TECHNICAL NOTES

Efficacy of the Implied Approximation in the Identification
of Flutter Derivatives

Xinzhong Chen'! and Ahsan Kareem?

Abstract: Structural motion induced aerodynamic forces on bridges are customarily characterized in terms of flutter derivatives. Con-
siderable effort has been extended to refine the procedure to identify flutter derivatives of bridge decks using spring-suspended twa
degree-of-freedom bridge deck section models in wind tunnels. In this context, techniques and implied approximations employed in the
literature to identify flutter derivatives from section model studies are highlighted. Through a parametric study, this Technical Note
assesses the efficacy of a customarily used identification procedure which provides an improved insight and better understanding of tt
identification technique for flutter derivatives.

DOI: 10.1061(ASCE)0733-944%2004130:122070)

CE Database subject headings: Wind force; Wind tunnel tests; Bridges; Flutter; Aerodynamics; Identification

Introduction 1 . h . ba .

Msdt) = EpU2(2b2)<kA1(k)G + kAz(k)U + KAy
Aerodynamic forces on bridges are conventionally separated into
the self-excited and buffeting force components. The self-excited
forces modify bridge frequencies and damping ratios and may
result in coupling among modal response components. An accu-
rate modeling of the self-excited forces is essential for a reliable

prediction of the buffeting and flutter response of bridges., of oscillation; H' and A" (i=1,2,3,4=flutter derivatives, which
s H 2,3, .

Katsuchi et al. 1999; Chen et al. 2()0(]’he lift and p|_tch|ng are functions of reduced frequency or reduced wind velocity and
moment components of the self-excited forces on a unit length of depend on the geometric configuration of the bridge dacknd

the bridge deck are commonly described in terms of flutter de- o =displacement of the bridge deck section in the vertical and
rivatives as(Scanlan and Tomko 1971; Sarkar et al. 1994 torsional directions; and each dot denotes a derivative with re-
spect to time.

Despite recent advances in computational fluid dynamics
(CFD), wind tunnel testing using scaled bridge section models
has remained as a most reliable means of quantifying the flutter
derivatives. There are two main experimental techniques used in

e h conjunction with system identification schemes to extract the flut-
+k H4(k)5 1) ter derivatives. The first is based on a forced vibration test in
which a bridge section model is rigidly supported by a mecha-
nism which can oscillate in precise motions while time histories
of either instantaneous pressure distribution or total integrated
aerodynamic forces are measurfedy., Matsumoto 1996; Haan et
al. 2000Q. The second technique involves a free-vibration experi-
ment in which a model is spring-suspended to allow oscillations
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where p=air density; U=mean wind velocity;B=2b=Dbridge
deck width;k=wb/U=reduced frequencyp=circular frequency

1 Coh L b .
Lodt) = EpUZ(Zb)<kHl(k)U + kHz(k)U“ +KRH; (K
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flutter derivatives based on the free vibration of the two-degree-
of-freedom(2DOF) tests. The approximation concerning the self-
excited forces implied in this approach is highlighted, and a para-
metric study is conducted to assess its validity. The discussion
presented in this Technical Note provides an improved insight and
better understanding of the procedure used to identify flutter de-
rivatives.

Equations of Motion

Consider a bridge section model suspended by springs in a wind
tunnel to allow oscillations in the vertical and torsional directions.
At a given wind velocity, the free vibration displacements of the
2DOF bridge model can be expressed in terms of the complex
modal properties as

2
h() = hy() + hy(0) = 3 (AgAeNt+ AgALE)  (3)
=1

2
alt) = ay(t) + o) = > (AgAyeit+ AgAL e (@)
=1

where

— H [ 2.
A= - gop oyl -§

@ =[Ay AlT (=12 (5

are the eigenvalues and eigenvectors of the two complex modes
& andw;=jth complex modal damping ratio and frequenhy(t)
and aj(t)=vertical and torsional displacements associated with
two complex modes;=constant coefficients which are depen-
dent on the initial free-vibration conditions; and the asterisk de-
notes the complex conjugate operator.

Accordingly, the associated self-excited forces acting on a unit
length of the bridge section model are given by

1 N N

Ledt) = LoedD) + Loed ) = Eptﬂ(zb)(Iqu(koU1 +kaH3k) =
20 4* 20 * h1 1 2 * hZ
+IH (ko + KGH (k) | + ZpU%(2b)| koHi ko)

. ba . . .h
+loH(ke) =7 + IHi (koo + k§H4<k2>§> (©)

MX1+C(kl)X1+K(kl)X1:0 8
MX 5 + C (k)X + K (kp)X = 0 )
where
m 0 h, h,
= ;o Xe= y Xg= (10
0 1 o s
2méop — pob?Hi(k)  — poibPHy(k
Clky) = { ih(ﬂh3 pwy 1(ky) pwy ) *z( 1) } (11
—pob*Ai(k)  2€,0, — pwib*Ay(ky)
: mwﬁ - pwisz;(kl) - pwibsH;(kl)
K(kl)— 213 0% 2 24N * (12)
- poib*A (k)  log — pwib®Ask,)
2mépwn — posb?Hi(ky) = po,b®Hy(k
Clky) = [ frion = poDHG) = poab Halko) ] (13
- P‘Dzb Al(kZ) 2'%0(“00( - p("')Zb AZ(kZ)
B mu)ﬁ - pw%szZ(kz) - pw§b3H;(k2)
K (kp) = 23 nr ) eant (14)
= pw3b A4(k2) lwg = pw3b A3(k2)

wherem and|l =mass and mass moment of inertia per unit length
of the bridge deckwy,w,, and &,,& =mechanical circular fre-
quencies and damping ratios in the vertical and torsional direc-
tions, respectively.

It is noteworthy that the free vibrations associated with two
distinct modes correspond to two sets of distinct aeroelastic stiff-
ness and damping matrices expressed in terms of two sets of eight
frequency dependent flutter derivatives. This feature is well dem-
onstrated by the flutter analysis, in which an iterative procedure
for calculating the complex eigenvalues has to be carried out for
each complex mode until the assumed frequency to evaluate the
self-excited forces agrees with the imaginary part of the target
modal frequencye.g., Chen et al. 2000

Identification of Flutter Derivatives

An indirect method was proposed to extract the flutter derivatives

based on the free vibration response data in Scanlan and Tomko
(1971 and Kumarasena et dl1992. This technique requires the

vertical and torsional single-degree-of-freed¢8DOB tests to

extract the direct flutter derivatives, i.ed;, H,, A, and A,

which is followed by the vertical and torsional coupled 2DOF test

1 . h
Mgdt) = Mgeq(t) + Mgedt) = EPUZ(sz)(klAl(kl)Ul
v ba . <. .h 1
+haAglk) 5+ KiAY Ky + kiAAkﬁgl) +SpU(2b%)
. h . ba .
X (kZAl(kZ)UZ + kZAZ(kZ)TZ + k§A3(k2)a2

N
+ k§A4(k2)32) (7)

where k;=w;b/U and k,=w,b/U=reduced frequencies corre-
sponding to the two modes.

to extract the coupled terms, i.¢d,, H, A, andA,. This ap-

proach requires that the two SDOF tests and the 2DOF test must
be carried out at the same reduced frequency. Although this pro-

cedure provides assessment of all flutter derivatives, it lacks effi-
ciency and also leaves doubt concerning its reliability.

Recent efforts have been focused on the development of more

efficient procedures by only utilizing a 2DOF t&8toulsen et al.

1992; Yamada et al. 1992; Sarkar et al. 1994; lwamoto and Fujino
1995; Jakobsen and Hansen 1995; Gu et al. R08though dif-

ferent schemes were employed in these studies, it is noted that the
approximation concerning the aeroelastic stiffness and damping

matrices implied in each study was the same, i.e.,

C(ky) = C(kp) = Cqf;  Ki(ky) = K(kp) = K (19

The governing equations of the bridge section model are given where C,; and K =effective aeroelastic stiffness and damping

by

matrices
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c - [nghwh —posb?Hi(k) = pwb®Hy(ky) } s 8 ; :
L - pnb®Ai(k)  21E,0, ~ pob Ay(ke) el Toson SO
T : :
* * Iy : :
K [mwﬁ —pwib?Hy(ky)  — pwib®H(k,) } an R I
L - polbPAsky) 12 - pudbAyky) g ening ;
Accordingly, at a given wind velocity, the governing equations
of motion of the 2DOF bridge deck modgtgs.(8) and(9)] can o : :
be approximately expressed as 0 5 10 15

Wind velocity U(m/s)
MX +CeX + KX =0 (19)

whereX =X, or X,.

Therefore the identification of flutter derivatives at a given
wind velocity can be carried out as follows: first, the effective
aeroelastic stiffness and damping matrides,andCy, are iden-
tified either based on the modal properties of the two complex
modes, or directly based on the time histories of model displace-
ments, akin to the system identification of other dynamic systems.
This is followed by calculating the flutter derivatives
Hi(k), Hyky), Aj(ky), and Ayky), and Hy(ky), Hilky), Agky),
andA;(k,) based on the changes in the effective aeroelastic stiff-
ness and damping matrices from the structural stiffness and
damping matricegat zero wind velocity.

The identification of the effective aeroelastic stiffness and
damping matrices as well as the eight flutter derivatives, which
correspond to two different reduced frequencies for a given wind
velocity, can be uniquely performed as long as both complex
modes are sufficiently excited. However, difficulty is experienced
at higher wind velocity close to the flutter velocity because the
time histories of response involving the contribution of high

Fig. 1. Frequency versus wind velocitgirfoil)

the modal information of two complex modes. The disadvantage
of this approach is that an interpolation from the modal informa-
tion at a set of wind velocities has to be carried out to predict the
modal information associated with a set of reduced frequencies
which adds uncertainty to these estimates.

Validation of the Approximation in Self-Excited
Forces

It is clear that approximation concerning the self-excited forces
must be made in order to uniquely identify the flutter derivatives
based on the 2DOF free vibration technique. Although this as-
sumption is widely invoked, it has not been well recognized and
its validity has not been clearly discussed to date.

To validate this approximation, several different configurations
of bridge deck sections are considered here including airfoil,
. ) . - twin-box section, and rectangular sections with a width-height
damping mod(_a are too short_to Obtam a re_hgble es“”_‘?te of theratio of 10. Their flutter derivatives were obtained from the The-
modal properties. At lower wind velocities, it is also difficult to odorsen function and wind tunnel tests using the forced vibration

obtain refiable estimates (.)f th_e coupled terms of fIl_Jtt_er d_er|vat|ves techniqgue(Matsumoto 199% Using these flutter derivatives, the
because the coupled motion is too weak. These difficulties can be

liminated by chanaing th hanical d ic ch teristi f(:omplex eigenvalue analysis was conducted for a 2DOF spring-
teh'mén%e yi. anglng Iemtictanll'ci)l ynamlltcc ar%c e_gs 'f? Odsuspended section model to calculate the modal information
the bridge section model o that reliable resulls can be ldentiiedy, ;5o q o Eqg8) and(9), at different wind velocities. At a given
in a range of reduced wind velocities of interest. In Yamada et al.

; e . o wind velocity, the effective aeroelastic stiffness and damping ma-

(1992, the |.dentn.‘|cat|on OT .elght flutter derIVE.It.IVGS has been PE" trices are calculated by the following equation for known modal
formed at high wind velocities close to the critical flutter velocity. information:
Since at these higher wind velocities only one mode, generally the
mode dominated by torsional motion, is actually manifested in the P, P,
time histories of vertical and torsional displacements, therefore [Kes Cef]{)\lq,z D,
the accuracy of the identification results comes into question due ) o
to the lack of information required to uniquely determine eight _ Ker @ndCes are taken as the output of the free vibration iden-
flutter derivatives. tification techniques and used to calculate the flutter derivatives

It is obvious that without the approximation involving the fre- Pased on Eqs16) and(17). These calculated flutter derivatives
quency dependent aeroelastic stiffness and damping matrices, thé'® then compared to the corretztrge) flutter derivatives used in
flutter derivatives cannot be uniquely determined only based onthe complex mode analysis. The use of theoretical values of
the 2DOF free-vibration response data. This data at a given wind
velocity can only provide eight independent conditions, i.e.,

] = - M\, N, | (19

modal frequencies and damping ratios and two complex modal - o8
shapes, therefore it fails to uniquely determine two sets of eight g os
unknown flutter derivatives associated with two distinct reduced 2
frequencies at the same wind velocity. s 04
Instead of making the preceding approximation concerning the E o2
self-excited forces, Yamada and Miydt097) proposed a proce- =
dure to extract the eight flutter derivatives associated with the 2 o
same reduced frequency. In their approach, the modal information ; AN
identified at different wind velocities was used to extract a set of 02 5 10 15
pairs of modal information, which corresponds to the same re- Wind velocity U(m/s)
duced frequencies. Accordingly, for each given reduced velocity, ) ) . ) o
the eight flutter derivatives can be uniquely determined based on Fig. 2. Damping ratio versus wind velocitairfoil)
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modal information, calculated by the complex eigenvalue analy- £ e e st
sis, rather than the use of identified values based on the time £ o
histories of responses helps to put the following discussion in the g S0 NG e
proper context. Clearly, it only reflects the influence of the ap- 1‘5—40 ------------- B B B
proximation in the self-excited forces on the identified flutter de- B0} e D SN
rivatives, and does not include the influences of other uncertain- _80 : :
ties involved in the identification of the effective aeroelastic 0 5 10 15

stiffness and damping matrices that depend on individual system Reduced velocity U8

identification techniques. The dynamic par_ameters of the spring Fig. 5. Comparison of flutter derivativegairfoil—target ando
suspended section model system used in the flutter analys'sidentiﬁcatior)

are b=0.1 m; m=2 kg; 1=0.005 kgn?; f,=w,/(2w)=4 Hz; f,
=w,/(2m)=6 Hz; £,=£,=0.32%.

Figs. 1-4 show the variation in frequencies, damping ratios, port the approximation customarily implied in the identification
amplitude ratios, and phase differences with increasing wind ve- of flutter derivatives using free vibration techniques.
locities for the airfoil section. These are calculated by complex
eigenvalue analyses with an iterative procedure. The solid lines
are the correct results which are calculated based on the flutterConclusion
derivatives defined at their individual frequencies. For the pur-
pose of comparison, the dashed lines are the results calculated byased on the definition of frequency dependent flutter derivatives,
using the flutter derivatives defined at another modal frequency, it was pointed out in this Technical Note that the free-vibration
i.e., for the calculation of modal property of the first moHék,) response of a 2DOF bridge section model at a given wind velocity
andC(k,) were used rather than usiikgk;) andC(k;). These do did not provide sufficient information required to uniquely iden-
not have a physical meaning but provide some insight to the tify the two sets of eight flutter derivatives associated with two
sensitivity of modal properties with respect to the variation in the different modal frequencies. To ameliorate this difficulty, an ap-
flutter derivatives due to changes in the reduced frequency. It is
emphasized that the correct estimation of the aeroelastic modal
properties are based on two sets of eight flutter derivatives.

Figs. 57 show the comparison of the identified flutter deriva-
tives with their target values for different bridge deck sections,
indicated by circles and solid lines, respectively. For all sections
considered, excellent agreement was obtained despite the ap-
proximation in the self-excited forces being made. This suggests
that the modification of the system dynamic matrices due to the
aeroelastic terms, i.e.pwb?H], pwb®H;, pw?b®Hs, pw?o?H),
pwb®Al, pwb*A;, pw?b*A;, and pw?b®A,, are not very sensitive
to the reduced frequency. The results of the parametric study sup-
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Fig. 7. Comparison of flutter derivativegectangular sectio/D
=10;—target ana identification

proximation in the self-excited forces is customarily invoked in

order to uniquely identify all flutter derivatives. A parametric

study involving a host of bridge deck sections lent support to this
approximation customarily implied in the wind tunnel practice.

Acknowledgment

The support for this work was provided in part by NSF Grant
CMS 03-24331 and is gratefully acknowledged.

References

Chen, X., Matsumoto, M., and Kareem, £000. “Aerodynamic cou-
pling effects on the flutter and buffeting of bridges.” Eng. Mech.
126(1), 17-26.

Gu, M., Zhang, R., and Xiang, H2000. “Identification of flutter deriva-
tives of bridge decks.J. Wind. Eng. Ind. Aerodyn.84, 151-162.

Haan, F. L., Kareem, A., and Szewczyk, A. £000. “Experimental
measurements of spanwise correlation of self-excited forces on a rect-
angular cross section¥olume of Abstracts, Fourth Int. Collog. on
Bluff Body Aerodyn, and Appl. (BBAA IMRuhr-University Bochum,
Germany, 439-442.

Iwamoto, M., and Fujino, Y(1995. “Identification of flutter derivatives
of bridge deck from free vibration dataJ! Wind. Eng. Ind. Aerodyn.
54/55, 55-63.

Jakobsen, J. B., and Hansen, (£995. “Determination of the aerody-
namic derivatives by a system identification methadl.'Wind. Eng.
Ind. Aerodyn. 57, 295-305.

Katsuchi, H., Jones, N. P., and Scanlan, R. (#999. “Multimode
coupled flutter and buffeting analysis of the Akashi-Kaikyo Bridge.”
J. Struct. Eng. 1251), 60-70.

Kumarasena, T., Scanlan, R. H., and Ehsar{1892. “Recent observa-
tions in bridge deck aeroelasticityJ: Wind. Eng. Ind. Aerodyn 40,
225-247.

Matsumoto, M(1996. “Aerodynamic damping of prismsJ. Wind. Eng.
Ind. Aerodyn. 592-3), 159-175.

Poulsen, N. K., Damsgaard, A., and Reinhold, T(2992. “Determina-
tion of flutter derivatives for the Great Belt BridgeJ: Wind. Eng.
Ind. Aerodyn, 41, 153-164.

Sarkar, P. P., Jones, N. P., and Scanlan, R(1994). “Identification of
aeroelastic parameters of flexible bridged.”Eng. Mech. 12(Q(8),
1718-1742.

Scanlan, R. H., and Tomko, J.@971). “Airfoil and bridge deck flutter
derivatives.”J. Eng. Mech. Diy. 97(6), 1717-1737.

Yamada, H., and Miyata, T1997. “Introduction of a modal decompo-
sition and reassemblage method for the multi-dimensional unsteady
aerodynamic force measuremeni.”Wind. Eng. Ind. Aerodyn.69—
71, 769-775

Yamada, H., Miyata, T., and Ichikawa, KL992. “Measurement of aero-
dynamic parameters by extended Kalman Filter algorithin.Wind.
Eng. Ind. Aerodyn. 42, 1255-1263.

2074 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / DECEMBER 2004



