectra 

 Examination of the lift and moment spectra give a unique picture of the force 

decomposition described in Chapter 1. Bridge analysis techniques often assume that 

aerodynamic lift and moment can be expressed as the sum of self-excited and buffeting 

components. Power spectral densities of lift and moment are presented on the following 

pages. In each case, the stationary model test results are plotted together with the 

oscillating model results to examine the merits of decomposing the forces. 

 Smooth flow spectra for reduced velocities of 3.1, 8, and 20 are presented in 

Figure 6-1 through Figure 6-3. It should be noted here that for these and all force and 
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pressure spectra presented in this chapter, the 95% confidence intervals are 

approximately the thickness of the thick shaded line of the stationary model results. In 

each case, the spectra of the oscillating models consist of broad band levels somewhat 

similar to the stationary model results with large peaks at the model oscillation frequency 

and its harmonics. Significant differences between the stationary and oscillating model 

broad band levels are evident. Although noteworthy, these differences do not 

significantly affect the validity of the decomposition of forces because the very low 

turbulence levels result in low levels of buffeting force. Buffeting forces in smooth flow 

result mainly of the turbulence generated by the body itself—commonly known as 

“signature turbulence.” When the model oscillates, the energy of this “signature 

turbulence” is increased mainly for frequencies above 01.0=UfD . 

 Another effect of the oscillation is the shift of the shedding frequency peak near 

2.0=UfD . Stationary model pressure spectra presented in Chapter 5 exhibited a shift 

of this peak to higher frequencies when turbulence was added to the incident flow. In this 

case, the oscillation of the model caused a similar shift of this peak to higher frequency. 

 Spectra for the corresponding moments corresponding to these same smooth flow 

tests are presented in Figure 6-4 through Figure 6-6. General behavior of the moment 

spectra was similar to that of the lift spectra, but the discrepancy between stationary and 

oscillating model broad bands levels was more pronounced. Increases in broad band 

levels due to oscillation was not limited to 01.0>UfD  as for the lift spectra. Increases 

occurred over the entire frequency range. The same shift of the shedding peak at 

2.0=UfD  also occurred. 
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 Spectra for turbulent flow cases are presented in pairs corresponding to equal 

turbulence intensity and different turbulence scale. Lift spectra stationary and oscillating 

models ( 1.3=rU ) in Case 6 flows are plotted in Figure 6-7. Broad band energy levels are 

much larger than for the smooth flow cases as expected. Larger turbulence scales in the 

incident flow also shift the maximum in the psd to lower frequencies. The similarity 

between the stationary and oscillating test broad band levels is much closer than for the 

smooth flow cases, and the broad band levels of the larger scale “b” case match better 

than those of the “a” case. When the turbulence intensity is increased to 12%, as in the 

Case 12 results plotted in Figure 6-8, the broad band levels match even better. 

 Figure 6-9 and Figure 6-10 show the moment spectra for these same turbulence 

cases. The general shape of these psd’s was similar to that of lift. The broad band levels 

for moment also matched better for increased turbulence intensity—just as in the case of 

the lift spectra.  

 Lift and moment spectra are also presented for rU  values of 8 and 20. Figure 

6-11 through Figure 6-14 contain the groups of spectra for 8=rU , and Figure 6-15 

through Figure 6-18 contain those for 20=rU . To summarize the dependence on 

reduced velocity, Figure 6-19 and Figure 6-20 plot the rms lift and moment coefficients, 

respectively, versus reduced velocity for each of the spectra plotted. The rms lift 

coefficient is defined as qBLCL rmsrms
=  where q  is the dynamic pressure. The moment 

coefficient is defined as 2
rmsrms

qBMCM = . For 12>rU , the rms lift was relatively 

constant, but a maximum occurred in the range 81.3 << rU . The general shape of the 

rU  dependence of the force amplitudes was similar to that of the angular amplitude 
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dependence on rU  (see Chapter 3). Although oscillation amplitude dependence may 

explain some or most of the aerodynamic force dependence on reduced velocity, Chapter 

8 also discusses this problem with respect to the dynamics of the shear layer. 

 The match between stationary model buffeting spectra and the buffeting 

components of the oscillation model spectra did not depend significantly on reduced 

velocity. The various spectra described above were integrated and compared to quantify 

the differences between stationary and oscillating model broad band levels. To compare 

only broad band levels, the oscillating test spectra were integrated without the peak 

associated with the oscillation frequency. Comparisons of such differences are plotted in 

Figure 6-21 and Figure 6-22 for lift and moment, respectively. These plots show the 

difference between the rms values of the broad bands normalized by the stationary model 

values. Difference range from as small as 2% to just over 10%, although no apparent 

trends exist for reduced velocity dependence. As observed in the spectra themselves, the 

broad bands matched better for higher turbulence intensity and for larger integral scales. 

 For more detailed examination of the spectral character of the aerodynamic 

forces, power spectral density functions for the pressure signals at each of the sixteen 

streamwise positions are presented here for several reduced velocities. In each case, the 

PSD’s for both the stationary model tests (already presented in Chapter 5) and the 

oscillating model tests are plotted together for comparison. The spectral character of the 

pressure fluctuations shown here exhibit behaviors influenced not only by the shear layer 

behavior and the corresponding effects of turbulence but also by the influence of the 

forced oscillation of the body. 
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 Three groups of five figures each will be presented. Each group consists of the 

results from a particular reduced velocity in every incident flow case. Figure 6-23 

through Figure 6-27 present the PSD’s for tests at a reduced velocity of 3.1 in each flow. 

Stationary model PSD’s are shaded and plotted thicker than the oscillating model results. 

What is remarkable is the similarity between the broad band spectra of the stationary and 

oscillating cases—particularly for the turbulent flow tests. For the most part, the 

oscillating model pressures have the same spectra as the stationary model except for a 

peak at the model oscillation frequency. 

 The smooth flow spectra of Figure 6-23 exhibits a number of aspects worth 

noting. As in the case of the stationary model results of Chapter 5, behavior of the peaks 

can be divided into two regions—upstream and downstream of Bx 28.0≅ . This is also 

the approximate location of the maximum RMS pressure values (complete statistics will 

be presented later in the chapter) and the approximate location of reattachment. 

 The pressure signals upstream of reattachment show three salient peaks. Two of 

these, at 02.0=UfD  (the low-frequency unsteadiness of the shear layer) and at 

19.0=UfD  (the shedding frequency of large-scale structures from the separation 

bubble), were also observed in the stationary model tests. The largest peak is at 

048.0=UfD —the model oscillation frequency. The broad band levels increase from 

the leading edge to reattachment and decrease from reattachment to the trailing edge. 

This increase obscures the peak at 0.19. Beyond reattachment, two harmonics of the 

model oscillation frequency appear at 095.0=UfD  and 0.14. 

 Figure 6-24 and Figure 6-25 show the spectral for Case 6a and Case 6b flows, 

respectively. In both cases, broad band power levels are much higher than those in 
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smooth flow, and the shedding peak located at 19.0=UfD  in smooth flow is no longer 

visible. Downstream of reattachment—which occurs near Bx 16.0≅ —only the model 

oscillation frequency and the low-frequency unsteadiness show pronounced peaks. 

Turbulence in the incident flow prevents the formation of the harmonics seen in the 

smooth flow. 

 Case 12a and Case 12b spectra are shown in Figure 6-26 and Figure 6-27, 

respectively. Like the Case 6 flows, the model oscillation frequency is the only spectral 

peak upstream of reattachment. Downstream of reattachment both the model oscillation 

frequency and the low-frequency unsteadiness ( 02.0=UfD ) produces pronounced 

peaks. 

 The group of five spectra for the various flow cases at 8=rU  is presented from 

Figure 6-28 to Figure 6-32. Most aspects of these spectra are the same as those for 

1.3=rU . The smooth flow spectra show a vortex shedding peak at 19.0=UfD  

upstream of reattachment. All five cases basically have the model oscillation frequency—

019.0=UfD —as the only peak upstream of reattachment. Downstream of 

reattachment, harmonics form. In smooth flow, up to four harmonics of the oscillation 

frequency manifest themselves in the spectra. Turbulent flow virtually eliminated the 

oscillation frequency harmonics as it did for the lower reduced frequency. 

 Unlike the 1.3=rU  cases, however, the 8=rU  turbulent cases show harmonics 

of both the oscillation frequency and the low-frequency unsteadiness downstream of 

reattachment. The 6% turbulence cases, Figure 6-29 and Figure 6-30, show how close the 

model oscillation frequency is to that of the low-frequency unsteadiness. A pair of double 

peaks form downstream of reattachment and differentiate from each other further 
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downstream. The first double peak is composed of the model oscillation frequency, 

019.0=UfD , and the low-frequency unsteadiness, 022.0=UfD . The second double 

peak is made up of harmonics of these first two frequencies, 0.037 and 0.043, 

respectively. This same behavior is evident in the Case 12 spectra (Figure 6-31 and 

Figure 6-32) although the harmonics are much less pronounced in the larger scale 

turbulence of Case 12b. The ramifications of forcing the model motion near this shear 

layer unsteadiness are discussed in Chapter 8. 

 As the reduced velocity increases further to 20=rU  another change occurs for 

the spectra—see Figure 6-33 through Figure 6-37. Most aspects are the same as the lower 

rU  cases, but the behavior downstream of reattachment is different. All four turbulent 

flow cases for 20=rU  show the peak at the oscillation frequency decrease significantly 

toward the trailing edge. The dominant peaks far downstream of reattachment are the 

low-frequency unsteadiness and its first harmonic. This occurs for Case 6a, 6b, and 12a. 

Case 12b in Figure 6-37 only shows a peak at the low-frequency unsteadiness frequency. 

The larger integral scale of Case 12b suppressed its harmonic also—as seen in the other 

cases. 
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Figure 6-1 Lift force spectra in smooth flow for both stationary and 1.3=rU  tests 
(stationary results shaded). 
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Figure 6-2 Lift force spectra in smooth flow for both stationary and 8=rU  tests 
(stationary results shaded). 
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Figure 6-3 Lift force spectra in smooth flow for both stationary and 20=rU  tests 
(stationary results shaded). 
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Figure 6-4 Moment spectra in smooth flow for both stationary and 1.3=rU  tests 
(stationary results shaded). 
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Figure 6-5 Moment spectra in smooth flow for both stationary and 8=rU  tests 
(stationary results shaded). 
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Figure 6-6 Moment spectra in smooth flow for both stationary and 20=rU  tests 
(stationary results shaded). 
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Figure 6-7 Lift force spectra for %6=uI  for both stationary and 1.3=rU  tests 
(stationary results shaded). 
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Figure 6-8 Lift force spectra for %12=uI  for both stationary and 1.3=rU  tests 
(stationary results shaded). 
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Figure 6-9 Moment spectra for %6=uI  for both stationary and 1.3=rU  tests 
(stationary results shaded). 
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Figure 6-10 Moment spectra for %12=uI  for both stationary and 1.3=rU  tests 
(stationary results shaded). 
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Figure 6-11 Lift force spectra for %6=uI  for both stationary and 8=rU  tests 
(stationary results shaded). 
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Figure 6-12 Lift force spectra for %12=uI  for both stationary and 8=rU  tests 
(stationary results shaded). 
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Figure 6-13 Moment spectra for %6=uI  for both stationary and 8=rU  tests (stationary 
results shaded). 
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Figure 6-14 Moment spectra for %12=uI  for both stationary and 8=rU  tests 
(stationary results shaded). 
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Figure 6-15 Lift force spectra for %6=uI  for both stationary and 20=rU  tests 
(stationary results shaded). 
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Figure 6-16 Lift force spectra for %12=uI  for both stationary and 20=rU  tests 
(stationary results shaded). 
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Figure 6-17 Moment spectra for %6=uI  for both stationary and 20=rU  tests 
(stationary results shaded). 
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Figure 6-18 Moment spectra for %12=uI  for both stationary and 20=rU  tests 
(stationary results shaded). 
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Figure 6-19 RMS lift coefficient versus reduced velocity. Stationary model results are 
presented on the far right. 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 5 10 15 20 25 30
Reduced Velocity (U /fB )

C
M

rm
s

Smooth
Case 6a
Case 6b
Case 12a
Case 12b

Ur→∞

 

Figure 6-20 RMS moment coefficient versus reduced velocity. Stationary model results 
are presented on the far right. 
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Figure 6-21 Relative differences between RMS lift coefficient for stationary (S) and the 
buffeting lift component (B) of the oscillating model tests. 
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Figure 6-22 Relative differences between RMS moment coefficient for stationary (S) and 
the buffeting moment component (B) of the oscillating model tests. 
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Figure 6-23 Power spectral density functions for pressure signals in smooth flow for both stationary and 1.3=rU  tests (stationary 
results shaded). 
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Figure 6-24 Power spectral density functions for pressure signals in Case 6a flow for both stationary and 1.3=rU  tests (stationary 
results shaded). 
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Figure 6-25 Power spectral density functions for pressure signals in Case 6b flow for both stationary and 1.3=rU  tests (stationary 
results shaded). 
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Figure 6-26 Power spectral density functions for pressure signals in Case 12a flow for both stationary and 1.3=rU  tests (stationary 
results shaded). 
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Figure 6-27 Power spectral density functions for pressure signals in Case 12b flow for both stationary and 1.3=rU  tests (stationary 
results shaded). 
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Figure 6-28 Power spectral density functions for pressure signals in smooth flow for both stationary and 8=rU  tests (stationary 
results shaded). 
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Figure 6-29 Power spectral density functions for pressure signals in Case 6a flow for both stationary and 8=rU  tests (stationary 
results shaded). 
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Figure 6-30 Power spectral density functions for pressure signals in Case 6b flow for both stationary and 8=rU  tests (stationary 
results shaded). 
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Figure 6-31 Power spectral density functions for pressure signals in Case 12a flow for both stationary and 8=rU  tests (stationary 
results shaded). 
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Figure 6-32 Power spectral density functions for pressure signals in Case 12b flow for both stationary and 8=rU  tests (stationary 
results shaded). 
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Figure 6-33 Power spectral density functions for pressure signals in smooth flow for both stationary and 20=rU  tests (stationary 
results shaded). 
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Figure 6-34 Power spectral density functions for pressure signals in Case 6a flow for both stationary and 20=rU  tests (stationary 
results shaded). 
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Figure 6-35 Power spectral density functions for pressure signals in Case 6b flow for both stationary and 20=rU  tests (stationary 
results shaded). 
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Figure 6-36 Power spectral density functions for pressure signals in Case 12a flow for both stationary and 20=rU  tests (stationary 
results shaded). 



 

 

139 

  

     

fD/U

fG
(f

)

x=0.012B

+2
  0
−2

−3 −2 −1 0

x=0.037B

x=0.062B

x=0.088B

x=0.11B

x=0.14B

x=0.19B

x=0.28B

  

     

fD/U

fG
(f

)

x=0.36B

+2
  0
−2

−3 −2 −1 0

x=0.45B

x=0.53B

x=0.62B

x=0.70B

x=0.79B

x=0.87B

x=0.96B

 

Figure 6-37 Power spectral density functions for pressure signals in Case 12b flow for both stationary and 20=rU  tests (stationary 
results shaded).
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6.3 Streamwise Distributions of Amplitude and Phase 

 The major portion of the analysis of the self-excited forces was the examination 

of the amplitudes and phases of the components of the pressure signals at the model 

driving frequencies. Although the signals at each pressure tap were relatively broad band, 

each signal had a salient peak at the frequency of the model’s motion. As discussed in 

Chapter 1, the self-excited and buffeting forces are conventionally separated as 

follows: 

( ) ( ) ( )tLtLtL bse +=  

where L  is the total lift force, seL  is the self-excited lift force, and bL  is the buffeting lift 

force. The self-excited lift is associated with the peak in the lift force spectrum while the 

buffeting force is associated with the spectrum’s broad band energy. 

 The pressure amplitudes were then calculated by finding the energy in the peak 

and subtracting the broad band energy at that frequency. The energy in the peak was 

calculated from oscillating model tests while the broad band energy at the same 

frequency was obtained from stationary model tests. This concept is illustrated in Figure 

6-38 which shows stationary and oscillating test spectra for the pressure at Bx 012.0=  in 

Case 6b flow. Specific details of these calculations are provided in Appendix C. 

 

(6-2) 
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Figure 6-38 Example power spectral density functions for pressure signals at Bx 012.0=  
for stationary and oscillating model tests. 

 

 Figure 6-39, Figure 6-40, and Figure 6-41 show the pressure amplitude 

distributions for reduced velocities of 3.1, 8, and 20, respectively. Each plot includes all 

five flow cases. In each case, a basic “hump” shape is evident in the distribution. For 

each reduced velocity, this shape is “compressed” toward the leading edge with 

increasing turbulence intensity. This compression is more evident in the two cases of 

greater reduced velocity perhaps simply because the “hump” distribution is stretched in 

the downstream direction when reduced velocity increases. 

 Considering the effect of scales on the amplitudes one can see that greater scale in 

most cases decreases the amplitude. Figure 6-40 and Figure 6-41 show that a greater 

integral scale results in smaller amplitudes within the region of the “hump” but not nearly 
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so much further downstream. Figure 6-39, the 1.3=rU  case, does not show as much of a 

scale effect as the other rU  cases. 

 To examine the effects of scale more closely and to present uncertainty estimates 

more clearly, the pressure amplitude data were also plotted in pairs corresponding to 

equal turbulence intensity and different turbulence scale. Figure 6-42 and Figure 6-43 

contain the 1.3=rU  pressure amplitudes for Case 6 and Case 12, respectively. Neither 

case showed a significant effect of scale, but the uncertainty bounds did widen slightly 

with increasing uxL . This effect was greater at the greater value of uI  as well. 

 Scale effects became more pronounced as rU  increased. Figure 6-44 and Figure 

6-45 show the %6=uI  and %12=uI  amplitude distributions for 8=rU . Near the peak 

in the distribution larger integral scales decreased the amplitudes. This effect was greater 

for greater turbulence intensity—the maximum decrease for the Case 6 flows was ~10% 

while the maximum decrease for the Case 12 flows was ~15%. Downstream of the region 

of maximum amplitudes increasing scale increased the amplitude very slightly. 

 Increasing reduced velocity increased the turbulence scale effects on pressure 

amplitudes up to approximately 10=rU . Beyond 10=rU  amplitude reduction due to 

scale remained constant. Figure 6-46 and Figure 6-47 show the 20=rU  pressure 

amplitudes for Case 6 and Case 12, respectively. Amplitude reduction with increasing 

uxL  was again found to be dependent on uI . For %6=uI  the amplitude reduction was 

about 22% while for %12=uI  it was about 30%. In addition, the uncertainty bounds 

were again observed to increase with both turbulence intensity and scale.  



 

 143

 The pressure amplitude behavior with respect to turbulence scale was similar to 

that discussed in Chapter 2 and observed in Chapter 5 for RMS pressure distributions 

over stationary bluff bodies. Changes in integral scale seemed mainly to cause increases 

in RMS values at a given streamwise location without significantly changing the 

streamwise position of the maximum of the distribution. 
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Figure 6-39 Pressure amplitude distributions for a reduced velocity of 3.1. 
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Figure 6-40 Pressure amplitude distributions for a reduced velocity of 8. 

 

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1x /B

C
p

* 
fo

r U
r=

20

Smooth
Case 6a
Case 12a
Case 6b
Case 12b

 

Figure 6-41 Pressure amplitude distributions for a reduced velocity of 20. 
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Figure 6-42 Pressure amplitude distributions at a reduced velocity of 3.1 in Case 6 flows 
(error bars represent 95% confidence intervals). 
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Figure 6-43 Pressure amplitude distributions at a reduced velocity of 3.1 in Case 12 flows 
(error bars represent 95% confidence intervals). 
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Figure 6-44 Pressure amplitude distributions at a reduced velocity of 8 in Case 6 flows 
(error bars represent 95% confidence intervals). 
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Figure 6-45 Pressure amplitude distributions at a reduced velocity of 8 in Case 12 flows 
(error bars represent 95% confidence intervals). 
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Figure 6-46 Pressure amplitude distributions at a reduced velocity of 20 in Case 6 flows 
(error bars represent 95% confidence intervals). 

 

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1x /B

C
p

* 
fo

r U
r=

20

Case 12a
Case 12b

 

Figure 6-47 Pressure amplitude distributions at a reduced velocity of 20 in Case 12 flows 
(error bars represent 95% confidence intervals). 
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 Phase distributions for 1.3=rU , 8=rU , and 20=rU  are shown in Figure 6-48, 

Figure 6-49, and Figure 6-50, respectively. Like the amplitude distributions, the smooth 

flow phase distributions are seen to have a basic structure that stretches in the streamwise 

direction as the reduced velocity increases. This basic structure includes a region of 

nearly constant phase near the leading edge. The downstream extent of this constant-

phase region was observed to be the portion of the distribution most affected by free 

stream turbulence. As the turbulence intensity was increased, the extent of this region 

was reduced for every reduced velocity tested. In each case, a zone of rapidly increasing 

phase was observed just downstream of the constant phase region. Beyond this rapidly 

changing zone, the slope of the phase decreased and the phase values often decreased. 

Chapter 8 will discuss the overall structure of the phase distributions in more detail. 

 To illuminate the effects of turbulence scale on these phase distributions, each 

pair of constant turbulence intensity cases was plotted on a separate plot in Figure 6-51 

through Figure 6-56. This made comparisons between large and small integral scale cases 

easier. In each case, the effect of scale on the downstream extent of the constant phase 

region is negligible. Most of the distributions show very little change with integral scale. 

 For the two 1.3=rU  cases (Figure 6-51 and Figure 6-52), turbulence scale had 

little discernible effect. The only region affected by scale at all was downstream of the 

rapidly increasing phase region. Increasing scale increased the phase values somewhat, 

but this region also experienced greater spread in the experimental phase values which 

increased the uncertainty bounds. Overall, the effect of increasing scale was minimal. 

 Comparing the 8=rU  phase plots (Figure 6-53 and Figure 6-54) with the 

1.3=rU  phase plots, one can see that the slope of the phase values in the rapidly 



 

 149

increasing phase region decreases with increasing rU . For 12% turbulence intensity, this 

slope change was accompanied by lower phase magnitudes as well. As before, 

uncertainty bounds and scale effects decrease downstream of this region. Increasing 

turbulence scale increased the phase values for these downstream positions.  

 When the reduced velocity was increased further to 20=rU  (Figure 6-55 and 

Figure 6-56) overall phase values decreased even more. Maximum magnitudes were less 

than 20°, and turbulence scale showed negligible effects. The impact of this decrease in 

phase magnitudes will be discussed in Chapter 8. 
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Figure 6-48 Pressure phase distributions in smooth flow and small-scale turbulent flows 
at a reduced velocity of 3.1. 
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Figure 6-49 Pressure phase distributions in smooth flow and small-scale turbulent flows 
at a reduced velocity of 8. 
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Figure 6-50 Pressure phase distributions in smooth flow and small-scale turbulent flows 
at a reduced velocity of 20. 
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Figure 6-51 Pressure phase distributions for 1.3=rU  and %6=uI  showing the effect of 
changing scales (error bars represent 95% confidence intervals). 
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Figure 6-52 Pressure phase distributions for 1.3=rU  and %12=uI  showing the effect 
of changing scales (error bars represent 95% confidence intervals). 
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Figure 6-53 Pressure phase distributions for 8=rU  and %6=uI  showing the effect of 
changing scales (error bars represent 95% confidence intervals). 
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Figure 6-54 Pressure phase distributions for 8=rU  and %12=uI  showing the effect of 
changing scales (error bars represent 95% confidence intervals). 
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Figure 6-55 Pressure phase distributions for 20=rU  and %6=uI  showing the effect of 
changing scales (error bars represent 95% confidence intervals). 

 

-180

-120

-60

0

60

120

180

0 0.2 0.4 0.6 0.8 1x /B

ψ
 (d

eg
) f

or
 U

r=
20

Case 12a
Case 12b

 

Figure 6-56 Pressure phase distributions for 20=rU  and %12=uI  showing the effect of 
changing scales (error bars represent 95% confidence intervals). 
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6.4 Flutter Derivatives 

 The pressure distributions of section 6.3 can be integrated as described in Chapter 

2 to obtain flutter derivatives. Figure 6-23 shows the flutter derivative *
2A  calculated 

from pressure measurements in each incident flow considered. Turbulence was observed 

to have a stabilizing effect on the values of *
2A . These effects are considered stabilizing 

because, as discussed in Chapter 1, *
2A  is associated with the aerodynamic damping for 

the torsional motion. Large positive values of *
2A  correspond to “negative damping” 

effects. Turbulence of 6% intensity reduced *
2A  considerably, the turbulence intensity of 

12% continued this trend even resulting in negative *
2A  values. Scale effects were not 

particularly significant for the range of scales considered. 

 Values of *
3A  are presented in Figure 6-58. Turbulence-induced changes in *

3A  

were different than those in *
2A . While *

2A  curves were similar for similar turbulence 

intensities, *
3A  curves were similar for similar turbulence scales. For example, both the 

smaller scale turbulence cases increased the magnitude of *
3A  at 20=rU  by about 65% 

but the two larger scale flows increased *
3A  by only 40%. 

 The aerodynamic coupling terms of *
2H  and *

3H  are plotted in Figure 6-59 and 

Figure 6-60, respectively. The magnitudes of both are significantly decreased from their 

smooth flow values by incident turbulence. Although *
2H  exhibited no clear trend with 

respect to turbulence scale, the overall behavior was similar to that of *
2A  where 

increasing turbulence intensity resulted in lower values of *
2H . As demonstrated in Chen 

et al. (2000), the shift in the *
3H  values is a stabilizing effect when considering coupled, 



 

 155

multi-mode problems. *
3H  curves were also grouped approximately by turbulence 

intensity. Greater turbulence intensity resulted in lower magnitudes. When comparing 

values for equal uI , greater turbulence scales also lowered *
3H  magnitudes. 

 A more detailed analysis of the behavior of the flutter derivatives in turbulent 

flow is part of Chapter 8. This discussion will include how specific changes in pressure 

distributions alter the flutter derivatives. 

 

 

-10

0

10

20

30

40

50

60

0 5 10 15 20 25 30
Reduced Velocity (U /fB )

A
2*

Smooth
Case 6a
Case 6b
Case 12a
Case 12b

 

Figure 6-57 Flutter derivative *
2A  in smooth and turbulent flow. 
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Figure 6-58 Flutter derivative *
3A  for smooth and turbulent flow. 
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Figure 6-59 Flutter derivative *
2H  in smooth and turbulent flow. 

 



 

 157

-700

-600

-500

-400

-300

-200

-100

0

0 5 10 15 20 25 30
Reduced Velocity (U /fB )

H
3*

Smooth
Case 6a
Case 6b
Case 12a
Case 12b

 

Figure 6-60 Flutter derivative *
3H  in smooth and turbulent flow. 

 

 

6.5 Aerodynamic Admittance Functions 

 Having addressed the self-excited forces in the preceding two sections, data 

pertaining to the buffeting forces are now presented. Specifically, aerodynamic 

admittance functions are plotted and compared with their stationary model counterparts. 

While this section presents frequency-dependent functions of force and moment data, 

section 6.6 will present various statistical quantities of individual pressure signals that 

provide a more fundamental perspective on the overall forces. As introduced in Chapter 

1, aerodynamic admittance functions are essentially frequency response functions 

describing well turbulent velocity fluctuations translate into buffeting lift and moment 

forces on the body. The expressions presented in Chapter 1 were employed in a modified 
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form to quantify admittance for this project. While those expressions were in the time 

domain, frequency domain expressions were used here as follows: 
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where LLG  and MMG  are the power spectral density functions of lift and moment, 

respectively, LC′  and MC′  are the slopes, at zero angle of attack, of the static lift and 

moment curves, respectively, and 
2

bwLχ  and 
2

bwMχ  are the aerodynamic admittance 

functions relating vertical velocity fluctuations to lift and moment, respectively. Because 

it is dominant, only admittance for w  fluctuations was calculated here using the velocity 

spectra reported in Chapter 4. Values for the slopes of the lift and moment slopes were 

found using results of stationary model tests at various angles of attack. Values of 

5.9=′LC  and 15.1=′MC  were used for each case.  

 In the following plots “lift admittance” refers to 
2

bwLχ , and “moment admittance” 

refers to 
2

bwMχ . An admittance plot is presented here for each of the spectra presented in 

section 6.2. This includes a comparison of stationary model admittance with oscillating 

model admittance in each case. Lift and moment admittance functions for 1.3=rU  are 

presented in Figure 6-61 through Figure 6-64; admittance functions for 8=rU  are given 

in Figure 6-65 through Figure 6-68; and admittance functions for 20=rU  are given in 

Figure 6-69 through Figure 6-72. 

(6-3) 

(6-4) 
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 Little discernable dependence of broad band admittance on reduced velocity was 

evident. This follows from the results of section 6.2 where negligible reduced velocity 

dependence was found for the broad band force and moment spectra. In general, 

admittance was observed here to decrease with greater turbulence intensity. This agrees 

with the turbulence intensity trends reported by Sankaran & Jancauskas (1992). With 

greater turbulence scale, admittance values increased particularly for the lower frequency 

range.  

 As discussed previously, turbulent buffeting analysis of long-span bridges is 

generally conducted using experimental data obtained from stationary bridge models. The 

buffeting forces are assumed to be independent of any deck motion. The data acquired for 

this project allows an examination of this assumption. In each figure of this section, both 

stationary and oscillating model admittance functions are plotted together. As with the 

force spectra results of section 6.2, matches were quite good. In most cases, however, 

admittance functions were slightly increased by the model motion. The majority of this 

increase was for frequencies above 1.0=UfB . This increase became less significant 

with increased turbulence intensity and increased turbulence scale. In addition to this 

frequency-domain analysis of the buffeting decomposition assumption, section 6.6 

examines this assumption with statistics of individual pressure signals. 
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Figure 6-61 Lift admittance functions for %6=uI  for both stationary and 1.3=rU  tests 
(stationary results shaded). 
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Figure 6-62 Lift admittance functions for %12=uI  for both stationary and 1.3=rU  
tests (stationary results shaded). 
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Figure 6-63 Moment admittance functions for %6=uI  for both stationary and 1.3=rU  
tests (stationary results shaded). 
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Figure 6-64 Moment admittance functions for %12=uI  for both stationary and 1.3=rU  
tests (stationary results shaded). 
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Figure 6-65 Lift admittance functions for %6=uI  for both stationary and 8=rU  tests 
(stationary results shaded). 
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Figure 6-66 Lift admittance functions for %12=uI  for both stationary and 8=rU  tests 
(stationary results shaded). 
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Figure 6-67 Moment admittance functions for %6=uI  for both stationary and 8=rU  
tests (stationary results shaded). 
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Figure 6-68 Moment admittance functions for %12=uI  for both stationary and 8=rU  
tests (stationary results shaded). 
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Figure 6-69 Lift admittance functions for %6=uI  for both stationary and 20=rU  tests 
(stationary results shaded). 
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Figure 6-70 Lift admittance functions for %12=uI  for both stationary and 20=rU  tests 
(stationary results shaded). 
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Figure 6-71 Moment admittance functions for %6=uI  for both stationary and 20=rU  
tests (stationary results shaded). 
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Figure 6-72 Moment admittance functions for %12=uI  for both stationary and 20=rU  
tests (stationary results shaded). 
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6.6 Statistical Distributions of Pressure 

 Streamwise variation of various statistical distributions are presented here to 

provide a more fundamental picture of the aerodynamics than that provided by lift and 

moment data. Streamwise distributions of rms pressures, skewness coefficients, and 

kurtosis coefficients are plotted for each flow case at reduced velocities of 3.1, 8, and 20. 

 The distributions of rms pressures are presented in two different ways. For each 

reduced velocity, three plots are provided. The first plot contains the streamwise 

distributions of rms pressure for each flow condition. These plots are generated from 

complete oscillating model pressure signals. The second two plots compare stationary 

model rms values with oscillating model rms values from which the content of the 

oscillation frequency peak has been subtracted. 

 Figure 6-73 presents rms pressure distributions for 1.3=rU . As discussed for the 

stationary model values of Chapter 5, the peak in the rms pressure distribution shifts 

upstream for increasing turbulence intensity. The magnitudes of the peak values increase 

with turbulence scale—with such increase being greater for greater turbulence intensities. 

This is reasonable considering the larger buffeting forces generated when turbulence 

scale increases. When the rms content at the model oscillation frequency is removed from 

the rms values oscillating model rms values approximate the broad band buffeting 

content of the signals. The degree of similarity between this buffeting content for 

oscillating models and those for stationary model is an important issue when considering 

the current practice of analyzing buffeting response from stationary model buffeting 

measurements.  
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 Figure 6-74 and Figure 6-75 show the results of comparing stationary and 

oscillating model buffeting forces for small and large scale turbulent flows, respectively. 

Observations of spectra in section 6.2 found that model motion increased the broad band 

energy levels of the aerodynamic forces. These figures show a similar increase. Smooth 

flow results show the most significant changes with respect to model motion. Being able 

to see the streamwise distribution of the changes due to model motion allows one to see 

that most changes occur upstream of the peak in the rms distribution—in the region most 

likely associated with the separation bubble. This fact, of course, was not discernible 

from the lift and moment spectra presented earlier. Greater turbulence intensities and 

larger turbulence scales reduced the mismatch—relative to the stationary values—

between oscillating and stationary results. 

 Figure 6-76 through Figure 6-78 present similar results for 8=rU . Total rms 

values in Figure 6-76 were greater than for 1.3=rU , but all the trends with respect to 

turbulence were the same. Comparison of the broad band content with stationary results 

showed very similar results to those of 1.3=rU . The same trends were found in the 

distribution for 20=rU  plotted in Figure 6-79 through Figure 6-81. Trends in buffeting 

load comparisons with respect to reduced velocity were discussed section 6.2. 

 In addition to rms values, peak pressure coefficient distribution were measured as 

well. Figure 6-82 through Figure 6-84 present peak distributions for reduced velocities of 

3.1, 8, and 20, respectively. In each case, the same general trends were observed with 

respect to turbulence as found for stationary models. Greater turbulence intensity and 

greater turbulence scale both increase the magnitudes of the peak pressures. With respect 

to reduced velocity, distributions were quite similar. 
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 As done in Chapter 5 for the stationary model results, the non-Gaussian character 

of the oscillating model pressure signals were also quantified. Skewness and kurtosis 

coefficient distributions were calculated for each flow and for each reduced velocity. 

Figure 6-85 through Figure 6-87 plot the skewness coefficient distributions in the 

streamwise direction for reduced velocities of 3.1, 8, and 20, respectively. Skewness 

coefficient values, kS , started negative at the leading edge, increased to a maximum 

further downstream, and then decreased again. For stationary cylinders, the increase 

toward zero skewness is associated with reattachment. This seems to hold for oscillating 

cylinders as well—the increase toward zero occurred near the location of the maximum 

in the rms pressure distribution. As with the stationary model values, the greatest effects 

of scale were manifested downstream of reattachment. Increasing scale values greatly 

increased the magnitudes of kS . Skewness magnitudes were greater when the model was 

oscillating. Where stationary model skewness coefficients were mostly >-0.6, oscillating 

model values for 8≥rU  were mostly at or below 1−=kS .  

 Figure 6-88 through Figure 6-90 plot the kurtosis coefficient distributions for the 

same values of rU . For 1.3=rU , uK  varied only about ±1.0 from the Gaussian value of 

3.0. For greater reduced velocities, kurtosis values became significantly greater reaching 

7.0 for Case 12b. As was the case with kS , the uK  values were most affected by scale 

downstream of reattachment. Increased scale always increased the magnitudes of uK . 
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Figure 6-73 RMS pressure distributions for model oscillating at 1.3=rU  in each flow 
case. 
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Figure 6-74 Stationary model RMS pressure values (Stat) and oscillating model RMS 
values with peak content subtracted (B) for small-scale turbulence at 1.3=rU . 
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Figure 6-75 Stationary model RMS pressure values (Stat) and oscillating model RMS 
values with peak content subtracted (B) for large-scale turbulence at 1.3=rU . 
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Figure 6-76 RMS pressure distributions for model oscillating at 8=rU  in each flow 
case. 
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Figure 6-77 Stationary model RMS pressure values (Stat) and oscillating model RMS 
values with peak content subtracted (B) for small-scale turbulence at 8=rU . 
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Figure 6-78 Stationary model RMS pressure values (Stat) and oscillating model RMS 
values with peak content subtracted (B) for large-scale turbulence at 8=rU . 
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Figure 6-79 RMS pressure distributions for model oscillating at 20=rU  in each flow 
case. 
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Figure 6-80 Stationary model RMS pressure values (Stat) and oscillating model RMS 
values with peak content subtracted (B) for small-scale turbulence at 20=rU . 
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Figure 6-81 Stationary model RMS pressure values (Stat) and oscillating model RMS 
values with peak content subtracted (B) for large-scale turbulence at 20=rU . 
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Figure 6-82 Peak pressure distributions for model oscillating at 1.3=rU  in each flow 
case. 
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Figure 6-83 Peak pressure distributions for model oscillating at 8=rU  in each flow case. 
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Figure 6-84 Peak pressure distributions for model oscillating at 20=rU  in each flow 
case. 
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Figure 6-85 Skewness coefficient distributions for model oscillating at 1.3=rU  in each 
flow case. 
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Figure 6-86 Skewness coefficient distributions for model oscillating at 8=rU  in each 
flow case. 
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Figure 6-87 Skewness coefficient distributions for model oscillating at 20=rU  in each 
flow case. 
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Figure 6-88 Kurtosis coefficient distributions for model oscillating at 1.3=rU  in each 
flow case. 
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Figure 6-89 Kurtosis coefficient distributions for model oscillating at 8=rU  in each 
flow case. 
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Figure 6-90 Kurtosis coefficient distributions for model oscillating at 20=rU  in each 
flow case. 
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CHAPTER 7.   SPANWISE COHERENCE AND CORRELATION RESULTS 

7.1 Summary of Measurements of Spanwise Behavior 

 This chapter presents the measurements of the spanwise correlation of the self-

excited forces. Spanwise correlation was examined in two ways on both stationary and 

oscillating models. First, cross correlation between the integrated quantities of lift and 

moment was calculated. Second, the cross correlation between individual pressure signals 

was examined to understand the streamwise position dependence of the spanwise 

correlation. This chapter presents the correlation calculations for the stationary model 

tests in the following two sections and the calculations for the oscillating model tests in 

the two subsequent sections. The dynamic pressure calibration section of Appendix A 

discusses some potential sources of extraneous pressure coherence, and further details of 

the coherence calculation procedures can be found in Appendix C. 

 

7.2 Spanwise Correlation and Coherence of Forces—Stationary Model 

 This section presents the data for coherence and correlation of the lift and moment 

on a stationary model. Pressure signals were integrated at two different spanwise 

locations to produce time-varying lift and moment functions. Cross correlation and 

coherence functions were calculated between these lift and moment functions, as shown 

schematically in Figure 7-1. 
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Figure 7-1 Cross correlation and coherence were calculated between lift functions at two 
different spanwise locations as shown in the diagram above. 

 

 Figure 7-2 shows the cross correlation values for lift in each of the flow 

conditions. The most notable trend is that the correlation curves show more of a 

dependence on turbulence scale than on turbulence intensity. Both the “a” pair and the 

“b” pair of flow cases have similar values throughout the range of spanwise separation 

considered despite the fact that one of each pair corresponds to a flow having double the 

other’s turbulence intensity. The increase in spanwise correlation values for greater 

incident turbulence scale is a trend reported by researchers investigating both bluff 

bodies and bridge deck sections (e.g. Larose et al., 1993; Sankaran & Jancauskas, 1993; 

Kimura et al., 1996; Saathoff & Melbourne, 1997; Larose & Mann, 1998). Figure 7-3 

shows the corresponding spanwise moment correlation curves. Each of these curves, 

while following the same trends as those for lift, has slightly lower values than their 

complementary lift correlation curves. 
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 What is also worthy of note is that the spanwise correlation scales of the lift are 

greater than those of the incident turbulent flow by a factor 3 to 4. Exponential functions 

were fit to the spanwise correlation data and then integrated to obtain a scale estimates. 

Table 7-1 lists these spanwise correlation scales for both the incident turbulence and the 

lift and moment. This ratio drops only slightly, to 2 or 3, when considering the 

correlation scales of the moment in the various incident flows. 

 Correlation functions can illustrate the general relationships of pressures to each 

other, but prediction of dynamic response due to turbulent buffeting requires frequency 

information (as described, for example, in Davenport, 1962). Coherence functions 

provide such frequency information. The plots that follow present coherence functions 

computed for lift and moment on stationary models according to the following 

expression: 

( )
( )

( ) ( )fGfG
fG

f
LLLL

LL

2211

21

2

2 =γ  

where ( )fG LL 21
 is the cross spectral density function between the lift forces at two 

spanwise locations, 1 and 2, and ( )fG LL 11
 and ( )fG LL 22

 are the power spectral density 

functions of the lift forces at positions 1 and 2, respectively. An analogous expression 

was used for calculating the coherence related to the moment. Further details of these 

calculations can be found in Appendix C. 

 Figure 7-4 shows the coherence of the lift forces for the Case 6 flows plotted 

versus a reduced frequency defined as: Uyf∆  (where f  is frequency in Hz, y∆  is the 

spanwise separation, and U  is the mean freestream velocity). Each plot corresponds to a 

different separation distance between pressure measurement locations. As the separation 

(7-1) 
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distance increases, the coherence values fall for all reduced frequencies. For a given 

separation, the coherence values decrease exponentially with reduced frequency. The 

larger integral scale of the Case 6b flow results in coherence values larger than those of 

Case 6a over all reduced frequencies with a more gradual reduction with increasing 

spanwise separation. Coherence values for moments on a stationary cylinder in the Case 

6 flows are shown in Figure 7-5. These plots show very similar trends to those observed 

for lift, but as with the correlation values discussed previously, the moment coherence is 

lower than that for lift.  

 Figure 7-6 and Figure 7-7 show the stationary model coherence functions for lift 

and moment, respectively, in the Case 12 flows. Increasing the turbulence intensity to 

12% did not seem to affect the coherence values significantly. The values are very 

similar over the entire reduced velocity range suggesting that turbulence scale is a more 

important parameter for coherence than turbulence intensity. One notable difference does 

exist between Case 6b and Case 12b values. Case 12b values maintained a higher 

coherence for greater spanwise separation despite the fact that both incident flows had 

very similar integral scales. Turbulence intensity effects, therefore, should not be 

assumed insignificant. 

 Coherence values near zero frequency were less than unity. Even though the 

values near zero are quite high and decrease with increasing frequency, very low 

frequency values do not approach unity coherence. Similar coherence behavior was also 

reported in, for example, Larose & Mann (1998). A discussion of such behavior can be 

found in Kareem (1987). 



 182

0.0

0.2

0.4

0.6

0.8

1.0

0 0.5 1 1.5 2 2.5
∆y/B

C
ro

ss
 C

or
re

la
tio

n 
C

oe
ff

 o
f L

ift

Case 6a
Case 6b
Case 12a
Case 12b

 

Figure 7-2 Maximum cross correlation coefficient values for lift on a stationary model. 
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Figure 7-3 Maximum cross correlation coefficient values for moment on a stationary 
model. 
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Table 7-1 SPANWISE CORRELATION LENGTHS FOR WIND VELOCITY 
FLUCTUATIONS AND LIFT AND MOMENT ON THE STATIONARY MODEL 

 

  
Lux 

 

 
Luy 

 
Lwx 

 
Lwy 

 
sLyL  

 
sMyL  

 
 

 
Smooth 

 

 
N/A 

 
N/A 

 
N/A 

 
N/A 

 
3.59D 

 
1.62D 

 
 

 
Iu = 6% 

 
Case 6a 
Case 6b 

 

 
 
 

1.81D 
4.9D 

 

 
 
 

1.69D 
2.68D 

 
 
 

0.86D 
2.56D 

 
 
 

1.34D 
2.21D 

 
 
 

4.70D 
10.15D 

 
 
 

3.54D 
6.19D 

 
 
 
 
 

 
Iu = 12% 

 
Case 12a 
Case 12b 

 

 
 
 

1.34D 
4.89D 

 
 
 

1.14D 
3.33D 

 
 
 

0.61D 
2.66D 

 
 
 

0.83D 
2.52D 

 
 
 

4.32D 
12.54D 

 
 
 

3.12D 
8.65D 

 
 
 
 
 

 

0 0.2 0.4 0.6 0.8
0

0.5

1

fdy/U

co
h 

(d
y=

0.
4B

)

0 0.2 0.4 0.6 0.8
0

0.5

1

fdy/U

co
h 

(d
y=

0.
8B

)

0 0.2 0.4 0.6 0.8
0

0.5

1

fdy/U

co
h 

(d
y=

1.
2B

)

0 0.2 0.4 0.6 0.8
0

0.5

1

fdy/U

co
h 

(d
y=

1.
8B

)

0 0.2 0.4 0.6 0.8
0

0.5

1

fdy/U

co
h 

(d
y=

2.
4B

)

 

Figure 7-4 Coherence functions for lift on a stationary model in the Case 6 turbulent 
flows at several different spanwise separations (‘+’ Case 6a; ‘o’ Case 6b). 
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Figure 7-5 Coherence functions for moment on a stationary model in the Case 6 turbulent 
flows at several different spanwise separations (‘+’ Case 6a; ‘o’ Case 6b). 
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Figure 7-6 Coherence functions for lift on a stationary model in the Case 12 turbulent 
flows at several different spanwise separations (‘+’ Case 12a; ‘o’ Case 12b). 
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Figure 7-7 Coherence functions for moment on a stationary model in the Case 12 
turbulent flows at several different spanwise separations (‘+’ Case 12a; ‘o’ Case 12b). 

 

 

7.3 Streamwise Position Dependence of Spanwise Pressure Correlation—Stationary 

Model 

 To investigate the structure of the correlation values, cross correlation functions 

were computed between pressure signals at discrete streamwise locations. While section 

7.2 presented the cross correlations between the integrated quantities of lift and moment, 

this section calculates the cross correlations between individual pressure signals as shown 

schematically in Figure 7-8. These correlations are presented in four figures (Figure 7-9 

through Figure 7-12) each containing four plots, so each of the 16 streamwise positions 

(specific values of Bx ) has its own plot. 
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 The pressure correlations in each flow case show an exponential decay with 

increasing spanwise separation. Positions from the leading edge to 6.0≈Bx  show the 

cases with larger turbulence scale having larger spanwise correlation. Beyond this point, 

however, this trend reverses, and the flows with larger integral scales have somewhat 

lower correlation values. Not all the pressure correlations, therefore, follow the same 

scale dependence as the lift and moment. Lift and moment behave as they do because the 

windward half of the model, where 6.0≤Bx , experiences larger pressure magnitudes 

and is thus the greatest contributor to the integrated forces. 

 To quantify these trends better, exponential curves were fit to each of the pressure 

correlation curves. From these fits, spanwise correlation length scales were computed and 

are shown in Figure 7-13. In more concise form, this plot summarizes the results of the 

pressure correlation plots. For a given turbulence intensity, greater turbulence scale 

results in greater spanwise pressure correlation for streamwise positions less than B6.0  

and in slightly lower correlation for positions further downstream. Because of the small 

number of spanwise measurement locations, however, these spanwise scales are only 

rough estimates. 

 Two trends in Figure 7-13 are worthy of note. On the upstream half of the surface, 

spanwise correlation scale behavior of the “b” cases roughly consisted of a streamwise 

increase to a maximum and then a decrease. This is similar to the velocity correlation 

observations of Kiya & Sasaki (1983a) on a blunt, flat plate. They found that the 

spanwise correlation of the structures of the separated shear layer increased up to a 

maximum at reattachment. They did not measure too far downstream of reattachment, 

however. Figure 7-13 shows that the overall behavior of the spanwise scales in this 
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project were similar. In addition to this behavior on the upstream half of the model, the 

spanwise correlation scales increased near the trailing edge. This does not occur for 

blunt, flat plates where the body extends “infinitely” downstream. The shedding of 

vortices from the trailing edge may be exerting an organizing influence on the flow near 

the trailing edge thus increasing the spanwise correlation in that region. 
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Figure 7-8 Cross correlations were calculated between individual pressure signals at each 
streamwise location for various spanwise separations as shown in the diagram above. 
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Figure 7-9 Pressure correlation functions for pressure taps 1-4 on a stationary model (‘+’ 
Case 6a; ‘- -’ Case 6b; ‘x’ Case 12a; ‘—’ Case 12b’) 
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Figure 7-10 Pressure correlation functions for pressure taps 5-8 on a stationary model 
(‘+’ Case 6a; ‘- -’ Case 6b; ‘x’ Case 12a; ‘—’ Case 12b’) 
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Figure 7-11 Pressure correlation functions for pressure taps 9-12 on a stationary model 
(‘+’ Case 6a; ‘- -’ Case 6b; ‘x’ Case 12a; ‘—’ Case 12b’) 
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Figure 7-12 Pressure correlation functions for pressure taps 13-16 on a stationary model 
(‘+’ Case 6a; ‘- -’ Case 6b; ‘x’ Case 12a; ‘—’ Case 12b’) 
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Figure 7-13 Spanwise correlation scales as a function of streamwise position for the 
stationary model in each of the four turbulent flows. 

 

 

7.4 Spanwise Correlation and Coherence of Forces—Oscillating Model 

 Like section 7.2, this section presents the spanwise correlation and coherence 

values computed from integrated lift and moment. This section, however, presents data 

measured while the model is oscillating at various reduced velocities. Because of the 

volume of data involved, only the data from three reduced velocities (3.1, 8, and 20) are 

presented here. These data sets sufficiently reveal the overall trends. 

 Figure 7-14 contains the cross correlation coefficients (at zero time lag) for the 

lift forces for 1.3=rU . Two major differences between these values and those for a 

stationary model present themselves. The first is the much higher values for the 

oscillating model. Stationary model spanwise correlation scales were between B3.0  and 
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B9.1  depending on the turbulence properties while oscillating model correlation scales 

were between B5  and B20  for turbulent flow and far greater for smooth flow. More 

details on these correlation scales will be discussed later in this section. 

 The second difference is the reversal of the trend with incident turbulence scale. 

While larger turbulence scales increase the spanwise correlation for the stationary 

cylinder, Figure 7-14 shows that the opposite is true for the oscillating cylinder at this 

reduced velocity. Both larger-scale “b” flow cases produced significantly lower spanwise 

lift correlation than the corresponding smaller-scale “a” cases. The effect of turbulence 

intensity was much more subtle—when comparing the correlations between flows having 

similar turbulence length scales, the flow with greater turbulence intensity had a slightly 

lower correlation value. The smooth flow correlation values also warrant mention due to 

the fact that they are higher than those of the turbulent flow cases—a behavior that is 

opposite the stationary model behavior. For the stationary model, the smooth flow 

correlation values were consistently lower than the turbulent flow values. 

 A dip in the correlation values near 8.0=∆ By  is also evident in Figure 7-14. 

This is likely due to experimental difficulties rather than flow physics. As described in 

chapter 3, the myriad of tubing lines within the model had to be rearranged for each 

spanwise separation setting. At times certain tubing lines would get pinched precluding 

data acquisition from that pressure tap. While every effort was made to minimize these 

problems, some impact on the results was unavoidable. 

 Figure 7-15 and Figure 7-16 show spanwise lift correlation values for reduced 

velocities of 8 and 20, respectively. The same trends with respect to turbulence intensity 

and scale hold for these curves as they did for those of 1.3=rU . Although these trends 
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are the same, the overall values are different. To summarize the data in these last three 

figures and to track how the spanwise correlation depends on reduced velocity, Figure 

7-17 shows the correlation length scale as a function of reduced velocity for each flow 

case. These curves suggest that maximum correlation scales occur between 1.3=rU  and 

8=rU  followed by a gradual reduction as reduced velocity increases. 

 The next three plots, Figure 7-18 through Figure 7-20 include the moment cross 

correlation curves corresponding to the same three reduced velocities just considered for 

lift. Similar trends with respect to turbulence are evident comparing these curves to their 

lift correlation counterparts. However, lift correlation values have a slightly higher value 

than moment correlations for the reduced velocities of 8 and higher. Moment correlations 

have slightly higher values for the case of 1.3=rU . Figure 7-21 shows a plot of the 

moment correlation length scales versus reduced velocity. Comparing these scales with 

the lift scales of Figure 7-17 illustrates the above-mentioned differences in values 

between lift and moment correlations. 

 The discussion in Chapter 8 will address these correlation values in greater depth. 

Specifically, the correlation of buffeting and self-excited components of the lift and 

moment will be considered. 

 Coherence functions were also calculated to examine these spanwise correlation 

issues in terms of frequency dependence as well. Figure 7-22 shows the coherence values 

for the Case 6 turbulent flows at 1.3=rU  for both the stationary and oscillating tests. 

Except for the coherence at the frequency of the model motion, mf , the results from tests 

with and without motion are remarkably similar. At the model oscillation frequency, 

however, the oscillating-model coherence is very high, near unity. While the broad band 
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coherence decreases rapidly with separation distance, the coherence at mf  decreases only 

slightly and sustains extremely high values throughout the separation range considered. 

 Current bridge design practice highlights the importance of the comparison 

between the results for the stationary and oscillating tests. Since buffeting and self-

excited forces are considered separately in the analytical estimates, they are measured 

separately as well. Buffeting force magnitudes and spanwise coherences are measured on 

stationary models and then employed in the overall dynamic analyses of the bridge decks. 

Results of these spanwise coherence experiments on oscillating models—the first of their 

kind to the author’s knowledge—support this practice at least in terms of the buffeting 

force coherence. Unfortunately, quantitative analysis of the difference in stationary and 

oscillating model coherence was not possible. The differences in the coherence values 

plotted here were within the random error of the calculations. 

 Figure 7-23 and Figure 7-24 show the coherence spectra for the 8=rU  and 

20=rU  cases, respectively. Again, these functions are for the Case 6 turbulent flows 

and show that the results of stationary and oscillating model tests are very similar for the 

broadband coherence. Shifts in the locations of the near-unity peaks in the oscillating 

model coherence functions were caused by increases in the model oscillation frequency 

made to decrease rU . The behavior of these peaks with respect to turbulence and reduced 

velocity will be discussed in subsequent paragraphs. 

 Lift coherence functions for the Case 12 turbulent flows at reduced velocities of 

3.1, 8, and 12 are shown in Figure 7-25 through Figure 7-27, respectively. Like the Case 

6 plots, the broadband coherence of the forces on the oscillating model were very similar 

to those on the stationary model—except for the peak at the model oscillation frequency. 
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Because the broadband coherence has already been described in this section and in 

section 7.2, the coherence peaks will now be the focus. 

 Moment coherence functions for reduced velocities of 3.1, 8, and 12 in Case 6 

flows are presented in the three plots from Figure 7-28 through Figure 7-30. The Case 12 

coherence functions for these same reduced velocities are shown in the three figures from 

Figure 7-31 through Figure 7-33. These values behave quite similarly to their lift 

coherence counterparts but with slightly lower magnitudes. 

 For 1.3=rU , coherence values at the model oscillation frequency, mf , are 

plotted versus separation in Figure 7-34 (similar plots of peak coherence values for 

8=rU  and 20=rU  are shown in Figure 7-35 and Figure 7-36, respectively). With 

respect to turbulence, these coherence values show behavior similar to that of the 

correlation values. Smooth incident flow resulted in the highest lift coherence values, and 

turbulent flow produced forces with lower coherence. Larger scale turbulence caused 

larger decreases in the coherence values. These general statements are true of the 

spanwise correlation values discussed previously. The main difference for the coherence 

values is how much smaller the relative changes are in the different turbulent flows. For 

example, the lift correlation coefficient for By 4.2=∆  and 20=rU  (see Figure 7-16) 

dropped approximately 38% from smooth flow to Case 12b. The corresponding change in 

the coherence function at mf  was merely 5% (see Figure 7-36). Because the precision 

uncertainty in this range of coherence is about 3%, conclusive statements cannot be made 

concerning turbulence effects on these peak values. It would take a significantly longer 

model span to identify the separation lengths for which these coherence values would 

drop to insignificant levels. 
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 Plots of the moment coherence values at the oscillation frequency are shown in 

three figures, Figure 7-37 for 1.3=rU , Figure 7-38 for 8=rU , and Figure 7-39 for 

20=rU . Comparing these moment results with their lift coherence counterparts reveals 

very similar values—again, with the subtle decreases with separation distance mentioned 

previously. 
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Figure 7-14 Cross correlation coefficient for lift for Ur=3.1 in smooth and turbulent 
flows. 
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Figure 7-15 Cross correlation coefficient for lift for Ur=8 in smooth and turbulent flows. 
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Figure 7-16 Cross correlation coefficient for lift for Ur=20 in smooth and turbulent flows. 
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Figure 7-17 Spanwise lift correlation scale as a function of reduced velocity. 
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Figure 7-18 Cross correlation coefficient for moment for Ur=3.1 in smooth and turbulent 
flows. 

 



 198

0.0

0.2

0.4

0.6

0.8

1.0

0 0.5 1 1.5 2 2.5
∆y /B

C
ro

ss
 C

or
r. 

of
 M

om
en

t (
U

r=
8)

Smooth
Case 6a
Case 6b
Case 12a
Case 12b

 

Figure 7-19 Cross correlation coefficient for moment for Ur=8 in smooth and turbulent 
flows. 
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Figure 7-20 Cross correlation coefficient for moment for Ur=20 in smooth and turbulent 
flows. 
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Figure 7-21 Spanwise moment correlation scale as a function of reduced velocity. 
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Figure 7-22 Coherence of lift at Ur=3.1 in Case 6 flows for various spanwise separations 
(‘+’ Case 6a stationary; ‘- -’ Case 6a oscillating; ‘o’ Case 6b stationary; ‘—’ Case 6b 

oscillating). 
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Figure 7-23 Coherence of lift at Ur=8 in Case 6 flows for various spanwise separations 
(‘+’ Case 6a stationary; ‘- -’ Case 6a oscillating; ‘o’ Case 6b stationary; ‘—’ Case 6b 

oscillating). 
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Figure 7-24 Coherence of lift at Ur=20 in Case 6 flows for various spanwise separations 
(‘+’ Case 6a stationary; ‘- -’ Case 6a oscillating; ‘o’ Case 6b stationary; ‘—’ Case 6b 

oscillating). 
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Figure 7-25 Coherence of lift at Ur=3.1 in Case 12 flows for various spanwise separations 
(‘+’ Case 12a stationary; ‘- -’ Case 12a oscillating; ‘o’ Case 12b stationary; ‘—’ Case 

12b oscillating). 
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Figure 7-26 Coherence of lift at Ur=8 in Case 12 flows for various spanwise separations 
(‘+’ Case 12a stationary; ‘- -’ Case 12a oscillating; ‘o’ Case 12b stationary; ‘—’ Case 

12b oscillating). 
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Figure 7-27 Coherence of lift at Ur=20 in Case 12 flows for various spanwise separations 
(‘+’ Case 12a stationary; ‘- -’ Case 12a oscillating; ‘o’ Case 12b stationary; ‘—’ Case 

12b oscillating). 
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Figure 7-28 Coherence of moment at Ur=3.1 in Case 6 flows for various spanwise 
separations (‘+’ Case 6a stationary; ‘- -’ Case 6a oscillating; ‘o’ Case 6b stationary; ‘—’ 

Case 6b oscillating). 
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Figure 7-29 Coherence of moment at Ur=8 in Case 6 flows for various spanwise 
separations (‘+’ Case 6a stationary; ‘- -’ Case 6a oscillating; ‘o’ Case 6b stationary; ‘—’ 

Case 6b oscillating). 
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Figure 7-30 Coherence of moment at Ur=20 in Case 6 flows for various spanwise 
separations (‘+’ Case 6a stationary; ‘- -’ Case 6a oscillating; ‘o’ Case 6b stationary; ‘—’ 

Case 6b oscillating). 
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Figure 7-31 Coherence of moment at Ur=3.1 in Case 12 flows for various spanwise 
separations (‘+’ Case 12a stationary; ‘- -’ Case 12a oscillating; ‘o’ Case 12b stationary; 

‘—’ Case 12b oscillating). 

 

0 0.2 0.4 0.6 0.8
0

0.5

1
Moment Case 12 Ur=8

fdy/U

co
h 

(d
y=

0.
4B

)

0 0.2 0.4 0.6 0.8
0

0.5

1

fdy/U

co
h 

(d
y=

0.
8B

)

0 0.2 0.4 0.6 0.8
0

0.5

1

fdy/U

co
h 

(d
y=

1.
2B

)

0 0.2 0.4 0.6 0.8
0

0.5

1

fdy/U

co
h 

(d
y=

1.
8B

)

0 0.2 0.4 0.6 0.8
0

0.5

1

fdy/U

co
h 

(d
y=

2.
4B

)

 

Figure 7-32 Coherence of moment at Ur=8 in Case 12 flows for various spanwise 
separations (‘+’ Case 12a stationary; ‘- -’ Case 12a oscillating; ‘o’ Case 12b stationary; 

‘—’ Case 12b oscillating). 
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Figure 7-33 Coherence of moment at Ur=20 in Case 12 flows for various spanwise 
separations (‘+’ Case 12a stationary; ‘- -’ Case 12a oscillating; ‘o’ Case 12b stationary; 

‘—’ Case 12b oscillating). 
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Figure 7-34 Coherence of lift at fm for Ur=3.1 in smooth and turbulent flows. 
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Figure 7-35 Coherence of lift at fm for Ur=8 in smooth and turbulent flows. 
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Figure 7-36 Coherence of lift at fm for Ur=20 in smooth and turbulent flows. 
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Figure 7-37 Coherence of moment at fm for Ur=3.1 in smooth and turbulent flows. 
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Figure 7-38 Coherence of moment at fm for Ur=8 in smooth and turbulent flows. 
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Figure 7-39 Coherence of moment at fm for Ur=20 in smooth and turbulent flows. 

 

 

7.5 Streamwise Position Dependence of Spanwise Pressure Correlation—Oscillating 

Model 

 As in section 7.3 for stationary model tests, this section presents spanwise 

correlation calculations for discrete streamwise positions for oscillating model tests. The 

structure of the spanwise pressure correlations was thus examined rather than the 

correlation only of the integrated forces. Complete results will be presented for three of 

the reduced velocities tested—3.1, 8, and 20—as done in section 7.4 for the lift and 

moment correlation. 

 Spanwise pressure correlations are presented in groups of four figures. Each 

figure contains plots for four different streamwise locations. The group from Figure 7-40 
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through Figure 7-43 contains the normalized cross correlation coefficient values (at zero 

time lag) at each streamwise location in all the flows considered at 1.3=rU . Values for 

smooth flow were always the highest among the five flow cases. For streamwise 

positions of Bx 36.0< , correlation values are grouped generally according to turbulence 

intensity. Both Case 6 flows generated higher correlation values than both Case 12 flows 

without a significant effect of turbulence scale. Further downstream of Bx 36.0= , 

however, a different trend is exhibited. Here the cases with the larger turbulence scales 

(the “b” cases) produced smaller correlation values. Both “b” cases had smaller 

correlation values than either “a” case. 

 These observations are illustrated clearly in the plot of the spanwise correlation 

scales as a function of streamwise position in Figure 7-44. Between the two regions of 

different behavior with respect to turbulence, near Bx 36.0= , is a minimum in the 

correlation values. Upstream and downstream of this region correlation values are much 

higher. 

 The four figures from Figure 7-45 to Figure 7-48 show the spanwise pressure 

correlations for each streamwise position of the 8=rU  case. These correlation values 

also show a grouping according to turbulence intensity. The %12=uI  cases show lower 

values than the %6=uI  cases. Integral scale effects seemed to be greatest between 

BxB 2775.01375.0 <<  for 6% turbulence intensity and BxB 2775.00875.0 <<  for 

12% turbulence intensity. An overall picture of these effects can be seen in Figure 7-49 

where the spanwise correlation scales are plotted versus streamwise position. This plot 
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for 8=rU  does not show the same increase in correlation on the downstream half of the 

body that the 1.3=rU  case did. 

 Figure 7-50 through Figure 7-53 shows the spanwise pressure correlation values 

for 20=rU . Comparing this case to lower reduced velocities, the correlation values are 

lower for a given separation. This trend agrees with that of the integrated lift and moment 

(in Figure 7-17 and Figure 7-21, respectively) where the spanwise correlation values 

decreased with increasing reduced velocity. The plots of spanwise pressure correlation 

scales in Figure 7-54 show, as with other reduced velocities, that greater turbulence 

intensity resulted in lower spanwise correlation. The decrease in correlation resulting 

from turbulence scale was less significant for this case than for lower reduced velocities. 

 An overall observation can be made for the plots of spanwise scale for each 

reduced velocity. Spanwise correlation scales presented here show an increase to a 

maximum when proceeding downstream from the leading edge. As discussed for the 

stationary model spanwise scales, this behavior is similar to that observed by Kiya & 

Sasaki (1983a) for spanwise correlation of velocity signals measured above a blunt, flat 

plate. They suggested that this might be due to a coalescence or amalgamation of vortices 

in the shear layer that no longer occurs after reattachment with the surface. The location 

of the maximum scales is located progressively further downstream for increasing 

reduced velocities. Downstream of this maximum the scales drop significantly. 

Interaction with the surface may add significant three-dimensional characteristics to these 

structures. 
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Figure 7-40 Pressure correlation functions for pressure taps 1-4 at Ur=3.1 (‘o’ smooth 
flow; ‘+’ Case 6a; ‘- -’ Case 6b; ‘x’ Case 12a; ‘—’ Case 12b’) 
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Figure 7-41 Pressure correlation functions for pressure taps 5-8 at Ur=3.1 (‘o’ smooth 
flow; ‘+’ Case 6a; ‘- -’ Case 6b; ‘x’ Case 12a; ‘—’ Case 12b’) 
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Figure 7-42 Pressure correlation functions for pressure taps 9-12 at Ur=3.1 (‘o’ smooth 
flow; ‘+’ Case 6a; ‘- -’ Case 6b; ‘x’ Case 12a; ‘—’ Case 12b’) 
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Figure 7-43 Pressure correlation functions for pressure taps 13-16 at Ur=3.1 (‘o’ smooth 
flow; ‘+’ Case 6a; ‘- -’ Case 6b; ‘x’ Case 12a; ‘—’ Case 12b’) 
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Figure 7-44 Spanwise pressure correlation scale, pyL , as a function of streamwise 
position for each turbulent flow case at 1.3=rU . 
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Figure 7-45 Pressure correlation functions for pressure taps 1-4 at Ur=8 (‘o’ smooth flow; 
‘+’ Case 6a; ‘- -’ Case 6b; ‘x’ Case 12a; ‘—’ Case 12b’) 



 214

0 1 2 3
0

0.2

0.4

0.6

0.8

1
Tap 5 − x/B=0.1125 − Ur=8

dy/B
N

or
m

 C
ro

ss
 C

or
r 

C
oe

ff
0 1 2 3

0

0.2

0.4

0.6

0.8

1
Tap 6 − x/B=0.1375 − Ur=8

dy/B

N
or

m
 C

ro
ss

 C
or

r 
C

oe
ff

0 1 2 3
0

0.2

0.4

0.6

0.8

1
Tap 7 − x/B=0.1925 − Ur=8

dy/B

N
or

m
 C

ro
ss

 C
or

r 
C

oe
ff

0 1 2 3
0

0.2

0.4

0.6

0.8

1
Tap 8 − x/B=0.2775 − Ur=8

dy/B

N
or

m
 C

ro
ss

 C
or

r 
C

oe
ff

 

Figure 7-46 Pressure correlation functions for pressure taps 5-8 at Ur=8 (‘o’ smooth flow; 
‘+’ Case 6a; ‘- -’ Case 6b; ‘x’ Case 12a; ‘—’ Case 12b’) 
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Figure 7-47 Pressure correlation functions for pressure taps 9-12 at Ur=8 (‘o’ smooth 
flow; ‘+’ Case 6a; ‘- -’ Case 6b; ‘x’ Case 12a; ‘—’ Case 12b’) 
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Figure 7-48 Pressure correlation functions for pressure taps 13-16 at Ur=8 (‘o’ smooth 
flow; ‘+’ Case 6a; ‘- -’ Case 6b; ‘x’ Case 12a; ‘—’ Case 12b’) 
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Figure 7-49 Spanwise pressure correlation scale, pyL , as a function of streamwise 
position for each turbulent flow case at 8=rU . 
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Figure 7-50 Pressure correlation functions for pressure taps 1-4 at Ur=20 (‘o’ smooth 
flow; ‘+’ Case 6a; ‘- -’ Case 6b; ‘x’ Case 12a; ‘—’ Case 12b’) 
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Figure 7-51 Pressure correlation functions for pressure taps 5-8 at Ur=20 (‘o’ smooth 
flow; ‘+’ Case 6a; ‘- -’ Case 6b; ‘x’ Case 12a; ‘—’ Case 12b’) 
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Figure 7-52 Pressure correlation functions for pressure taps 9-12 at Ur=20 (‘o’ smooth 
flow; ‘+’ Case 6a; ‘- -’ Case 6b; ‘x’ Case 12a; ‘—’ Case 12b’) 
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Figure 7-53 Pressure correlation functions for pressure taps 13-16 at Ur=20 (‘o’ smooth 
flow; ‘+’ Case 6a; ‘- -’ Case 6b; ‘x’ Case 12a; ‘—’ Case 12b’) 
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Figure 7-54 Spanwise pressure correlation scale, pyL , as a function of streamwise 
position for each turbulent flow case at 20=rU . 
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CHAPTER 8.   DISCUSSION OF PRESSURE RESULTS 

 Results presented from the velocity and pressure measurements presented in 

Chapters 4 through 7 are discussed here. Sectional force results are examined first 

including discussions of both the pressure and phase behavior and the behavior of the 

integrated forces through the flutter derivatives. Spanwise behavior is then discussed 

followed by several comments regarding the application of these results to the analysis of 

long span bridges. 

 

8.1 Discussion of Sectional Forces 

 Sectional forces discussed here include the measurements involving a single 

spanwise position. Turbulence modifications of pressure amplitudes and phases are 

examined first with some overall comments about potential physical mechanisms. This 

leads naturally into the discussion of how the pressure modifications relate to the 

behavior of the integrated lift and moment with respect to turbulence. The last sectional 

force topic discussed is the differences measured between buffeting forces on stationary 

and oscillating models. 
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8.1.1 Pressure Amplitude and Phase Behavior 

 The diagrams of the phase of the pressure signals at the body oscillation 

frequency (see chapter 6) show the presence of similar regions in each plot. Although 

these regions are not in the same place for each flow or for each reduced velocity, they 

are always present—for example, see the pressure phase distribution for 20=rU  in 

Figure 8-1. Figure 8-2 illustrates the arrangement of these regions schematically. Near 

the leading edge, phase is nearly constant. The downstream extent of this region is 

heavily dependent on the turbulence intensity. Immediately downstream of this constant 

phase region the phase increases rapidly. Phase values increased in this region for all 

cases tested. The boundary between this rapidly changing phase region and that of more 

slowly-varying phase is less distinct than that between the first two. In this region, the 

rate of phase increase levels off, and for many cases, the phase values begin to decrease. 

In some instances, these phase values become negative. 
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Figure 8-1 Pressure phase distributions for smooth flow and small-scale turbulent flows 
at a reduced velocity of 20. 
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Figure 8-2 Schematic diagram labeling different regimes in the pressure phase diagrams. 
These regimes include regions of near-constant phase, rapidly-changing phase, and 

slowly-changing phase. 
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 A number of researchers account for the phase change in the streamwise direction 

by attributing them to the convection of vortex-like structures shed from the leading edge 

shear layer (Matsumoto (1996), Kubo et al. (1992)). Such convection would be 

associated with a phase increase in the streamwise direction. While such an increase is 

evident in some regions of some phase distributions, it is not the only behavior exhibited. 

 To examine this issue, the two time scales used in the reduced velocity were 

considered. Reduced velocity defined as fBUUr =  can be considered the ratio of two 

time scales. The first is the convection time, UBc =τ . This is the time required for 

convection from the leading edge to the trailing edge. The second scale is the period of 

the body oscillation, αατ f1= . The reduced velocity in terms of these time scales is then 

crU ττα= , and since rU  is a primary parameter for unsteady aerodynamics both of 

these time scales play a role in the physical mechanisms. 

 These time scales can be roughly estimated from experimental results and 

physical considerations. Several researchers have made velocity measurements in and 

around the separated and reattaching shear layers about stationary rectangular cylinders. 

Vortex convection speeds found by these researchers range from U5.0  to U6.0  (Kiya & 

Sasaki, 1983; Cherry et al., 1984) where U  is the mean flow velocity. The convection 

time scales could be estimated from these convection velocities as cc UB=τ . An 

estimate of the rate at which the body oscillation alters the pressures from the leading 

edge to the trailing edge can be obtained using the illustration of Figure 8-3. In half the 

period of oscillation the body moves from its maximum angle of attack to its minimum 

angle of attack. In approximately this much time, the reattachment line moves from one 
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extreme of its streamwise position to the other. The body motion time scale could then be 

estimated as αατ f21= . 

 Phase values can be estimated from these time scales and compared with 

measured pressure phases. Such estimates have been plotted in Figure 8-4 for 20=rU . 

This plot shows that the phase estimated from ατ  matches the changes in the “region of 

rapidly-increasing phase” much more closely than that estimated from cτ . Downstream, 

in the “region of slowly-changing phase” the phase estimated from the convection time 

scale, cτ , appears more appropriate. Figure 8-5 plots 1.3=rU  phase data with the same 

phase estimates. In this case, the phase estimates are much closer to each other, but the 

match with the rapidly-increasing phase region is poorer. 

 To fully understand the physics of the phase changes, velocity measurements 

must be made in the separated flow regions above oscillating models. However, even 

from these measurements of the unsteady pressures, it is evident that a time scale larger 

than that of the convection scale plays a role in the phase changes—particularly in the 

region where phase increases rapidly. As further evidence of the importance of this 

particular region, Figure 8-6 shows both the pressure amplitude and phase plotted 

together. This plot is typical of each case studied and shows that the maximum self-

excited pressure amplitudes occur in or near this rapidly-increasing phase region. 

Whether the physical mechanism for these large amplitudes and fast phase changes are 

due to an expansion and contraction of the separation bubble or to slowly-convecting 

vortex structures, it is clear that this region is important to the unsteady pressure 
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generation. Subsequent sections of this chapter will discuss the impact of this region in 

more depth. 
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Figure 8-3 Schematic diagram illustrating the concept of the body motion time scale. 
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Figure 8-4 Pressure phase distributions for smooth and turbulent flows including phase 
estimated from both convection and oscillation frequency time scales ( 20=rU ). 
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Figure 8-5 Pressure phase distributions for smooth turbulent flows including phase 
estimated from both convection and oscillation frequency time scales ( 1.3=rU ). 
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Figure 8-6 Pressure amplitude and phase distributions for the Case 12 flows at 20=rU . 

 

8.1.2 Flutter Derivatives 

 This section discusses the changes in the flutter derivatives and how these 

changes can be tracked as changes in the pressure distributions. More importantly, the 

effects of turbulence on the flutter derivatives will be illustrated through the turbulence-

induced changes in the pressure distributions. 

 This discussion will start with *
2A  because its impact on aerodynamic stability is 

the most straightforward. *
2A  results for each incident flow are shown in Figure 8-7 along 

with the results of Matsumoto (1996) for bodies with different DB  ratios. One way to 

visualize how the pressure amplitude and phase distributions combine to set the flutter 

derivative values is to look at the integrands of the expressions used to calculate them 

(these expressions were derived in Chapter 2). The expression for *
2A  is: 

( ) ( )∫
−

=
1

1

*****
2

*
2 sin2

4
1 dxxxCx
k

A p ψ  

where bxx =*  is the streamwise position (where 0* =x  corresponds here to midchord), 

2Bb = , and Ubk αω=  is the reduced frequency. Equation (8-1) can be thought of as a 

measure of the centroid, with respect to midchord, of the distribution of ( ) ( )( )xxCp ψsin* . 

Plotting this distribution in Figure 8-8 for various reduced velocities shows how the 

centroid of this distribution moves downstream of midchord as rU  increases. If the 

centroid is downstream of midchord, then *
2A  will have positive values. As discussed in 

the Introduction of Chapter 1, positive values for *
2A  correspond to unstable aerodynamic 

(8-1) 



 227

influences. This can be thought of as a negative damping influence where the structural 

damping is effectively reduced or even eliminated. 
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Figure 8-7 *
2A  versus reduced velocity for smooth and turbulent flow cases from this 

study compared with smooth flow values for different DB  ratios (“M96” refers to 
Matsumoto, 1996). 
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Figure 8-8 ( ) ( )( )xxCp ψsin*  plotted versus streamwise position for various reduced 
velocities in smooth flow. 

 The effect of turbulence on *
2A  can be illustrated similarly. Figure 8-9 shows 

( ) ( )( )xxCp ψsin*  plotted versus streamwise position for each flow case and a reduced 

velocity of 8. The centroid of ( ) ( )( )xxCp ψsin*  shifts upstream with increasing turbulence 

intensity. This upstream shift of the centroid corresponds to shifts of both the amplitude 

distribution and the region of rapidly-increasing phase described earlier. The movement 

of the centroid toward the leading edge brought about significant decreases in *
2A  values. 

While smooth flow generated large positive values of *
2A , flows with 6% turbulence 

intensity resulted in values 10≤ . Flows of 12% turbulence intensity resulted in negative 

*
2A  values for most of the rU  range considered. 

 This shifting of the pressure distributions with turbulence can be used to explain 

the behavior of the *
2A  curves with respect to turbulence intensity and scale. The plots of 

Figure 8-7 (originally presented in Chapter 6) show that *
2A  curves are grouped in pairs. 

Flows of similar turbulence intensity had similar values while turbulence scale played 

only a minor role. This fits the trend previously mentioned that turbulence intensity plays 

the greater role in shifting the pressure distributions toward the leading edge. Figure 8-9 

shows that the upstream shift of ( ) ( )( )xxCp ψsin*  is the major contributor to changes in 

*
2A . This helps to illuminate the reason for the relative importance of intensity and scale 

for *
2A . 
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Figure 8-9 ( ) ( )( )xxCp ψsin*  plotted versus streamwise position for all flow cases at 
8=rU . 

 

 The stabilizing effect of free stream turbulence is not without similarity to the 

stabilizing trends seen as the aspect ratio of the cross section ( DB ) increases. 

Matsumoto (1996) has studied the unsteady pressure distributions about a large number 

of rectangular cylinders in smooth flow. Comparing the pressure phase distributions of 

the current model (with 67.6=DB ) in turbulent flow with that of Matsumoto’s results 

for a longer model (with 5.12=DB ) in smooth flow, one observes similarities. This 

comparison is shown in Figure 8-10. For %6=uI , the model used in this study behaves 

similarly to that of a longer model in smooth flow. One can view this change as an 

“effective lengthening” of the body with free stream turbulence. This should not be taken 

as a fundamental understanding of the phenomenon but rather as another way to 

understand what is happening. This also emphasizes the fact that the *
2A  flutter derivative 
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is highly dependent on the aspect ratio of the cross section—illustrated in the data of 

Matsumoto (1996) shown in Figure 8-7. 

 

-120

-90

-60

-30

0

30

60

90

120

0 0.2 0.4 0.6 0.8 1
x /B

ψ
 (d

eg
)

Case 6a (Ur=3.1)
Matsumoto (1996) (B/D=12.5, Ur=7.48)
Case 6a (Ur=8)
Matsumoto (1996) (B/D=12.5, Ur=11.22)

 

Figure 8-10 Comparison of pressure phase values in turbulent flow for the current model 
with 67.6=DB  with values in smooth flow for a model with a longer afterbody 

( 5.12=DB ). 

 

 An examination of the effects of turbulence on *
3A  can also be done similarly to 

that done for *
2A . The main component of the integrand for *

3A  is ( ) ( )( )xxCp ψcos* . This 

quantity is plotted in Figure 8-11 versus streamwise position for 20=rU . As in the case 

of *
2A , the integral is equivalent to the centroid, with respect to midchord, of the 

distribution of a function of the amplitude and phase—in this case, the distribution is 

( ) ( )( )xxCp ψcos* . Because the cosine of the phase is involved rather than the sine, the 

character of the plot in Figure 8-11 is more like that of the amplitudes themselves. As the 
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peak amplitudes move closer to the leading edge—or, equivalently, as the centroid of the 

distribution moves further from midchord—the value of *
3A  increases. 

 Two comments can be made here regarding of turbulence effects. Increases in 

turbulence intensity moves the region of maximum pressure amplitudes nearer the 

leading edge. The increase in *
3A  resulting from this shift is evident in the results of 

Chapter 6. In addition, increases in turbulence scale decrease the pressure amplitudes 

without a significant streamwise shift in the distribution location. This amplitude 

decrease also decreases the *
3A  magnitude. In fact, the effect of scale for the cases 

considered was greater than that of turbulence intensity. A doubling of the turbulence 

intensity increased *
3A  by approximately 6% while nearly doubling the turbulence scale 

decreased *
3A  by nearly 20%. 

 Similar to the behavior of *
2A , the turbulence-induced modifications to *

3A  

produce values similar to smooth flow results for bodies with greater aspect ratio, DB , 

such as the results of Matsumoto (1996). 

 Discussion of the aerodynamic coupling terms, *
2H  and *

3H  (presented in Chapter 

6), can proceed similarly to that for *
2A  and *

3A  because of the similarity of their 

derivations. The integrands of the *
2H  and *

3H  expressions are the same as those for *
2A  

and *
3A , respectively, except for the factor of *x , the moment arm (see Chapter 2 

derivations). As a result, the anatomy of the magnitude of *
2H  can be examined using the 

( ) ( )( )xxCp ψsin*  plots of Figure 8-8 and Figure 8-9 as done for *
2A . A corresponding study 

of *
3H  can be made using ( ) ( )( )xxCp ψcos*  as done for *

3A . In these cases, however, the 
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areas under ( ) ( )( )xxCp ψsin*  and ( ) ( )( )xxCp ψcos*  are the quantities of interest rather than 

their centroids with respect to midchord. In other words, the total lift is the concern rather 

than where it was generated. 

 In every case, incident turbulence reduced the self-excited pressure amplitudes. 

Increasing turbulence intensity reduced pressure amplitudes as did increasing turbulence 

scale. As a result, total self-excited lift decreased—which was reflected in the decreases 

in *
2H  and *

3H  with turbulence. Another reason for the magnitudes of *
2H  to drop so 

close to zero was that turbulence reduced the phase magnitudes as well. With *
2H  being 

proportional to ( )( )xψsin , smaller phase values resulted in smaller magnitudes. In fact, 

the general form of ( ) ( )( )xxCp ψsin*  in Figure 8-9 staying closer to zero as turbulence 

intensity increased was qualitatively similar to the behavior of the phase value, ( )xψ , 

itself (Chapter 6). 

 As was the case with *
3A , the *

3H  magnitudes show more dependence on 

turbulence scale than the *
2H  magnitudes. The nature of the *

3H  dependence on 

( )( )xψcos  means that *
3H  magnitudes will be more dependent on pressure amplitudes 

than on pressure phases. As a result, the trends of turbulence dependence of the 

magnitudes for *
3H  follow closely the trends of the pressure amplitudes. Increasing 

turbulence intensity decreases these amplitudes. Increasing turbulence scale for a given 

turbulence intensity showed a weaker effect but decreased the amplitudes slightly more. 
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Figure 8-11 ( ) ( )( )xxCp ψcos*  plotted versus streamwise position for all flow cases at 
20=rU . 

 

 

8.1.3 Buffeting Forces on Oscillating Models 

 Current long-span bridge analysis technique assume that the aerodynamic forces 

on a bridge deck can be separated into components representing self-excited and 

buffeting loads. To the author’s knowledge, an experimental comparison of buffeting 

forces on stationary and oscillating bodies has not been done previously. The results of 

Chapter 6 show that buffeting loads on the oscillating model studied here are quite 

similar to the loads for the model when stationary. However, there were differences in 

these loads—oscillation increased the rms value of the broad band buffeting loads by 5% 

to 10%. These differences grew smaller for larger turbulence intensity and for larger 

turbulence scale. Although some of the oscillation-induced increases were evident 
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throughout the frequency range, the most significant increases were for frequencies 

greater than 1.0=UfD . As expected, similar differences were evident in the 

aerodynamic admittance functions. 

 Studying the streamwise distribution of these differences showed that the majority 

of the added effect of the body oscillation occurred upstream of reattachment. This 

implies that bridge decks that experience less separation will show less difference 

between buffeting loads measured for stationary and oscillating conditions. Over the 

range of turbulence parameters measured here, trends with increasing turbulence 

intensity and increasing scale suggest that as these values increase to atmospheric levels 

this difference may decrease further. The differences quantified here warrant further 

study. 

 

8.2 Discussion of Spanwise Behavior 

 Two issues concerning spanwise coherence are discussed here. First, the 

relationship between the results of stationary and oscillating model tests are compared, 

and a unique analysis technique is presented. Second, a few issues related the reduced 

velocity dependence of spanwise correlation are considered. 

 

8.2.1 Comparison of Stationary and Oscillating Model Results 

 Spanwise coherence and correlation calculations were made from pressure 

measurements on both stationary and oscillating models. The results presented in Chapter 

7, particularly the coherence results, suggest that perhaps the increase in spanwise 
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correlation going from stationary models to oscillating models may be due almost 

entirely to a single frequency. Broad band coherence levels for forces on stationary and 

oscillating were very similar. Only near the model oscillation frequency were the 

coherence values significantly different. 

 To examine this distinction, this discussion will calculate the correlation and 

coherence functions for distinct components of the signals measured on the oscillating 

model. Lift forces calculated at a given spanwise position will be separated as follows: 

( ) ( ) ( )tLtLtL
ii bsei +=  

where iL  is the total lift at spanwise position i  ( 2,1=i ), 
ise

L  is the self excited lift force 

at position i , and 
ib

L  is the buffeting force at position i . seL  is the lift force component 

accounted for by the flutter derivatives and bL  is everything else—all of the broad band 

energy. As an example, Figure 8-12 shows each component of a lift signal a model 

oscillating at 20=rU  in Case 6a flow. A formulation analogous to that of equation (8-2) 

was used to define the corresponding components of the unsteady moment, iM , 
ise

M , 

and 
ib

M . 

 

(8-2) 
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Figure 8-12 Plots of the total, self-excited, and buffeting components of lift for 20=rU  
in Case 6a flow. 

 

 Appendix C describes the signal processing techniques used to split these signals 

into self-excited and broad band components. Correlation and coherence calculations 

were performed on each of these components separately. As an example, Figure 8-13 

shows the cross correlation functions for the lift forces separated by By 2.1=∆  on the 

model oscillating at 20=rU  in Case 12b flow. The cross correlation function of the total 

lift force signals is shown on the left, and the correlation between each component, ( )tLse  

and ( )tLb  is shown on the right. The self-excited components are for more highly 

correlated than the broad band buffeting components. The resulting correlation of the 

total force then is a correlation value between that of the self-excited forces and that of 

the buffeting forces. 
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Figure 8-13 Cross correlation functions for the total, self-excited, and buffeting 
components of lift for 20=rU  in Case 12b flow at a separation of By 2.1=∆ . 

 

 The spanwise cross correlations presented in Chapter 7 were recalculated here to 

examine the behavior of the two components separately. Figure 8-14 through Figure 8-19 

show the spanwise cross correlation coefficients (at 0=τ ) for the buffeting components 

of the lift and moment signals compared with the correlation values computed for the 

stationary model. Figure 8-14 through Figure 8-16 present the correlations of ( )tLb  for 

reduced velocities of 3.1, 8, and 20. Figure 8-17through Figure 8-19 present ( )tM b  

correlation values for the same reduced velocities. The correlation values for ( )tLb  and 

( )tM b  on the oscillating models were exceptionally close to those found for the 

stationary models. In some cases the oscillating model buffeting correlation was 

somewhat higher than that for the stationary model (for one example, see Figure 8-17). 
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Sources of such mismatches may include the effects of harmonics of the model 

oscillation frequency that were not removed in the splitting analysis, reduced velocity 

effects (discussed later in this chapter), or spurious correlation induced by non-

aerodynamic effects (as discussed in Appendix A). The overall matches, however, are 

quite good suggesting that the correlation structure for the broad band buffeting 

components is essentially the same as that for the stationary cylinder. 

 Trends of the total signal correlation values on oscillating models (presented in 

Chapter 7) showed that increasing turbulence intensity and increasing turbulence scale 

decreased the spanwise correlation. The results of this splitting analysis have shown that, 

just like the behavior of the stationary cylinder buffeting forces, the correlation values 

between buffeting components acting on the oscillating cylinder increase with increasing 

turbulence scale. The next logical step was to examine the correlation between the self-

excited components of the aerodynamic forces. 
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Figure 8-14 Cross correlation coefficients ( 0=τ ) of stationary model lift (Stat) and of 
the buffeting components (B) of lift with the model oscillating at 1.3=rU . 
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Figure 8-15 Cross correlation coefficients ( 0=τ ) of stationary model lift (Stat) and of 
the buffeting components (B) of lift with the model oscillating at 8=rU . 
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Figure 8-16 Cross correlation coefficients ( 0=τ ) of stationary model lift (Stat) and of 
the buffeting components (B) of lift with the model oscillating at 20=rU . 
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Figure 8-17 Cross correlation coefficients ( 0=τ ) of stationary model moment (Stat) and 
of the buffeting components (B) of moment with the model oscillating at 1.3=rU . 
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Figure 8-18 Cross correlation coefficients ( 0=τ ) of stationary model moment (Stat) and 
of the buffeting components (B) of moment with the model oscillating at 8=rU . 
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Figure 8-19 Cross correlation coefficients ( 0=τ ) of stationary model moment (Stat) and 
of the buffeting components (B) of moment with the model oscillating at 20=rU . 
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 Calculating cross correlation functions between the self-excited components of 

the lift and moment forces resulted in values above 0.96 for every incident flow, every 

reduced velocity, and nearly every separation. Only in two cases of By 4.2=∆  did the 

correlation value get below 0.96 to a value of 0.90. Figure 8-20 shows an example of the 

self-excited correlation values for 20=rU . The general shape of this plot is typical of 

each case. Although the cases with larger turbulence scale showed a slightly lower 

correlation than those of smaller scale, the estimated 95% confidence intervals of ±0.03 

put all the values within the statistical spread of the others.  

 From these results it is clear that the self-excited forces are highly correlated in 

the spanwise direction. Experimental models with far greater aspect ratio (defined as 

span length, L , to deck width, B ) will be needed to identify how far such a high 

correlation can be sustained. The model studied here had an aspect ratio of only 

2.4=BL . Long span bridges, obviously, have much greater aspect ratios—for example, 

the ratio of the center span to the deck width of the Akashi-Kaikyo Bridge is 56. This 

correlation deserves further attention. 

 

 



 243

0.90

0.92

0.94

0.96

0.98

1.00

0 0.5 1 1.5 2 2.5
∆y /B

C
or

re
la

tio
n 

C
oe

ff
 o

f L
ift

 (U
r=

20
)

Smooth (se)
Case 6a (se)
Case 6b (se)
Case 12a (se)
Case 12b (se)

 

Figure 8-20 Cross correlation coefficients ( 0=τ ) of the self-excited components (se) of 
lift with the model oscillating at 20=rU . 

 

 

8.2.2 Comparison of Velocity and Pressure Correlation 

 An important factor in the prediction of the aerodynamic response of long-span 

bridges is the relation between the correlation of incident turbulent flow and the 

correlation of the resulting aerodynamic forces. Figure 8-21 presents a comparison of the 

spanwise correlation of the w  component of velocity and the buffeting component of lift 

for 8=rU . The vertical component of velocity was included in the comparison because 

its contribution to buffeting is far more significant that that of the longitudinal 

component. Two facts are obvious from the figure. Larger incident turbulence scales 

produce larger spanwise correlation of the lift, and the lift force has a significantly higher 

spanwise correlation than the turbulent flow. For Case 6a flow at a separation of 



 244

By 4.0=∆ , the correlation value of the lift was 2.5 times that of the incident flow. The 

larger turbulence scale of the Case 6b flow resulted in greater lift correlation and a 

similar lift correlation to flow correlation ratio of 2.3. Figure 8-22 shows a comparison 

between flow and lift correlation values for Case 12 flows. For this greater turbulence 

intensity, the correlation of the buffeting component of lift was similar to that of Case 6. 

Again, the lift was correlated far better than the incident flow. 

 As discussed in section 8.2.1, the buffeting correlation values plotted in these two 

figures are very similar to those of the stationary model tests. Comparing the velocity 

correlation with the buffeting correlation for stationary tests or for other reduced 

velocities would show similar results. The important point here is that buffeting response 

predictions incorporating strip assumptions will be inadequate. The strip assumption 

assumes that the correlation of forces on the bridge deck are the same as the correlation 

of the incoming flow. As discussed in previous chapters, a number of researchers have 

recognized and reported the fact that aerodynamic forces are more highly correlated than 

incident turbulence on stationary bridge models (Larose et al., 1993; Sankaran & 

Jancauskas, 1993; Kimura et al., 1996; Larose & Mann, 1998). Results of this study 

support this observation even for the buffeting components of forces on oscillating 

bodies.  

 The spanwise correlation scale of the self-excited forces, however, was far larger 

than any velocity correlation scale. Only the body motion itself was correlated on the 

same order as the self-excited forces. 
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Figure 8-21 Spanwise correlation, in Case 6 flows, for both the w  component of velocity 
and the buffeting component of lift for 8=rU . 
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Figure 8-22 Spanwise correlation, in Case 12 flows, for both the w  component of 
velocity and the buffeting component of lift for 8=rU . 
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8.2.3 Reduced Velocity Dependence 

 In Chapter 7, the spanwise correlation values for the lift and moment were 

presented. When examining the spanwise correlation scales as a function of reduced 

velocity, it was observed that the maximum correlation scales occurred between 1.3=rU  

and 8=rU . Although the split analysis of the self-excited and buffeting forces presented 

in section 8.2.1 may suggest that the broad band buffeting correlation is the same as 

stationary model correlation and the self-excited forces are nearly perfectly correlated, 

this cannot explain the reduced velocity dependence. Potential physical explanations for 

this are discussed in this section. 

 A number of researchers investigating vortex-induced oscillations have found the 

spanwise correlation of both surface pressures and wake velocities to be dependent on the 

reduced velocity and the oscillation amplitude (for square section cylinders: Bearman & 

Obasaju, 1982; Wilkinson, 1981; for circular cylinders: Toebes, 1969). Spanwise 

correlation attains a maximum for reduced velocities for which the body experiences 

lock-in. “Lock-in” refers to that phenomenon where the vortex shedding frequency is 

“captured” by a mode of a structure which has a frequency close to that of the structure’s 

natural vortex shedding frequency. This natural shedding frequency is usually given in 

terms of the Strouhal number, UfDSt =  (where f  is the natural vortex shedding 

frequency, D  is a characteristic dimension of the body, and U  is the free stream 

velocity). This capturing means that for a range of rU  near St1  vortices are shed at the 

body’s oscillation frequency rather than at the frequency determined by the Strouhal 

number. Spanwise correlation of both pressure and wake velocity fluctuations reach 
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maximum values for rU  within the lock-in region. The magnitudes of these maximum 

values increase with greater oscillation amplitudes.  

 For the pitching rectangular cylinder in the experiment considered here, both rU  

and oscillation amplitude must be considered with respect to the maxima in spanwise 

correlation. Normalized cross correlation coefficients for lift (for 0=τ ) at a spanwise 

separation of B2.1  are shown in Figure 8-23. The values for moment correlation at the 

same separation are shown in Figure 8-24. The reduced velocity dependence of the 

pitching oscillation amplitude (as shown in Chapter 3) is somewhat similar to that of 

spanwise correlation. Because of the dependence of spanwise correlation on oscillation 

amplitude, this may explain some of the change with reduced velocity. However, the 

decrease in the spanwise correlation of lift and moment for 1.3=rU  probably cannot be 

explained purely in terms of oscillation amplitude. Some discussion of the dynamics of 

the shear layer may be pertinent as well. 

 Discussing the spanwise correlation improvement on square section cylinders due 

to oscillation, Wilkinson (1981) pointed out that the nonlinear nature of the phenomenon 

is illustrated by the decrease for increasing frequency. Without some interaction with the 

shear layer, the added mass contribution to the dynamic pressure—which increases 

monotonically with frequency—would continue to increase the spanwise correlation as 

frequency increases. This does not happen. For reduced velocities less then that at the 

spanwise correlation peak (i.e. for frequencies greater than that at the spanwise 

correlation peak), the spanwise correlation decreases. 

 Some explanation of this decrease may be found by considering the shear layer 

behavior and the work of Sigurdson (1995) with acoustically excited shear layers. 
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Observations of the power spectral density plots of the pressure signals along the 

streamwise direction for both the stationary model tests and the oscillating model tests (in 

Chapter 6) reveal a low-frequency peak near 3.2-3.4 Hz. When scaled as 

02.0≈UDFshed , this frequency is comparable to that of the large-scale unsteadiness 

observed by Cherry et al. (1984) and Kiya & Sasaki (1983a). The reduced velocity of this 

unsteadiness is 7.6≈= BFUU shedr  which is in the range for which the maximum 

spanwise correlation values occur for the current tests. Exciting the shear layer with 

forced oscillations near the reduced velocity of this large-scale shedding may cause 

behavior similar to that observed in vortex-induced vibration problems—that is, natural 

shedding mode of the structure is enhanced by the oscillation increasing the organization 

of the shedding and increasing the spanwise correlation. 

 Working with a flat-faced, circular cylinder aligned coaxially with the free 

stream, Sigurdson (1995) considered two instabilities relevant to the separated shear 

layer. The first was the Kelvin-Helmholtz instability, to which all free shear layers are 

subject, and the second was similar to Karman vortex shedding—having a lower 

frequency than the first. Exciting the shear layer near the frequency of the second 

instability caused increased the shear layer entrainment and caused reattachment to occur 

closer to the leading edge—phenomena also associated with the effects of free stream 

turbulence. 

To find a scaling for the frequency of this instability, the hypothesis used was that 

the instability is “like Karman vortex shedding from a cylinder but the vortex interaction 

is with image vortices due to the wall rather than actual ones” (Sigurdson, 1995). 

Building on this concept, a scaling for the frequency was suggested similar to that 
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proposed by Roshko (1955) for vortex shedding from cylinders of different shapes. 

Sigurdson’s scaling is: sshed UhF  where shedF  is frequency (in Hz) of the shedding of 

vortices from the leading edge shear layer, h  is height of the separation bubble, and sU  

is the separation velocity. Similar to Roshko’s scaling, h  corresponds to half the distance 

between the vorticity of a shear layer and its counterpart of opposite sign. This scaling 

has a value near 0.08 for a surprisingly large number of different configurations including 

blunt flat plates, backward-facing steps, and the cylinders like those of Sigurdson’s work. 

 It should be noted here that the instability studied by Sigurdson is of higher 

frequency than that of 7.6≈rU  discussed for this project. To determine if perturbations 

at appropriate frequencies will enhance the entrainment and organization of this lower 

frequency shedding mode as for that of Sigurdson, of course, data from a greater number 

of reduced velocities near the range of 84 << rU  is necessary. Unfortunately, the design 

problems with the dynamics of the model’s flexible couplings prohibited further study in 

this rU  range for this project. 
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Figure 8-23 Normalized cross correlation coefficients for lift at a spanwise separation of 
By 8.1=∆ . 
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Figure 8-24 Normalized cross correlation coefficients for moment at a spanwise 
separation of By 8.1=∆ . 
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CHAPTER 9.   CONCLUSIONS AND RECOMMENDATIONS 

 A brief summary is provided here of the accomplishments and results of this 

research. After putting these results in the context of the current state of the art of long-

span bridge aerodynamics, a few recommendations for further work on this topic are 

suggested. 

 

9.1 Conclusions 

 A new test rig was designed and built for the experimental study of bridge 

aerodynamics using section models. The current research effort studied self-excited and 

buffeting forces on a model of rectangular cross section forced to oscillate in torsion. The 

apparatus was designed for future experiments as well. Its capabilities include combined 

pitching and plunging motion, amplitude variation, and mean angle of attack variation. 

 Grid generated turbulence was used to study the effects of both turbulence 

intensity and turbulence scale on aerodynamic forces. The results of this research have 

important ramifications for the current state of the art of aerodynamic analysis of long 

span bridges. By examining the unsteady pressure distributions over the bridge model 

rather than the flutter derivatives alone, a clearer understanding of how turbulence affects 

the unsteady forces was obtained. Both increasing turbulence intensity and increasing 

turbulence scale decreased the amplitudes of self-excited pressure fluctuations. The basic 

shape of the chordwise distributions of pressure amplitude—a single hump shape—
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shifted upstream with increasing intensity of the free stream turbulence. This shift, 

however, was only slightly affected by the turbulence scale. 

 Phase values of the self-excited pressure (with respect to the body motion) was 

found to have several regimes in the streamwise direction. Near the leading edge, phase 

was nearly constant. Downstream of this region was a region where phase increased 

rapidly. Beyond this rapidly increasing phase zone was a region where the phase values 

leveled off and even decreased in some cases. While scale had little discernible effect on 

this phase value, turbulence intensity shifted the region of rapidly increasing phase 

toward the leading edge. 

 The stabilizing effects of turbulence observed in the flutter derivatives were 

related to these turbulence-induced shifts in the pressure amplitude and phase 

distributions. By tracking the integrands of expressions for lift and moment, specific 

changes in pressure amplitude and phase were linked to flutter derivative modifications. 

In addition, this upstream shifting in the unsteady pressure on the oscillating models was 

found to be similar to the behavior observed for pressure distributions over stationary 

models. This suggests that the vast amount of research done in bluff body aerodynamics 

on stationary bodies can aid in the understanding of oscillating body problems as well. 

 To the author’s knowledge, prior to this study no experimental study had justified 

the conventional analysis technique in which the aerodynamic forces are separated into 

flutter and buffeting components. Pressure measurements made on oscillating models 

allowed an experimental assessment of this assumption. Overall, the assumption is quite 

close. Examination of the lift and moment spectra showed close agreement throughout 

the frequency range considered. Where the stationary and oscillating model spectra did 
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not agree, however, the oscillating model values were larger. This oscillation-induced 

increase in the broad band energy occurred mainly for frequencies above 1.0=UfD  

although some differences were observed for lower frequencies as well. 

 Quantitative analysis of these differences showed that oscillating model buffeting 

forces could have rms values as much as 10% higher than their stationary model 

counterparts. This difference decreased for increased turbulence intensity and increased 

turbulence scale. For Case 12b, the flow with the highest intensity and scale considered, 

these differences were only around 2-3%. Observation of the streamwise distribution of 

such differences revealed that the location of oscillation-induced broad band increase was 

upstream of reattachment—for this case, this meant upstream of the location of the 

maximum rms pressure value. This implies that bodies which experience separation over 

smaller portions of their surface may exhibit less significant differences between 

stationary and oscillating model buffeting levels. 

 Through both coherence measurements and correlation calculations of self-

excited force components, the self-excited forces were found to have near unity 

coherence over the entire spanwise separation range considered. The conventional 

assumption of self-excited forces being fully correlated in the spanwise direction was 

thus supported by the results of this study. Of course, this also means that the often-

suggested hypothesis that a decrease in spanwise correlation of the self-excited forces 

causes the turbulence-induced increase in the critical flutter velocity was not supported 

by the current results. A conclusive investigation of self-excited force coherence would 

requires much longer span lengths to observe whether appreciable changes occur for 

longer spanwise separations. 



 254

 Coherence calculations also showed that the broad band coherence of the 

oscillating model matched that of the stationary model to within the uncertainty of the 

experiment. This supports current analytical practice as well. Extracting the buffeting 

components of the oscillating model forces for calculation of buffeting correlation on 

oscillating models also showed close matches between stationary and oscillating model 

results. 

 

9.2 Recommendations for Future Work 

 Recommendations for future work include expanding the parameter ranges of the 

current project, considering additional techniques for studying the specific problem of the 

current project, and then improving the facilities and equipment. 

 An important parameter limit in this study was the maximum spanwise 

separation, By 4.2=∆ . The important finding of near unity correlation of the self-excited 

forces deserves study for larger separation values. Because the correlation and coherence 

values did not drop significantly from unity over the separations tested, conclusive 

estimates of spanwise correlation lengths scales were impossible. The hypothesis that the 

stabilizing effects of turbulence on three-dimensional structures is due, at least in part, to 

turbulence-induced drops in the spanwise correlation of the self-excited forces is an 

important concept in the current understanding of turbulence effects. The work of this 

study should be extended to determine whether this hypothesis holds. 

 Larger ranges of turbulence scales should also be tested. As discussed in Chapter 

1, the effects of turbulence scales are not fully understood. While adding to the overall 

picture, the work of this study included only scale values less than B0.1 . Future work 
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should include larger scales—most likely produced with active turbulence generation 

techniques—to identify whether the trends with scale observed in this project continue to 

increase or begin a return to behavior associated with smooth flow. As discussed 

previously, for some parameters such as mean pressure on stationary bodies, increasing 

turbulence scale beyond a certain point causes a reversal of trends back toward smooth 

flow results. This has been attributed to the fact that flows of very large integral scale 

behave more like flows with a slowly-varying mean velocity without the capability to 

alter the shear layer structure. Whether similar behavior exists for the self-excited forces 

studied here is an issue worthy of further study. 

 Additional information concerning the physical mechanisms of the observed 

turbulence effects would be gained doing velocity measurements in and around the 

separated shear layers. Hot wire anemometry or laser Doppler anemometry could be used 

to identify the structural changes the shear layer experiences with changes in turbulence 

characteristics. Specifically, the nature of the streamwise evolution of pressure phase 

could be studied with velocity measurements above the model surface. 

 Part of the purpose of this study was to establish a facility for testing section 

models of bridges in turbulent flows. With this accomplished, future work must include 

actual bridge deck shapes. These shapes should include generic and existing bridge deck 

shapes as well as sections for potential use in the super long span designs in development 

around the world. Future work with this facility should include tests both of turbulence 

effects and of the nonlinear effects (such as aerodynamic force dependence amplitude 

and mean angle of attack) which play an increasingly important role as bridge span 
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lengths increase. In addition to testing for various nonlinear effects, future testing should 

include the heaving degree of freedom as well as the torsional motion. 

 An additional consideration concerning testing of different bridge deck shapes is 

that of the mismatch measured here between stationary and oscillating body buffeting 

forces. This mismatch should be studied for actual bridge decks to determine the impact 

of any mismatch on engineering design. While the general trends of this work imply that 

more streamlined bodies and bodies experiencing more intense turbulence will have less 

significant mismatch, this issue warrants further attention. 
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APPENDIX A.   PRESSURE MEASUREMENT PROCEDURES 

 Calibration of the pressure measurement system included two phases, static and 

dynamic. A static calibration was performed for the pressure to voltage relations for each 

pressure transducer. Dynamic calibrations included estimating the dynamic pressure 

response of the tubing system, which connected the transducers to the pressure taps on 

the surface of the model, and estimating the acceleration response of the sensors and the 

tubing. The dynamic calibration efforts also covered several issues related to electrical 

noise effects on pressure correlation and coherence calculations. This appendix describes 

the transducers themselves, each of the calibration procedures in turn, and the techniques 

for identifying the actual pressure signals using these calibrations. 

 

A.1  Pressure Transducers 

 Two types of transducers were used in this study. Honeywell Microswitch sensors 

(model 163PC) with a range of 620 Pa were used with the Pitot-static probes, and 

SenSym transducers (model ASCX01DN) with a range of 6900 Pa were employed for 

use inside the model. Both types measure differential pressures, are temperature 

compensated, and have onboard voltage amplification. These transducers are 

piezoresistive devices—essentially strain gage sensors in which the strain gages are 

fabricated within silicon wafers using techniques common to the semiconductor industry 

(Honeywell, 1995; SenSym, 1996). The model ASCX01DN devices used have a range is 
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6900 Pa with a nominal sensitivity of 0.65 mv/Pa. Because the sensitivity is ratiometric 

to the supply voltage, it was increased to nominally 1.6 mv/Pa using a supply voltage of 

approximately 10.0 v.  

 To power the 64 pressure sensors used in this study, a separate power supply was 

constructed which provided voltage to each unit. Power regulation circuitry was then 

built for each transducer to ensure clean voltage supply—not affected by fluctuations due 

to other transducers. Each transducer was mounted on a small circuit board containing 

this regulation circuitry. All signal connections from these sensor-circuit units to the data 

acquisition system were shielded. 

 Pressure taps on the surface of the model were connected to the pressure sensors 

with Tygon tubing. To facilitate changing which taps were connected to sensors, each tap 

was fitted with a short stainless-steel tube to which the Tygon tubing was connected. 

Connecting the tubing to the transducer connectors required a special fitting made with a 

small stainless-steel tube and tubing of different diameters. All of these connectors are 

shown in Figure A-1 below. As discussed in Chapter 3, the large number of pressure 

tubes—a signal and a static line for each transducer made 128 tubes—inside the model 

made it difficult to avoid crimping the pressure lines when replacing the model’s top 

surface. Rarely was the cover of the model closed without cutting off at least one or two 

pressure lines. The absence of the signals from these blocked lines was compensated for 

by either ignoring the entire distribution containing the bad signals or by interpolating 

between adjacent signals. 
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Figure A-1 Schematic diagram of the connectors used for connecting the plastic tubing to 
both the pressure taps on the surface of the model and the pressure transducers 

themselves. 

 

A.2   Static Pressure Calibration 

Static calibration was conducted with the setup shown in Figure A-2 below. A 

plenum chamber was connected to a MityVac hand pump device. This provided a 

reference pressure that was connected to both a reference manometer and the model’s 

pressure transducers. The reference manometer was a Betz Micromanometer Model 2500 

(the specifications for this manometer are shown in the list of known bias and precision 

errors in the uncertainty calculations of Appendix D). The reference pressure for the 

calibration was delivered to each pressure transducer through the static pressure supply 

lines so that the sensors could be calibrated while the model was mounted in the wind 

tunnel. Power supply to each transducer and voltage acquisition from each transducer 

Outer face of model
Pressure tap

Stainless steel tube

1/8 in. plastic face of model

Tygon tubing

Stainless steel tube

Pressure sensor stem Pressure sensor
Tygon tubing connectors
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was arranged exactly as in actual tests. The only difference between calibration and 

experiment was in how pressure would be generated. 

 

Betz 2500 Pa Manometer

  Mity Vac
Hand Pump

Plenum

     Model Containing
64 Pressure Transducers

Valve

Static Pressure
 Supply Lines  

Figure A-2 Setup for static calibration of pressure transducers. 

 

 For each pressure set by the hand pump, the Betz manometer was read while the 

computer recorded transducer voltages for 32.8 seconds (16384 total samples at a 

sampling frequency of 500 Hz). The mean and rms values of transducer voltages were 

calculated from the measurements to obtain precision error estimates. The pressure range 

through which the transducers were tested covered 50% more than the estimated range to 

be experienced in actual tests. The largest possible negative peak pressures was estimated 

from the literature to be approximately PC8 , so testing up to PC6.11  was conducted. 

Figure A-3 shows a typical voltage versus pressure curve from this experiment. The 

entire pressure range was traversed several times with increasing pressure and decreasing 



 261

pressure to generate several points at each pressure value. The uncertainty analysis of this 

calibration process is described in Appendix D. A linear fit to these data rendered the 

function used to obtain pressures from the transducer voltages. Repetitions of these 

calibration experiments over a 10° F range of ambient temperature produced negligible 

changes in the slopes of these curves (less than 1%). 
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Figure A-3 Illustrative example of calibration data set for transducer voltage versus 
calibration pressure. 

 

 The piezoresistive design of the sensors gives them large dynamic ranges. The 

response time for a 0 Pa to full-scale pressure step change (given as 10% to 90% rise 

time) is specified as 100 µs (SenSym, 1996). Since the dynamic range of the pressure 

fluctuations expected in this study was only around 500 Hz, a dynamic calibration was 
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assumed to be unnecessary. The frequency response of the sensor itself was assumed to 

be flat well beyond the range of the frequencies to be encountered. 

 

A.3   Dynamic Pressure Calibration 

 Dynamic calibration for this project involved two separate phenomena. The first 

dynamic calibration was performed to correct for the dynamic effects of the pressure 

tubing lines. The second calibration was an analytical study of how the air mass within a 

given pressure tube can induce pressure amplitudes and coherence with other pressure 

signals that have nothing to do with the aerodynamic problem being studied. Corrections 

for the dynamical response of the tubing was performed on all pressure signals, but the 

acceleration response analysis showed that no correction was necessary. Both studies are 

described in the following sections. 

 

A.3.1 Pressure Tubing Dynamical Response 

 While dynamic calibrations were not necessary for the sensors themselves, the 

dynamic response of the tubing systems, which connect the pressure taps to the 

transducers, was examined. Because the characteristics of the pressures at the surface of 

the models are desired, the dynamic response added to the signals by the tubing must be 

eliminated. This requires two steps. The first is to quantify these effects, and the second 

is to mathematically remove the effects from the signals obtained by the computer. 

 To quantify the dynamic effects of the tubing, a calibration rig was constructed as 

shown in Figure A-4. This rig consists of a speaker with its electromagnetic “drive” 
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removed, an MB Dynamics Model PM 25 shaker, and a chamber with pressure ports. The 

shaker device drives the speaker from a signal input to the shaker’s amplifier. A function 

generator supplied the input signals which consisted of series of swept sine wave 

functions. Swept sine waves were used rather than broadband signals because broadband 

signals failed to provide suitable coherence for the frequency response function. It is 

possible that this is due to the physics of the shaker-speaker system itself. The broadband 

excitation signals did not seem to be able to excite lower frequencies very well—

particularly below 10 Hz. 

 

To Amplifier

Speaker

Shaker
2 Pressure Transducers Pressure Chamber

2 Pressure Taps

 

Figure A-4 Shaker and speaker equipment used for dynamic calibration of pressure 
system. 

 

 The swept-sine approach resulted in a frequency response function having good 

coherence only at the frequencies in the swept function. It was then necessary to run the 

swept-sine tests at multiple starting frequencies to fill in frequency bins. To generate the 

function in this form, a MATLAB code sorted through each frequency bin of each test’s 
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results and extracted the frequency response function values only for frequencies with 

coherence greater than 0.999. The rest of the frequency bins were filled in by 

interpolation. Figure A-5 shows the completed frequency response function of the tubing 

used for every test in this project. 
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Figure A-5 Pressure tubing frequency response function, ( )fH tubing , as acquired with the 
swept-sine function approach. 

 

 Fast Fourier transform (FFT) techniques were used to remove the dynamic 

response of the pressure tubing from the pressure signals. This correction was performed 

up to a specified frequency, cf , of 250 Hz. Above this frequency, the pressure signals 

neared the electrical noise level, and continuing to correct for pressure tubing effects 

above cf  would simply have amplified this ambient noise level. Such a correction 

required manipulation of the first and last cN  points of a given signal’s discrete Fourier 

transform (where ffN cc ∆= ). Given the time series for a raw pressure signal, ( )tpraw , 
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its Fourier transform, ( )fPraw , and the frequency response function of the tubing system, 

( )fH tubing , the time series of the pressure signal corrected for the tubing was calculated 

as: 

( ) ( )
( )∑

+

=

=
1

2

cN

k ktubing

kraw
k fH

fPfP  

( ) ( )
( )( )

∑
−−=

=
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NNk ktubing
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k

c
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where ( ) fkfk ∆−= 1  is the frequency associated with thk  bin. For all the higher 

frequency components ( kf  for 2+= cNk  through cNNk −= ), no tubing correction was 

performed, i.e. ( ) ( )krawk fPfP = . The time series of the corrected pressure signal, ( )tp , 

was then obtained by performing an inverse fast Fourier transform (IFFT) on ( )fPraw . 

 

A.3.2 Acceleration Response of Air Mass in Tubing 

When the model is in motion, both the air within the tubing system and the sensors 

themselves undergo acceleration. The voltage output of the pressure sensors includes 

components resulting from both of these sources. The response due to the former would 

not exist if the transducers were mounted flush with the model surface. Since flush 

mounting was not possible in this case, the magnitude of the response was investigated.  

Other researchers have addressed this issue. Although no trustworthy 

experimental method of quantifying the acceleration effects exists, Obasaju (1977) and 

Bearman & Currie (1979) have derived an analytical correction for this acceleration 

response based on the model acceleration along the line connecting the model surface at 

(A-1) 

(A-2) 
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the pressure tap to the diaphragm of the pressure transducer. For an acceleration, h&& , in 

the direction of this line as shown in Figure A-6, these references give the induced 

pressure as: 

 Lhpa &&ρ−=  

where ap  is the pressure induced by the acceleration, ( ) ( )tAth ωsin=  is the vertical 

motion of model (with dots signifying differentiation with respect to time), A  and ω  are 

the amplitude and frequency of the motion, respectively. 

 

Model Surface Pressure Tap

Pressure Line
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Figure A-6 Simplified sketch of a model with a pressure tap and transducer separated by 
a distance L and undergoing and acceleration av . 

 

 Rearranging equation (A-3) by substituting fπ2  for ω  and normalizing by the 

dynamic pressure to obtain a pressure coefficient yields the amplitude of the induced 

pressure coefficient: 
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This can be rearranged slightly to make it a function of reduced velocity as follows: 
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 The equation relating the pressure at the model surface with that measured by the 

transducer is then: 

 ( ) ( ) ( )mppp ftCftCftC
ma

ψππψπ −=+− 2sin2sin2sin ***  

where ψ  is the corrected phase of the pressure fluctuations, mψ  is the measured phase of 

the pressure fluctuations, *
pC  is the corrected amplitude of the pressure coefficient 

fluctuations, *
mp

C  is the measured amplitude of the pressure coefficient fluctuations, and 

*
ap

C  is the amplitude of the pressure fluctuation induced by the acceleration of the tubing. 

 Solving for the corrected values—the values corresponding to the pressure on the 

surface of the model—yields:  

 












−
= −

**

*
1

cos
sin

tan
am

m

pmp

mp

CC
C

ψ
ψ

ψ  

 ψcos2 **2*2**
amam ppppp CCCCC −+=  

 

 The acceleration situation for the current work is more complex than that shown 

in Figure A-6. Figure A-7 shows the bridge model with an example pressure tap and 

transducer. Pitching motion will induce both vertical and horizontal acceleration—as 

shown with the vector av—along the vector connecting the model surface to the 

transducer diaphragm. 

 

(A-5) 

(A-6) 

(A-7) 

(A-8) 
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Figure A-7 Schematic diagram showing an example placement of a pressure tap and its 
corresponding transducer with an acceleration vector av  between them 

 

 For a pitching motion expressed as ( ) ( )tt ωαα sin0= , the acceleration vector, av , 

can be expressed as: 

 ( ) ( ) ( )( ) xoxo rtrktta v
&

vv
&&

v 2αα −×=  

where xor
v  is vector connecting the pressure tap location to the center of rotation (it is 

approximated in this equation as being horizontal and as extending to the tap furthest 

from the center of rotation to give a worst-case estimate). Dividing equation (A-9) into 

components and dropping the ( )t  results in: 

 ( )( ) ( )( ) jbbibba
v

&&&
v

&&&
v αααααααα sincoscossin 22 ++−=  

The dominant term of equation (A-10) is the third—a vertical acceleration. Each 

of the other terms is one or more orders of magnitude smaller. The third term was used as 

a test of the magnitude of the acceleration effect. It should be noted that this acceleration 

scenario is more complicated than that discussed by Bearman and Currie (1979) relating 

to Figure A-6. Instead of having all the systems’ components—including pressure tubing 

and pressure transducers—experiencing the same acceleration, this scenario involves 

(A-9) 

(A-10) 
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accelerations that change with distance from the center of rotation. What this means is 

that the air inside the tubing is not experiencing a uniform acceleration but one that 

changes along the route from the tap to the transducer, i.e. ( )tav  in equation (A-9) could 

have been written as a function of x  as well. To estimate the maximum effects, this was 

ignored. This means that the estimate is based on the maximum acceleration that occurs 

at any point along the tube. 

The maximum effect of acceleration was estimated as the maximum value of the 

third term of equation (A-10). With the maximum angular amplitude, 2°, the maximum 

oscillation frequency of 7.5 Hz, and a value for L  corresponding to the vertical spacing 

between the model surface and the transducer diaphragm (0.5 in.), equation (A-4) yields 

a *
ap

C  value of 0.0069.  

 Using this *
ap

C  value and a sample data set at 1.3=rU , comparison plots were 

generated using the correction equations (A-7) and (A-8). Figure A-8 shows a sample 

data set with uncorrected and corrected amplitudes, and Figure A-9 shows the 

uncorrected and corrected phases for the same data set. In each case, the differences are 

insignificant. Therefore, no pressure amplitude or phase data were corrected for these 

experiments. 

 Pressure signals induced as described above can also influence the experimental 

coherence values—i.e. two signals that are not correlated might show some correlation 

because all the pressure taps are being shaken in phase as an experiment is run. To 

investigate the extent of this influence, an analytical expression can be derived as 

follows. 
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Figure A-8 Plot of pressure amplitude distributions as measured—uncorrected—and as 
corrected for model acceleration effects. 
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Figure A-9 Pressure phase distributions as measured—uncorrected—and as corrected for 
model acceleration effects. 
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 Consider two pressure time series, ( )tp1  and ( )tp2 , that if measured perfectly at 

the surface of the model would be uncorrelated. Add to these signals components that are 

correlated with each other, ( )tc1  and ( )tc2 . These signals simulate what might be induced 

by the motion of the air in the tubing system. An experimental coherence calculation 

between these two signals would involve the coherence between ( ) ( ) ( )tctpte 111 +=  and 

( ) ( ) ( )tctpte 222 += . This analytical derivation follows that in Bendat & Piersol (1986). 

Assuming that ( )tc1  and ( )tc2  are not correlated with ( )tp1  or ( )tp2 , then the cross 

spectra 0
212211
=== ppcpcp GGG . By definition the coherence function is calculated as: 

( )
( )

( ) ( )fGfG
fG

f
eeee

ee

2211

21

2

2 =γ  

By substituting 
111111 ccppee GGG +=  and 

222222 ccppee GGG += , it can be shown that: 
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Substituting with the ratios ( )
1111 ccpp GGf =α  and ( )

2222 ccpp GGf =β , equation (A-12) 

becomes: 

( ) ( ) ( ) ( ) ( )ffff
f

βαβα
γ

+++
=

1
12  

For this project, where the pressure model is oscillated at a single frequency, it is helpful 

to consider the amplitudes of the signals at the driving frequency. Consider the case 

where the uncorrelated signals have the same amplitude, P , at a given frequency, f , and 

the correlated signals have the same amplitude, C . Equation (A-13) can then be rewritten 

as: 

(A-11) 

(A-12) 

(A-13) 
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 This relationship is plotted in Figure A-10 where it can be seen that for all cases 

where the amplitude of the coherent signals is lower than that of the incoherent signals, 

the coherence is less than 0.2. The estimated value of the maximum induced pressure 

(from equation (A-4)) is q0069.0 . The minimum pressure amplitude signal from 

oscillating model tests (reported in Chapter 6) can be computed from *
pC  values using its 

definition: *
0

*
pCqp α=  (where *p  is the pressure amplitude and q  is the dynamic 

pressure). The minimum value for *p  then is q02.0 . The ratio PC  then is 0.3 which 

from Figure A-10 corresponds to a coherence value less than 0.1. Coherence values 

induced by the acceleration of the model were then considered negligible. 
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Figure A-10 Coherence at a given frequency as a function of the amplitude ratio of 
coherent to incoherent signals at that frequency. 

(A-14) 
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A.3.3 Electrical Noise Issues 

 Similar to the discussion of spurious correlation coming from tubing acceleration 

effects in section A.3.2, correlated electrical noise was also considered a source of 

correlation and coherence errors. Two types of tests were conducted to examine this 

issue. In both cases, time series data were collected from all of the pressure sensors—just 

as if it were a regular data acquisition run. The first type of test was run with the wind 

tunnel off, but all other support equipment on. This simulated the electrical noise 

conditions during a stationary model test. The second type of test was the same as the 

first except that the model oscillation motor was run over a range of speeds. Because 

motion of the model would generate both aerodynamic pressure and acceleration effects 

(like discussed in A.3.2), the oscillation mechanism was disconnected from the model 

during these tests. This test was to simulate electrical noise for an oscillating model test. 

 Correlation values were calculated among the time series just as they were for 

regular pressure tests. For the stationary model test simulation, all correlation values 

were well under 0.1. The oscillating model test simulation produced electrically induced 

correlation values dependent on the motor speed. As the motor speed increased, which 

for a real test would correspond to decreasing reduced velocity, the correlation values 

increased. While most of these correlation values were under 0.1, some combinations of 

transducers had correlation values as high as 0.3. The group of sensors with high 

correlation were all within the same SSH board. Several different grounding schemes 

were tested to eliminate this problem, but 0.3 was the minimum correlation achieved. 

 However, since these tests were artificial in that electrical noise signals were 

much smaller than actual pressure signals, simulated pressure signals were added to these 
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motor noise signals to simulate real conditions more appropriately. Simulated pressure 

signals were generated with the same rms and spectral distributions as smooth flow, 

stationary model pressure data. Smooth flow, stationary test data were chosen because 

they had the smallest rms values and would represent a worst case in terms of the 

influence of electrical noise. When the electrical noise time series described above was 

combined with the simulated pressure signals, correlation values dropped significantly. 

Those values below 0.1 dropped further, and all values above 0.1 dropped below 0.1. 

Electrical noise effects on correlation values were therefore considered negligible. 

 Coherence values were also tested just as the correlation values discussed above. 

Again, the coherence values were calculated from the electrical noise time series 

acquired with the wind tunnel off. The nature of the oscillating model coherence signals 

presented in Chapter 7 warranted a test of whether the extremely high coherence values 

were induced by non-aerodynamic sources. The coherence function had values similar to 

stationary model broad band values for all frequencies except the model oscillation 

frequency. Motor noise coherence values, however, showed no salient peaks at any 

model driving frequency. This was partially due to low electrical noise coherence and 

partly due to the frequency shift caused by the 4:1 gearhead used on the motor. A 4:1 

speed ratio between the model oscillation frequency and the motor speed meant that the 

motor was never operating at the same frequency as the model oscillation. The highest 

peaks at any frequency were near 0.4. As before, these values dropped significantly when 

simulated pressure signals were added to the electrical noise time series. Coherence 

values were thus considered unaffected by electrical noise. 
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APPENDIX B.   VELOCITY MEASUREMENT PROCEDURES 

 Hot-wire anemometry and measurements of mean dynamic pressure were used to 

measure velocity. This appendix describes each type of sensor used and outlines the 

calibration procedure employed in each case. 

 

B.1 Description of Hardware  

 A Pitot-static probe mounted just upstream of the model was used to set the wind-

tunnel velocity for each test. A differential pressure transducer measured the difference 

between the total and static ports on the probe to obtain the dynamic pressure. From the 

dynamic pressure, the mean velocity was calculated using Bernoulli’s equation 

( ( ) ρstatictotal ppU −= 2 ). This calculation also required the air density, which was 

obtained from the ideal gas relation ( RTp ρ= ). Ambient temperature and pressure were 

measured with a thermometer and barometer mounted on the wall of the wind-tunnel 

laboratory. 

 All dynamic measurements of velocity were made using hot-film probes. Static 

calibration of these probes was accomplished using Pitot-static probes as the reference. 

TSI anemometry equipment included an IFA 100 Model 158 chassis with Model 150 

anemometers and Model 157 signal conditioners. The signal conditioner was used to 

apply an offset and gain along with a third-order Sallen-Key type low-pass filter to the 
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signals. The offset and gain were used to optimize the voltage range of the signal with 

that of the analog to digital converter (ADC). The anemometer’s internal test signal and 

front panel controls were used to tune the frequency response of the anemometer circuitry 

with the probes (according to procedures outlined in anemometer manual, TSI, 1992). 

This frequency response extended to approximately 3.5 kHz. 

 Probes with an X configuration were used to measure turbulence parameters in 

the absence of a bridge model. Because the heat transfer from a hot-wire/hot-film probe 

is dependent on the angle between the longitudinal axis of the wire and the flow 

direction, incoming flow velocities of various angles of attack can be identified. The X-

probes used in this work—TSI 1241-20 film sensors—had two wires oriented at 90° to 

each other and 45° to the incoming flow. The voltages from the two wires uniquely 

identify two components of the incoming velocity vector. 

 

B.2 Description of Calibration and Measurement Procedures 

 The dedicated rig shown in Figure B-1 employs a 2D jet and a traverse for setting 

the velocity and angle of attack and measuring the resulting hot-film voltages. Jet 

velocity was measured with a small Pitot probe at the nozzle and controlled with a 

variable power supply connected to the fan. For velocities from 2.2 m/s to 11.5 m/s, 

voltages were measured for angles of attack from –30° to +30°. This velocity and angle 

ranges were chosen to be larger than what would be expected in actual tests. 
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Figure B-1 The X-probe calibration rig used to step through different angles of attack for 
a range of velocities. 

 

 Each velocity-angle of attack pair resulted in a unique pair of voltages, 1E  and 

2E . From these data, a table for each component of velocity was constructed using a 

polynomial interpolation scheme as described in Lueptow, et al. (1988). The algorithm 

for this task was implemented using a slightly modified form of a FORTRAN code 

written by George Ross (1996). Figure B-2 and Figure B-3 show the example calibration 

tables in graphical form. Voltages obtained with X-probes were converted into two 

components of velocity using a bilinear interpolation scheme (Press et al., 1992) among 

the points in the tables. This calibration method requires little computational effort and is 

not compromised by assumptions made in traditional King’s law approaches (e.g. 

interference from and heat conduction to the probe supports). 

Running the voltage pairs obtained in the calibration experiments through the 

tables resulted in the u  component of velocity matching to within 1% and the angle of 

attack matching to within 0.3°. 
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Figure B-2 X-wire calibration surface for the u -component of velocity as a function of 
1E  and 2E . 
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Figure B-3 X-wire calibration surface for the w -component of velocity as a function of 
voltages 1E  and 2E . 
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APPENDIX C.   DIGITAL SIGNAL PROCESSING TECHNIQUES 

 This appendix summarizes all the major calculations involved in this study. This 

material is closely related to that of Appendix D on uncertainty analysis. That analysis of 

the uncertainty of the values resulting from these techniques will refer heavily to the 

descriptions found in this appendix. Each of the analysis techniques described here were 

implemented using MATLAB software from MathWorks or using LabVIEW software 

from National Instruments. LabVIEW was the data acquisition software used to acquire 

all the data. Implementing analysis techniques in LabVIEW allowed monitoring of data 

while tests were in progress. 

 

C.1 Statistical Estimates 

 A number of statistical estimates were made from velocity and pressure 

measurements. Mean and RMS values were calculated for velocities while mean, RMS, 

peak, and skewness values were calculated for pressure. Statistical values for pressures 

were all calculated within LabVIEW, the data acquisition software described in Chapter 

3. 

The mean value, x , of the samples, ix , of a random variable was calculated as: 

∑
=

=
N

i
ixN

x
1

1  

RMS values were calculated as: 

(C-1) 
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The skewness coefficient was calculated as: 

( ) 
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which is the skewness of ix  normalized by the third power of RMSx . 

The kurtosis coefficient was calculated as: 

( ) 







−= ∑

=

N

i
i

RMS
u xx

Nx
K

1

4
4

11  

which is the kurtosis of ix  normalized by the fourth power of RMSx . 

 Negative peak values for pressures were also calculated. Each ensemble of 

pressure data was demeaned and searched for its minimum pressure value. The peak 

value reported for each pressure tap is the average of the peak values found over all the 

ensembles. 

 

C.2 Spectral Estimates 

 Spectral estimates were used to obtain two different quantities, power spectral 

density (PSD) functions of measured quantities and, from these, frequency-specific 

amplitudes. This section describes the calculations involved in both of these quantities. 

 When using an analog-to-digital converter (ADC) to obtain experimental data, 

one must ensure that no frequency components exist above the “Nyquist frequency,” i.e. 

half the sampling frequency, sf . Components above this limit manifest themselves as 

energy at lower frequencies in the resulting digitized signal—this process is called 

(C-2) 

(C-3) 

(C-4) 
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aliasing. Conventionally, anti-aliasing filters are employed to filter all signals above the 

Nyquist frequency before a signal is digitized. Such is the case for the velocity 

fluctuation measurements of this study. The anti-aliasing filters within the hot-film 

anemometer were used. For the pressure measurements of this study, the lengths of 

plastic tubing between the pressure taps and the transducers acted as an effective filter for 

the signals. The dynamic response of this tubing showed a roll-off for frequencies above 

200 Hz—with a steeper decline occurring near 500 Hz (for more details, see the pressure 

calibration discussion of Appendix A). As a result, signals were sampled at 1000 Hz 

making the Nyquist frequency 500 Hz, and no further filtering was done. A more in-

depth discussion of issues concerning aliasing and digital sampling can be found in 

Bendat & Piersol (1986). 

 Given an acquired time signal, the act of computing a power spectral density 

function from digital data is essentially that of organizing the power of a signal into 

“bins” associated with discrete frequencies. This organization can be nontrivial. To 

suppress the phenomenon called “leakage,” where power is from frequencies other than 

that of a particular bin is added to the power already associated with a bin, time series 

data were treated with a windowing function. This involved multiplying the time-domain 

signal by a particular window function (in this case, a Hanning window) and then 

adjusting the frequency-domain values by 8/3 to compensate for the window’s effects on 

the amplitudes. Again, further information can be found in Bendat & Piersol (1986). 

 Once the window was applied to the data, a fast Fourier transform (FFT) routine 

was employed. For a time series of discrete data points given by ix  (where ix  refers to 

values of a continuous function of time, ( )tx , evaluated at discrete instants of time, it ), 
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the output from an FFT is a series of complex numbers represented here as kX . The k  

here refers to the different discrete frequencies corresponding to the FFT values, kX . 

These discrete frequencies, kf , are given as: 

1,2,1,0 −=
∆

== Nk
tN
k

N
fkf s

k K  

where sf  is the digital sampling rate in Hz, N  is the total number of points in the data 

set, and t∆  is the sampling interval between digital samples (i.e. sft 1=∆ ). 

 The kX  values are assembled into a PSD function for ix  by the following 

equation: 

( )
2

,2,1,02
3
8 * NkXX
N
tfG kkkxx K=

∆
=  

where ( )kxx fG  is the PSD function evaluated at discrete frequencies, kf , the 38  is the 

correction for the Hanning window, and the star denotes the complex conjugate of a 

complex number. The units of this PSD function are those of the original function 

squared multiplied by time. This can also be interpreted as [ ]2units original  per Hz. 

 For this study, pressure signal amplitudes at specific frequencies were required. 

These amplitudes were calculated from the PSD functions by integrating about the peak 

value in the spectrum—i.e. integrating about the bin associated with the model oscillation 

frequency. The total amplitude was taken as the amount above the stationary cylinder 

spectrum at that frequency. Figure C-1 highlights the bins used in this integration—the 

bin containing the peak and the two adjacent bins. These three bins had to be included 

because the Hanning window applied to the time series effectively reduces the spectral 

(C-5) 

(C-6) 
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resolution. To obtain the full value of the peak, each bin was included as in the following 

equation for the pressure amplitude: 

( ) ( ) dffGfGp
kk

kk
k

s
ppkpp 








−= ∑

+=

−=

1

1

*
max

max

2  

where *p  is the amplitude of the pressure fluctuation, ppG  and s
ppG  are the power 

spectral density functions of pressure signals from the oscillating model and the 

stationary model, respectively, df  is the bandwidth of a single frequency bin (where 

Nfdf s= ), and maxk  is the index of the bin containing the maximum value. The 

integration the spectra yields the variance of the signal at the desired frequency. 

Multiplying the square root of this variance by 2  yields the amplitude. This integration 

is conducted offline using a MATLAB script. 
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Figure C-1 Plot of a sample pressure PSD highlighting the bins integrated to calculated 
the signal’s amplitude. 

(C-7) 
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C.3 Correlation Estimates 

 Correlations were used for several purposes. The first use was to identify 

autocorrelations and cross correlations of velocity fluctuations. These correlations were 

used to identify the largest scales of the incident turbulent flows used in these 

experiments. A second use was to identify the phases between unsteady pressures on the 

surface of the model and the motion of the model. A third use was to identify the 

spanwise correlations for lift, moment, and individual pressures. 

 In each of these cases, the basic calculation of the correlations is the same. What 

is different from one application to another is what is done with the correlation once 

calculated. This section will describe first the calculation of the correlations themselves 

and then the calculations relevant to each correlation application. 

 Given two time series (or just one if an autocorrelation is being calculated) of 

acquired discrete data, ix  and iy , a cross correlation function was calculated using fast 

Fourier transforms. The procedure involved first adding N  zeros to the data series 

(where N  is the number of samples in the series) to avoid distortion due to the periodic 

assumption inherent in Fourier transforms. Without this measure the terms corresponding 

to a time delay of τ  will be influenced by correlation associate with both ( )τxyR  and 

( )τ−TRxy  where T  is the total sample time of the data set (i.e. tNT ∆= ). Further details 

concerning this effect and the derivation of the method of computing correlation 

functions using FFT’s can be found in Bendat & Piersol (1986). 

 Fourier transforms are performed on these zero-padded data sets to obtain kX  and 

kY . The two-sided cross-spectral density function ( )kxy fS  is then calculated as follows: 
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( ) 12,2,1,0* −=
∆

= NkYX
N
tfS kkkxy K  

 Taking advantage of the Fourier transform relationship between cross-spectral 

density functions and cross correlation functions, an inverse FFT is used as follows: 

( )( ) 12,2,1,0IFFT −=
∆

= NifS
yx
tC kxy
RMSRMS

i K  

where “ IFFT” denotes the performance of an inverse FFT and the RMS values of the 

two input signals are used to produce a cross correlation coefficient function having 

maximum and minimum values of 1 and –1, respectively. To obtain the final ( )ixy τρ  

values from the iC  coefficients, the following equations are used. The ( )ixy τρ  values 

corresponding to positive lags are calculated as: 

( ) ( ) ( ) ( )1,1,0;1,2,1,0for −=−=
−

= NmNiC
iN

N
imxy KKτρ  

where tmm ∆=τ . Values corresponding to negative lags are calculated as: 

( ) ( ) 1,2,,2,1;12,1for −−+−+−=−+=
−

= KK NNmNNiC
Ni
N

imxy τρ  

where, again, tmm ∆=τ . The value of xyρ  corresponding to tNm ∆−=τ  needs no 

multiplying factor and is obtained directly from NC . 

 An important application of cross correlations for this project was finding the 

phase lag of the pressure signals at each pressure tap with respect to the body motion. To 

illustrate this type of calculation, a typical angle-pressure signal pair is shown in Figure 

C-2. From the plot, one can see that at this particular location, the pressure signal leads 

the angular displacement of the model. The cross correlation function for these two 

(C-8) 

(C-9) 

(C-10) 

(C-11) 
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signals is shown in Figure C-3 where the peak value occurs at pττ = . This time delay 

was converted to the associated phase according to the following expression: 

pf τψ α360=  

where ψ  is the phase (in degrees) between the pressure fluctuation and the angular 

displacement and αf  is the frequency of the angular oscillation. 
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Figure C-2 Plot of an angle signal and pressure signal to illustrate the calculation of the 
phase from a cross correlation between them. 
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Figure C-3 Cross correlation function for the signals shown in Figure C-1 to illustrate the 
location of the peak and its associated time lag, pτ . 

 

 

C.4 Coherence Estimates 

 Coherence calculations were used for investigating the frequency dependence of 

the spanwise lift and moment correlation. Coherence estimates were calculated using 

spectral methods. For two signals, say ( )tx  and ( )ty , autospectra were calculated as in 

equation (C-6) of section C.2 while cross spectra, were calculated as follows: 

( )
2

,2,1,02
3
8 * NkYX
N
tfG kkkxy K=

∆
=  

where all variables are described in section C.2. 

 Cross spectra and autospectra were ensemble averaged separately and then 

brought together to obtain coherence values according to the following definition: 

(C-13) 

(C-14) 
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( )
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( ) ( ) 2
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kxy
kxy K==γ  

The results of this expression were used in two ways. For estimates of the coherence at 

specific frequency values—such as the coherence at the model driving frequency 

presented in Chapter 7—the values computed with equation (C-14) were used directly. 

However, due to the commonly “noisy” nature of coherence plots for broadband signals, 

coherence values were smoothed for those plots of the coherence function over a wide 

frequency range. This smoothing was a simple procedure. Groups of frequency bins were 

averaged into a single new bin. For example, three bins corresponding to frequency 

values of 11 ,, +− kkk fff  were combined into a single bin corresponding to a frequency 

value of kf  and a coherence value of ( )∑
+

−=

1

1

2

3
1 k

ki
ixy fγ . 
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APPENDIX D.   UNCERTAINTY ANALYSIS 

 All measurements have some inherent degree of uncertainty. Calculations made 

from measurements have a degree of uncertainty as well. This appendix summarizes the 

analysis of this uncertainty for the measurements and calculations of this study of bridge 

aerodynamics. 

 Measurement uncertainties can be classified in two major groups—bias errors and 

precision errors. Bias errors remain constant for repeated tests at fixed conditions—they 

are a function of the device or the measurement procedure employed. Precision errors, 

also known as random errors, manifest themselves as the scatter in repeated 

measurements. Bias errors can be minimized by comparison with working standards 

while precision errors can be quantified statistically. 

 Because a PC-based data acquisition system was used, voltage measurements 

were by far the most common type of measurement performed. Uncertainty analysis of 

voltage measurements will be presented first. This will be followed by an example of 

calibration uncertainty analysis. Calibration can be defined as the process of exchanging 

the large bias error of a measurement device for the smaller bias error of a working 

standard and the precision errors of the calibration process. While pressure, velocity, and 

angular position each involved a calibration, only the uncertainty analysis for the 

pressure calibration is presented in depth here. Only the results from the velocity and 

position calibration uncertainty are presented. The final section of this appendix then 
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addresses the uncertainties of various derived quantities with special attention given to 

uncertainty analysis involving cross correlation calculations. 

 

D.1 Voltage Measurement Uncertainty 

 As described in Chapter 3, the voltage measurement system consisted of two 

major components, a simultaneous sample and hold (SSH) board (SCXI-1140) and an 

analog to digital conversion (ADC) board (PCI-MIO-16XE-10). Specifications of 

accuracy of these devices was obtained from the documentation supplied by National 

Instruments—the PCI E Series User Manual and the SCXI-1140 User Manual. For the 

SSH board the following specifications are relevant for bias error estimates where viB  

corresponds to the ith contribution to the voltage bias error: 

 1vB  = Maximum gain error (for Gain=1.0) = ±0.05% 

 2vB  = Thermal drift (for Gain=1.0) = ±25ppm/°C 

 

For the ADC board, the following specifications were relevant to bias error analysis. 

These specifications were supplied assuming that before each experiment, a calibration 

routine was run to set the board’s ADC computations with an onboard reference. 

 3vB  = Relative accuracy = ±0.75 LSB 

 4vB  = Pre-gain offset error = ±3µv 

 5vB  = Postgain offset error = ±76µv 

 6vB  = Gain errors = ±30.5 ppm of maximum reading 



 291

 7vB  = Thermal drift = ±120µv/°C  

 

The following are precision errors associated with voltage measurement. viP  corresponds 

to the ith contribution to the voltage measurement precision error. 

 1vP  = ADC resolution uncertainty = bit
mv0076.0

bits2
v0.1

2
1

16 =  

 2vP  = Droop rate = ±10 mv/sec 

 3vP  = Ambient electrical noise = 0.7 mv (rms) 

where the droop rate is the amount of voltage drift that occurs while the SSH circuitry 

holds the voltage before the ADC digitizes the value. The maximum time for this to 

occur was calculated by the total number of channels multiplied by the interchannel 

acquisition rate of the ADC board (100kHz). This time was approximately 670µs. The 

ambient electrical noise was measured with all measurement equipment in place as in 

actual experiments but with the wind tunnel off. 

 The various contributions to voltage measurement uncertainty can be combined 

using the conventional square root of the sum of the squares (SRSS) method (as 

described, for example, in Figliola & Beasley, 1991) as follows: 
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21

2 −×=



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where vB  and vP  are the total bias and total precision errors, respectively, for voltage 

measurements. These two can be combined for an estimate of the total voltage 

measurement uncertainty, vu , as: 

[ ] v102.7 42122 −×=+= vvv PBu  

 

D.2 Calibration Uncertainty 

 Calibration experiments were performed for pressure, velocity, and angular 

position measurements. As stated earlier, only the pressure calibration uncertainty 

analysis is presented here. Analysis for velocity and position are analogous. The voltage 

measurement uncertainty is used as part of the calibration uncertainty analysis for each 

type of measurement. These are combined to form a total bias error for the measurement 

of a given quantity. Total uncertainty in the measurement of these quantities then 

consisted of these bias errors along with the precision error associated with individual 

experiments. 

 The working standard used for all pressure calibration exercises was a Van Essen 

Instruments Betz 2500 Pa Manometer. To quantify the uncertainty in this working 

standard, ( )pUws , its bias error and precision error are combined as follows: 

( ) ( ) ( )[ ] 2
12

ws
2

wsws pPpBpU +=  

where ( )pUws  is the uncertainty in the working standard as a function of measured 

pressure, p  (in Pa), ( )pBws  and ( )pPws  are the bias and precision errors, respectively, as 

a function of measured pressure. The calibration certificate from Van Essen Instruments 
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gives the bias error as: ( ) ppB 4
ws 102Pa3.0 −×+= . A safe maximum value of p  for this 

project is 100 Pa, rendering a maximum value of wsB  of 0.32 Pa. The only precision error 

to be included in this estimate is that of the resolution uncertainty due to the manometer’s 

scale, which is 0.15 Pa. These values result in a maximum value for wsU  of 0.35 Pa. 

 Quantifying the uncertainty in the calibration process consisted of finding the 

difference between values measured in the calibration experiment and values predicted 

by the calibration curve fit. The calibration curve fit took the form: 

( )0fit vvCp −=  

where fitp  is the pressure (in Pa), C  is the calibration coefficient, v  is the voltage 

measured from a pressure transducer, and 0v  is the zero-pressure reference voltage. The 

difference in pressure values, E , between the curve fit and the working standard were 

calculated over the entire calibration pressure range according to the following relation: 

 

( )0wsfitws vvCpppE −−=−=  

where wsp  is the pressure given by the working standard. As discussed in Appendix A, 

the pressure range was traversed several times during the calibration experiment, so a 

given pressure value was tested multiple times. As a result, an average value, E , of the 

difference between the working standard and the curve fit was calculated for each 

pressure value. The calculated differences, E , did not exhibit any obvious trends with 

respect to the magnitude of the pressure, so only a single value, Pa2.0=E , was used for 

the entire range. E  was used as the contribution to bias error resulting from the 

calibration process. 

(D-1) 



 294

 The total bias error of the calibration process was then obtained by combining the 

working standard uncertainty with the bias in the calibration fit as follows: 

[ ] Pa40.02
12

ws
2

cal =+= UEB  

The uncertainty in the voltage measurement makes its contribution to the pressure 

measurement uncertainty here as an uncertainty in the estimate of E . The voltage 

uncertainty, vu , was propagated essentially as a precision index through equation (D-1) 

by employing equation (D-3) of section D.3 as follows: 
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where calN  is the number of data points acquired in the calibration experiment. The 

uncertainty value pu  was then “frozen” as the bias error of any pressure measurement. 

Subsequent pressure measurements used pu  along with precision errors estimated from 

the specific experiment. 

 Conducting similar calibration uncertainty analyses with the position and velocity 

measurements resulted in values of °= 25.0αu  for the angular position uncertainty and of 

sm03.0=uu  and sm03.0=wu  for the uncertainty of the u  and w  components of 

velocity, respectively. 

 

D.3 Uncertainty Propagation into Derived Quantities 

 A large number of derived quantities were calculated from the measured 

quantities of pressure, angular position, and velocity. In most cases, the largest 
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component of the uncertainty of a given quantity was its precision error. The precision 

error of measured quantities, whenever possible, was estimated from “end to end” 

calculations. This means that instead of propagating individual precision indices 

analytically through the various equations, the standard deviation of the end result of the 

actual experiments and calculations was calculated. This was the primary uncertainty 

calculation for most quantities presented. 

 For example, a large number of ensembles were averaged to compute the pressure 

amplitudes presented in Chapter 6. Rather than simply ensemble averaging the pressure 

amplitudes—which produces a mean and an accompanying precision index for the 

amplitude estimate—and then calculating a flutter derivative value from the mean 

amplitude, each amplitude ensemble was saved. A flutter derivative calculation was then 

made on each amplitude ensemble. This produced a large number of flutter derivative 

values from which uncertainty statistics could be calculated. Quantities for which 

precision errors were estimated in this way included pressure amplitudes, pressure 

phases, flutter derivatives, and turbulence length scales. 

 The physical setup of the pressure model allowed a large number of ensembles of 

some quantities from just one test. For example, because two spanwise positions of the 

model were instrumented on both the top and bottom surfaces, the pressure amplitude at a 

given streamwise position was measured at four locations for every test. This provided 

four ensembles of some quantities, such as pressure amplitude, for every actual data 

acquisition cycle. Ensemble averaging of quantities such as pressure amplitude, pressure 

phase, pressure spectra, and flutter derivatives took advantage of this multiple ensemble 
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aspect of the test setup. Obviously, this would not be warranted if the oscillation were not 

about a zero-mean angle of attack.  

 Precision indices were then calculated as follows. Any quantity, including a mean 

value or a variance value, computed from samples of a random variable will itself be a 

random variable. A mean value such as expx  computed from N  independent observations 

of a random variable, x , has an associated “sampling distribution” (i.e. probability 

distribution function). A confidence interval for expx  can be expressed in terms of the 

estimated mean and variance: 

12;exp
exp

2;exp
exp −=+<≤− Nn

N
t

xx
N
t

x nn αα σσ
 

where expσ  is the standard deviation estimated from experimental data and 2;αnt  is the 

Student t  distribution with n  degrees of freedom and probability value α . The above 

expression is well known, and derivations of it can be found in Bendat & Piersol (1986) 

and in Ang & Tang (1975). Although it is derived assuming a Gaussian distribution for 

x , the central limit theorem allows its use for any distribution as N  becomes large. 

Bendat & Piersol (1986) states that this assumption is “quite accurate in most cases” for 

N >10. Uncertainty estimates calculated using this approach are not reported explicitly 

here—rather, 95% confidence intervals were presented along with the data in the 

previous chapters. 

 For those derived quantities where uncertainty was analyzed analytically, 

uncertainty was propagated to derived quantities through the conventional approach of 

Kline & McClintock (1953). The uncertainty, Fu , of a derived quantity, F , which is a 

(D-2) 
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function of n  independent variables, ix , each having an uncertainty of iu , can be written 

as: 
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 One such analysis is presented here as an example. Uncertainty for other 

parameters was calculated similarly. The mean velocity measured with the Pitot static 

probe is calculated as: 

( ) ρstatictotal ppU −= 2  

where U  is the mean velocity, statictotal ppp −=∆  is the dynamic pressure (the difference 

between the total and static pressure measured across the ports of the Pitot static probe), 

and ρ  is the air density. For the mean velocity uncertainty, equation (D-3) can then be 

written as: 
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where Uu  is the uncertainty in the mean velocity, pu∆  is the uncertainty in the dynamic 

pressure, and ρu  is the uncertainty in the air density. With the partial derivatives and the 

appropriate uncertainty valus, this expression becomes: 
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 A number of derived quantities, including turbulence intensity and rms pressure, 

involved rms values. Estimates for the precision errors in rms calculations for a given 

(D-3) 

(D-4) 

(D-5) 

(D-6) 
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random variable employed the following expression developed by Bendat & Piersol 

(1986): 

[ ]
Nx 2

1
≈σε  

where [ ]xσε  is the normalized random error in the rms estimate xσ  and N  is the number 

of samples included in the estimate. Using this estimate, rms pressure uncertainty 

estimates were about 4.6%. This estimate propagated through the definition of turbulence 

intensity, UuIu rms= , gave an uncertainty value for turbulence intensity of 0.04. 

 Two types of calculations required special uncertainty analysis attention. These 

included two different applications of cross correlation calculations. The uncertainty of 

both the cross correlation coefficients reported in Chapters 7 and 8 and the pressure phase 

estimates of Chapter 6 were analyzed using the derivations of Bendat & Piersol (1986). 

In each case, random errors are considered and bias errors are assumed negligible. 

 In this dissertation, correlation values between two signals, ( )tx  and ( )ty , were 

most often presented as the zero time delay value of the cross correlation coefficient 

function, ( )τρxy , which is defined as: 

( ) ( )
( ) ( )00 yyxx

xy
xy RR

R τ
τρ =  

 

where ( )τxyR  is the cross correlation function and ( )τxxR  and ( )τyyR  are autocorrelation 

functions. The uncertainty estimate of ( )0xyρ  employs the normalized uncertainty 

estimate for ( )τxyR̂ , the cross correlation estimate, given by Bendat & Piersol (1986) as: 

(D-7) 

(D-8) 
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( )[ ] ( )[ ] 2
121

2
1ˆ τρτε −+≈ xyxy BT

R  

where B  is the bandwidth of the signal in Hz (estimated here to be 100 Hz), T  is the 

total record length of the measurement in seconds (which was 48 sec.). The uncertainty, 

xyR
u ˆ , in the cross correlation estimate is then given as: 

( )[ ] ( )ττε xyxyR RRu
xy

ˆˆ
ˆ =  

Incorporating this into an estimate of the uncertainty of the cross correlation coefficient, 

xy
uρ , requires use of the error propagation equation (D-3). After calculating the 

appropriate partial derivatives and rearranging, this results in: 

( ) ( )[ ]( ) ( )[ ]( ) 2
1

22
0ˆ0ˆ0 



 += xxxyxy RRu

xy
εερρ  

where, for the purpose of this uncertainty estimate, ( )0xxR  has been assumed to be equal 

to ( )0yyR . Using equation (D-9) for ( )[ ]0ˆ
xyRε  and equation (D-7) for ( )[ ]0ˆ

xxRε , because 

( )02
xxx R=σ , uncertainty values were calculated for various magnitudes of ( )0xyρ . 

Spanwise correlation plots in Chapter 7 include error bars computed as 
xy

uρ2 . 

 Uncertainty in the pressure phase calculation also uses the ( )[ ]τε xyR̂  estimate 

described above. Bendat & Piersol (1986) give the following expression for the random 

error associated with the time, τ , associated with the peak in the cross correlation 

function: 

( )[ ]( ) 2
1

0ˆ93.0
xyRB

ε
π

στ =  
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where τσ  is the rms value associated with the precision error for τ . Uncertainty bounds 

for τ  calculated as τσ2±  were on the order of 0.001 sec.—the sampling rate of the data 

acquisition. As discussed in Appendix C, phase values were computed using the 

expression τψ αf360=  where ψ  is the pressure phase (in degrees) and αf  is the model 

oscillation frequency. The phase uncertainty, therefore, was dependent on αf . For the 

20=rU  tests (for which Hz18.1=αf ), the phase uncertainty, ψu , was less than 0.5°. 

The largest uncertainty, however, was associated with the lowest reduced velocities. For 

the 1.3=rU  tests (for which Hz5.7=αf ), the phase uncertainty was nearly 3°. In 

addition to this analysis, the phase uncertainty was considered by an “end to end” 

analysis as described earlier. The uncertainty bounds plotted in Chapter 6 are the result of 

the end to end analysis. 
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