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Abstract: Structural motion induced aerodynamic forces on bridges are customarily characterized in terms of flutter derivativ
siderable effort has been extended to refine the procedure to identify flutter derivatives of bridge decks using spring-suspe
degree-of-freedom bridge deck section models in wind tunnels. In this context, techniques and implied approximations emplo
literature to identify flutter derivatives from section model studies are highlighted. Through a parametric study, this Techn
assesses the efficacy of a customarily used identification procedure which provides an improved insight and better understan
identification technique for flutter derivatives.
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Introduction

Aerodynamic forces on bridges are conventionally separated
the self-excited and buffeting force components. The self-ex
forces modify bridge frequencies and damping ratios and
result in coupling among modal response components. An
rate modeling of the self-excited forces is essential for a rel
prediction of the buffeting and flutter response of bridges(e.g.,
Katsuchi et al. 1999; Chen et al. 2000). The lift and pitching
moment components of the self-excited forces on a unit leng
the bridge deck are commonly described in terms of flutter
rivatives as(Scanlan and Tomko 1971; Sarkar et al. 1994)
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ḣ

U
+ kA2

*skd
bȧ

U
+ k2A3

*skda

+ k2A4
*skd

h

b
D s2d

where r5air density; U5mean wind velocity;B=2b5bridge
deck width;k=vb/U5reduced frequency;v5circular frequenc
of oscillation; Hi

* and Ai
* (i =1,2,3,4)5flutter derivatives, whic

are functions of reduced frequency or reduced wind velocity
depend on the geometric configuration of the bridge deck;h and
a5displacement of the bridge deck section in the vertical
torsional directions; and each dot denotes a derivative wit
spect to time.

Despite recent advances in computational fluid dyna
(CFD), wind tunnel testing using scaled bridge section mo
has remained as a most reliable means of quantifying the fl
derivatives. There are two main experimental techniques us
conjunction with system identification schemes to extract the
ter derivatives. The first is based on a forced vibration te
which a bridge section model is rigidly supported by a me
nism which can oscillate in precise motions while time histo
of either instantaneous pressure distribution or total integ
aerodynamic forces are measured(e.g., Matsumoto 1996; Haan
al. 2000). The second technique involves a free-vibration exp
ment in which a model is spring-suspended to allow oscilla
in the vertical or torsional direction or in both vertical and
sional directions(e.g., Scanlan and Tomko 1971; Sarkar e
1994). The time histories of the free vibration displacement
monitored for further analysis. Although the forced vibration
proach involves a relatively more complicated driving mecha
and measurements, it provides very reliable estimates of fl
derivatives. In addition, since the angle of incidence and the
plitude of oscillations can be easily controlled, this technique
cilitates the measurements at different test conditions for inv
gating potential nonlinearities in self-excited forces. The
vibration technique is more widely utilized because of its sim
ity and convenience in measurements.

,

This Technical Note addresses the identification techniques for
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flutter derivatives based on the free vibration of the two-deg
of-freedom(2DOF) tests. The approximation concerning the s
excited forces implied in this approach is highlighted, and a p
metric study is conducted to assess its validity. The discu
presented in this Technical Note provides an improved insigh
better understanding of the procedure used to identify flutte
rivatives.

Equations of Motion

Consider a bridge section model suspended by springs in a
tunnel to allow oscillations in the vertical and torsional directio
At a given wind velocity, the free vibration displacements of
2DOF bridge model can be expressed in terms of the com
modal properties as

hstd = h1std + h2std = o
j=1

2

sA0jAhje
l j t + A0j

* Ahj
* el j

* td s3d
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where

l j = − j jv j + iv j
Î1 − j j

2;

F j = fAhj Aa jgT s j = 1,2d s5d

are the eigenvalues and eigenvectors of the two complex m
j j andv j = j th complex modal damping ratio and frequency;hjstd
and a jstd5vertical and torsional displacements associated
two complex modes;A0j5constant coefficients which are dep
dent on the initial free-vibration conditions; and the asterisk
notes the complex conjugate operator.

Accordingly, the associated self-excited forces acting on a
length of the bridge section model are given by
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ḣ2

U

+ k2H2
*sk2d

bȧ2
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where k1=v1b/U and k2=v2b/U5reduced frequencies corr
sponding to the two modes.

The governing equations of the bridge section model are g

by

JOURNAL O
MẌ 1 + Csk1dẊ1 + K sk1dX1 = 0 s8d

MẌ 2 + Csk2dẊ2 + K sk2dX2 = 0 s9d

where

M = Fm 0

0 I
G ; X1 = Fh1

a1
G ; X2 = Fh2

a2
G s10d
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wherem andI5mass and mass moment of inertia per unit le
of the bridge deck;vh,va, and jh,ja5mechanical circular fre
quencies and damping ratios in the vertical and torsional d
tions, respectively.

It is noteworthy that the free vibrations associated with
distinct modes correspond to two sets of distinct aeroelastic
ness and damping matrices expressed in terms of two sets o
frequency dependent flutter derivatives. This feature is well d
onstrated by the flutter analysis, in which an iterative proce
for calculating the complex eigenvalues has to be carried ou
each complex mode until the assumed frequency to evalua
self-excited forces agrees with the imaginary part of the ta
modal frequency(e.g., Chen et al. 2000).

Identification of Flutter Derivatives

An indirect method was proposed to extract the flutter deriva
based on the free vibration response data in Scanlan and T
(1971) and Kumarasena et al.(1992). This technique requires t
vertical and torsional single-degree-of-freedom(SDOF) tests to
extract the direct flutter derivatives, i.e.,H1

* , H4
* , A2

*, and A3
*,

which is followed by the vertical and torsional coupled 2DOF
to extract the coupled terms, i.e.,H2

* , H3
* , A1

*, and A4
*. This ap-

proach requires that the two SDOF tests and the 2DOF test
be carried out at the same reduced frequency. Although this
cedure provides assessment of all flutter derivatives, it lacks
ciency and also leaves doubt concerning its reliability.

Recent efforts have been focused on the development of
efficient procedures by only utilizing a 2DOF test(Poulsen et a
1992; Yamada et al. 1992; Sarkar et al. 1994; Iwamoto and F
1995; Jakobsen and Hansen 1995; Gu et al. 2000). Although dif-
ferent schemes were employed in these studies, it is noted th
approximation concerning the aeroelastic stiffness and dam
matrices implied in each study was the same, i.e.,

Csk1d < Csk2d < Cef; K sk1d < K sk2d < K ef s15d

where Cef and K ef5effective aeroelastic stiffness and damp

matrices

F STRUCTURAL ENGINEERING © ASCE / DECEMBER 2004 / 2071



ons

ven
tive
-
plex
lace-
ems.
es

stiff-
and

and
hich
wind
plex
ced
the

igh
f the
to
tives
an be
ics of
tified
t al.

per-
ity.

ly the
the
fore
due

ight

re-
s, the
d on
wind
i.e.,
odal

eight
ced

g the
-
the

ation
et of

re-
city,

tage
ma-
t the
cies,

rces
ives

as-
and

ions
rfoil,
ight
he-

ation
he
ring-
ation
n
ma-

odal

en-
tives
es
in
s of
Cef = F2mjhvh − rv1b
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Accordingly, at a given wind velocity, the governing equati
of motion of the 2DOF bridge deck model[Eqs.(8) and(9)] can
be approximately expressed as

MẌ + CefẊ + K efX = 0 s18d

whereX =X1 or X2.
Therefore the identification of flutter derivatives at a gi

wind velocity can be carried out as follows: first, the effec
aeroelastic stiffness and damping matrices,K ef andCef, are iden
tified either based on the modal properties of the two com
modes, or directly based on the time histories of model disp
ments, akin to the system identification of other dynamic syst
This is followed by calculating the flutter derivativ
H1

*sk1d , H4
*sk1d , A1

*sk1d, and A4
*sk1d, and H2

*sk2d , H3
*sk2d , A2

*sk2d,
andA3

*sk2d based on the changes in the effective aeroelastic
ness and damping matrices from the structural stiffness
damping matrices(at zero wind velocity).

The identification of the effective aeroelastic stiffness
damping matrices as well as the eight flutter derivatives, w
correspond to two different reduced frequencies for a given
velocity, can be uniquely performed as long as both com
modes are sufficiently excited. However, difficulty is experien
at higher wind velocity close to the flutter velocity because
time histories of response involving the contribution of h
damping mode are too short to obtain a reliable estimate o
modal properties. At lower wind velocities, it is also difficult
obtain reliable estimates of the coupled terms of flutter deriva
because the coupled motion is too weak. These difficulties c
eliminated by changing the mechanical dynamic characterist
the bridge section model so that reliable results can be iden
in a range of reduced wind velocities of interest. In Yamada e
(1992), the identification of eight flutter derivatives has been
formed at high wind velocities close to the critical flutter veloc
Since at these higher wind velocities only one mode, general
mode dominated by torsional motion, is actually manifested in
time histories of vertical and torsional displacements, there
the accuracy of the identification results comes into question
to the lack of information required to uniquely determine e
flutter derivatives.

It is obvious that without the approximation involving the f
quency dependent aeroelastic stiffness and damping matrice
flutter derivatives cannot be uniquely determined only base
the 2DOF free-vibration response data. This data at a given
velocity can only provide eight independent conditions,
modal frequencies and damping ratios and two complex m
shapes, therefore it fails to uniquely determine two sets of
unknown flutter derivatives associated with two distinct redu
frequencies at the same wind velocity.

Instead of making the preceding approximation concernin
self-excited forces, Yamada and Miyata(1997) proposed a proce
dure to extract the eight flutter derivatives associated with
same reduced frequency. In their approach, the modal inform
identified at different wind velocities was used to extract a s
pairs of modal information, which corresponds to the same
duced frequencies. Accordingly, for each given reduced velo

the eight flutter derivatives can be uniquely determined based on
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the modal information of two complex modes. The disadvan
of this approach is that an interpolation from the modal infor
tion at a set of wind velocities has to be carried out to predic
modal information associated with a set of reduced frequen
which adds uncertainty to these estimates.

Validation of the Approximation in Self-Excited
Forces

It is clear that approximation concerning the self-excited fo
must be made in order to uniquely identify the flutter derivat
based on the 2DOF free vibration technique. Although this
sumption is widely invoked, it has not been well recognized
its validity has not been clearly discussed to date.

To validate this approximation, several different configurat
of bridge deck sections are considered here including ai
twin-box section, and rectangular sections with a width-he
ratio of 10. Their flutter derivatives were obtained from the T
odorsen function and wind tunnel tests using the forced vibr
technique(Matsumoto 1996). Using these flutter derivatives, t
complex eigenvalue analysis was conducted for a 2DOF sp
suspended section model to calculate the modal inform
based on Eqs.(8) and(9), at different wind velocities. At a give
wind velocity, the effective aeroelastic stiffness and damping
trices are calculated by the following equation for known m
information:

fK ef CefgF F1 F2

l1F2 l2F2
G = − M fl1

2F1 l2
2F2g s19d

K ef andCef are taken as the output of the free vibration id
tification techniques and used to calculate the flutter deriva
based on Eqs.(16) and (17). These calculated flutter derivativ
are then compared to the correct(target) flutter derivatives used
the complex mode analysis. The use of theoretical value

Fig. 1. Frequency versus wind velocity(airfoil)

Fig. 2. Damping ratio versus wind velocity(airfoil)
2004



aly-
time

n the
ap-
de-

rtain-
stic
stem
pring
alysis

tios,
ve-

plex
lines
flutter
pur-
ted by
ency,

the
the

. It is
odal

iva-
ons,
tions
e ap
ests
the

e
sup-

tion

tives,
tion
ocity
en-
two
ap-

t

modal information, calculated by the complex eigenvalue an
sis, rather than the use of identified values based on the
histories of responses helps to put the following discussion i
proper context. Clearly, it only reflects the influence of the
proximation in the self-excited forces on the identified flutter
rivatives, and does not include the influences of other unce
ties involved in the identification of the effective aeroela
stiffness and damping matrices that depend on individual sy
identification techniques. The dynamic parameters of the s
suspended section model system used in the flutter an
are b=0.1 m; m=2 kg; I =0.005 kg·m2; fh=vh/ s2pd=4 Hz; fa

=va / s2pd=6 Hz; jh=ja=0.32%.
Figs. 1–4 show the variation in frequencies, damping ra

amplitude ratios, and phase differences with increasing wind
locities for the airfoil section. These are calculated by com
eigenvalue analyses with an iterative procedure. The solid
are the correct results which are calculated based on the
derivatives defined at their individual frequencies. For the
pose of comparison, the dashed lines are the results calcula
using the flutter derivatives defined at another modal frequ
i.e., for the calculation of modal property of the first mode,K sk2d
andCsk2d were used rather than usingK sk1d andCsk1d. These do
not have a physical meaning but provide some insight to
sensitivity of modal properties with respect to the variation in
flutter derivatives due to changes in the reduced frequency
emphasized that the correct estimation of the aeroelastic m
properties are based on two sets of eight flutter derivatives.

Figs. 5–7 show the comparison of the identified flutter der
tives with their target values for different bridge deck secti
indicated by circles and solid lines, respectively. For all sec
considered, excellent agreement was obtained despite th
proximation in the self-excited forces being made. This sugg
that the modification of the system dynamic matrices due to
aeroelastic terms, i.e.,rvb2H1

* , rvb3H2
* , rv2b3H3

* , rv2b2H4
* ,

rvb3A1
* , rvb4A2

* , rv2b4A3
*, and rv2b3A4

*, are not very sensitiv
to the reduced frequency. The results of the parametric study

Fig. 3. Amplitude ratio versus wind velocity(airfoil)

Fig. 4. Phase shifts versus wind velocity(airfoil)
JOURNAL O
-

port the approximation customarily implied in the identifica
of flutter derivatives using free vibration techniques.

Conclusion

Based on the definition of frequency dependent flutter deriva
it was pointed out in this Technical Note that the free-vibra
response of a 2DOF bridge section model at a given wind vel
did not provide sufficient information required to uniquely id
tify the two sets of eight flutter derivatives associated with
different modal frequencies. To ameliorate this difficulty, an

Fig. 5. Comparison of flutter derivatives(airfoil;—target ando
identification)

Fig. 6. Comparison of flutter derivatives(twin-box section;—targe
ando identification)
F STRUCTURAL ENGINEERING © ASCE / DECEMBER 2004 / 2073
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proximation in the self-excited forces is customarily invoked
order to uniquely identify all flutter derivatives. A parame
study involving a host of bridge deck sections lent support to
approximation customarily implied in the wind tunnel practic
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