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Abstract: The time-frequency character of wavelet
transforms allows adaptation of both traditional time and
frequency domain system identification approaches to ex-
amine nonlinear and non-stationary data. Although chal-
lenges did not surface in prior applications concerned with
mechanical systems, which are characterized by higher
frequency and broader-band signals, the transition to the
time-frequency domain for the analysis of civil engineer-
ing structures highlighted the need to understand more
fully various processing concerns, particularly for the
popular Morlet wavelet. In particular, as these systems
may possess longer period motions and thus require finer
frequency resolutions, the particular impacts of end ef-
fects become increasingly apparent. This study discusses
these considerations in the context of the wavelet’s multi-
resolution character and includes guidelines for selection
of wavelet central frequencies, highlights their role in com-
plete modal separation, and quantifies their contributions
to end-effect errors, which may be minimized through a
simple padding scheme.

1 INTRODUCTION

While the Fourier transform has reshaped the way in
which engineers interpret signals, it becomes evident
that by breaking a signal into a series of trigonomet-
ric basis functions, time-varying features cannot be cap-
tured. Thus, basic signal analysis or system identification
may be potentially hindered by this limitation. The real-
ization that non-stationary features characterize many
processes of interest led to the definition of alterna-
tive transforms that rely on bases with compact sup-
port. As Fourier basis functions are localized in fre-
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quency but not in time, one alternative was introduced
by Gabor to localize the Fourier transform through the
short time Fourier transform (STFT). However, the con-
straints of the Heisenberg uncertainty principle limit
the obtainable resolutions considerably, prompting an
alternative approach to time-frequency analysis, featur-
ing basis functions that have compact support in both
frequency and time to yield a multi-resolution analy-
sis termed the wavelet transform (Carmona et al., 1998;
Chui, 1992).

1.1 Governing relationships

The wavelet transform is a linear transform, which de-
composes a signal x(t) via basis functions that are sim-
ply dilations and translations of the parent wavelet g(t)
through the convolution of the signal and the scaled par-
ent wavelet according to

W(a, t) = 1√
a

∫ ∞

−∞
x(τ )g∗

(
t − τ

a

)
dτ (1)

Dilation by the scale, a, inversely proportional to fre-
quency, represents the periodic or harmonic nature of
the signal. By this approach, time-frequency localization
is possible, since the parent wavelet serves as a “win-
dow function,” as opposed to the trigonometric bases of
the Fourier transform. The wavelet coefficients, W(a, t),
represent a measure of the similitude between the di-
lated/shifted parent wavelet and the signal at that time
t and scale (frequency) a.

Though there are countless parent wavelets used in
practice, of both discrete and continuous form, this ar-
ticle shall focus on the continuous wavelet transform
(CWT) using the Morlet wavelet (Grossman and Morlet,
1990), as its analogs to the Fourier transform make it
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quite attractive for harmonic analysis. These analogs are
evident from the Morlet basis function

g(t) = eiωot e−t2/2 = e−t2/2 (cos(ωot) + i sin(ωot)) (2)

Essentially, the Morlet wavelet in Equation (2) is a
Gaussian-windowed Fourier transform, with sines and
cosines oscillating at the central frequency, f o(ωo =
2π f o). Dilations of this temporally localized parent
wavelet then allow the “effective frequency” of this sine-
cosine pair to change so as to match harmonic compo-
nents within the signal. The Morlet wavelet is equiva-
lently localized in the frequency domain, as evidenced
by the Fourier transform of the dilated Morlet wavelet

G(a f ) =
√

2
√

πe−2π2(a f − fo)2
(3)

For the Morlet wavelet, there is a unique relationship
between the dilation parameter of the transform, a, and
the Fourier frequency, f , at which the wavelet is focused.
This relationship is evident by maximizing Equation (3)
to yield

a = fo/ f (4)

1.2 Wavelets in system identification

The Morlet wavelet and other classes of discrete and
continuous wavelets have been applied to a variety of
problems ranging from image and acoustic processing to

Fig. 1. Wavelet time-frequency system identification concept.

fractal analysis. Recently, the analysis of stochastic pro-
cesses of interest to civil engineering adapted wavelets
to a number of situations where Fourier transforms were
traditionally used to define quantities of interest, for ex-
ample, for estimates of auto and cross-spectra (Gurley
and Kareem, 1999).

Meanwhile, the more rigorous application of wavelets
to system identification of mechanical systems is still ad-
vancing, but shows great promise thanks to the expanse
of parent wavelets available and flexibility inherent in
the wavelet transform itself. This flexibility is concep-
tualized in Figure 1 for a simple harmonic signal. The
squared modulus of the wavelet transform, or scalogram,
is shown three dimensionally in the time-frequency do-
main. As discussed in greater detail in Carmona et al.
(1998), the wavelet coefficients take on maximum values
at the instantaneous frequency, corresponding to dom-
inant frequency components in the signal at each in-
stant in time. These define ridges in the time-frequency
plane. Extracting the values of the wavelet coefficients
along each ridge yields a wavelet skeleton, whose real
and imaginary components approximate the signal and
its Hilbert transform at that ridge frequency (see left
inset of Figure 1). A time-domain-based system identi-
fication scheme using the amplitude and phase of the
analytic signal can then take advantage of these skele-
ton components; see, for example, Staszewski (1997,
1998) and Ruzzene et al. (1997). Similarly, a slice of the
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scalogram at a given time, across the range of frequen-
cies, yields the instantaneous spectrum of the signal (see
right inset of Figure 1), indicating the frequency content
at that instant in time. Much like the Fourier spectra,
the peak of this spectrum corresponds to the instanta-
neous frequency defining the ridge and the bandwidth
of the spectrum provides an indication of the spread
of frequencies present in the signal at each instant in
time. This spectral information can be utilized in more
traditional frameworks for system identification via fre-
quency response functions (Hartin, 2001; Staszewski and
Giacomin, 1997), for coherence analysis (Gurley et al.,
2003) and for general time-frequency signal analysis
(Kijewski and Kareem, 2002a).

A number of researchers have noted this dual iden-
tification potential, integrating the wavelet transform
with number of system identification schemes tradition-
ally based on Fourier transforms, for example, Coca and
Billings (1997), Robertson et al. (1998a,b), Ghanem and
Romeo (2000); however, when some of these approaches
are introduced in civil engineering, where structures are
characterized by more narrowbanded responses than
most mechanical systems, certain processing concerns
emerge. As these systems are usually of longer period,
frequency resolutions must be refined to insure modal
separation. This in turn results in an increase of end-
effect errors that can have a dramatic influence on the
quality of wavelet amplitudes and modal properties such
as damping. The occurrence of these phenomena is ra-
tionalized in this study for the popular Morlet wavelet,
guidelines for selection of critical parameters are pro-
vided, and a padding scheme to minimize end effects
is introduced. Demonstrations on simulated and mea-
sured full-scale data highlight these important consider-
ations, as wavelet-based system identification schemes
are adapted to civil engineering applications.

2 WAVELET RESOLUTIONS

Though a host of time-frequency transformations are
available, only the wavelet transform is uniquely capa-
ble of adaptively adjusting to the Heisenberg uncertainty
principle. In essence, the wavelet transform concedes
that arbitrarily good resolution in both time and fre-
quency is not possible. Thus the transform optimizes its
resolutions as needed. It provides good resolution at high
dilations or low frequencies, ideal for civil engineering
applications, while sacrificing its time resolution in this
regime to satisfy the uncertainty principle. In the time
domain, the transform has good resolution at high fre-
quencies so as to identify signal singularities or discon-
tinuities, a feature often exploited in health monitoring
applications; see, for example, Corbin et al. (2000).

The time (�t) and frequency (�f ) resolutions of the
wavelet transform are given by (Chui, 1992)

�t = a�tg (5a)

and

� f = � fg/a (5b)

and indicate that resolutions of the wavelet are simply
scaled versions of the time (�tg) and frequency (�f g)
resolutions of the parent wavelet g(t). Physically, the
measures provided in Equation (5) indicate that two
pulses in time cannot be identified unless they are more
than �t apart. Similarly, two distinct frequency contri-
butions cannot be discerned unless they are more than
� f apart.

While the relationships in Equation (5) seem straight-
forward, for the Morlet wavelet the issue of resolution is
complicated by the fact that it is a Gaussian-windowed
Fourier transform. Unfortunately, this window lacks
measurable duration. However, by applying Gabor’s
(1946) definition for mean square measures, an “effec-
tive duration” in the time domain and bandwidth in the
frequency domain may be identified as (Chui, 1992)

�tg = 1√
2

(6a)

and

� fg = 1

2π
√

2
(6b)

By this definition, the undilated Morlet function eval-
uated at time t and frequency f effectively windows a
portion of the signal from t − �tg to t + �tg in the time
domain, resulting in a frequency window spanning from
f −� f g to f +� f g. The total area analyzed in the time-
frequency domain forms the Heisenberg box, centered
at time t and frequency f , shown in Figure 2. Note that
the Gaussian window employed by the Morlet wavelet is
optimal, that is, it has the same resolution in both the time
and angular frequency (ω) domains (�ωg = 2π� f g).

2.1 Frequency resolution: Modal separation

Having established the resolutions of the Morlet
wavelet, the resolutions at a given frequency f i in the
continuous wavelet analysis can be determined by com-
bining Equations (4), (5b), and (6b) to yield

� fi = fi

2π
√

2 fo
(7)

This dictates that the frequency resolution will improve
for longer period signals, an attractive feature of the



342 Kijewski & Kareem

Fig. 2. Effective time and frequency resolutions of undilated
Morlet wavelet and associated Heisenburg box.

wavelet transform, and also implies that the resolution
capabilities can be appropriately adjusted for the analy-
sis through careful selection of the central frequency, f o,
of the Morlet wavelet. The effective bandwidth measure
for Equation (7) is 2�f i. Note, however, that by basing
the bandwidth measure on Gabor’s mean square esti-
mate for the Gaussian window (see Equation (6b)), only
about 68% of the frequency window is accounted for.
This measure essentially defines one standard deviation
(σ ) of the window mean, yielding a frequency window
with a total bandwidth 2�f or 2σ , as shown in Figure 2.
However, the duration of this frequency window is mis-
leadingly narrow, assuming a better frequency resolution
than is truly present. To more strictly define the band-
width, one should note that roughly 95% of the window
lies within two standard deviations of the mean, as also
noted in Figure 2, for which the effective bandwidth is
4�f or 4σ . An even stricter condition would extend the
definition to three standard deviations, also shown in
Figure 2, encompassing 99% of the window. These con-
siderations become important when confronted with the
need to separate closely spaced modes.

Therefore, Equation (7) may be generalized, given the
need to separate two closely spaced frequency compo-
nents f 1 and f 2, where the minimum central frequency
for an analysis can be determined by

fo = (2α)
f1,2

2π
√

2� f1,2
(8)

f 1,2 can be taken as either f 1 or f 2 or an average of the
two, as the choice has little impact for small values of

Fig. 3. Schematic demonstration of the implication of
parameter selection for modal separation.

� f 1,2, the separation between the two frequency com-
ponents. α is the parameter defining how much overlap
between the adjacent Gaussian windows of the Morlet
wavelet is permitted. As shown in Figure 3, using the tra-
ditional mean square definition for the bandwidth of the
Gaussian window amounts to α = 1. As determined by
Equation (8), the wavelet analysis windows centered at
the two frequencies will overlap significantly. However,
increasing α to 2 and applying Equation (8), a larger cen-
tral frequency is adopted, yielding analysis windows that
are narrower, and although centered at the same two
frequencies, now have reduced overlap. Note that α can
be increased to 3, insuring complete modal separation.
As will be shown in a subsequent example, retaining α =
2 is typically sufficient to insure adequate modal sepa-
ration for system identification in most linear systems,
although total modal separation via α = 3 may be nec-
essary for closely spaced modes when nonlinear system
identification is performed.

2.2 Time resolution: End effects

On the other hand, the temporal resolutions of a wavelet
analysis have direct bearing on the significance of end
effects, which have been noted in a number of appli-
cations, for example, Staszewski (1998). In many cases,
the a priori knowledge of the signal characteristics al-
lows anomalies to be qualitatively distinguished and
neglected in subsequent analyses. However, this is, in
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general, not possible, requiring a quantitative guideline
to establish what portions of the wavelet-transformed
signal are accurate. By examining the convolution oper-
ation in Equation (1) and the window function in Equa-
tion (2), it is evident that, although the wavelet is focused
at a given time and represents the temporal content in
this vicinity, the window extends into both the past and
future (see Figure 2), by an extent dependent on the scale
being analyzed. This fact has important implications in
the end regions of the wavelet transform map, resulting
from the fact that the wavelet analyzed at time tj spreads
half of its analysis window into the past. As Figure 2 il-
lustrates, the undilated analysis window, by the standard
RMS definition, spans 2�tg. Thus, the temporal duration
of the dilated window �ti, for the frequency (scale) f i,
is found by combining Equations (4), (5a), and (6a) to
yield

�ti = fo

fi
√

2
(9)

As illustrated in Figure 4, the temporal window is elon-
gated at the lower frequency, f 1. As the analysis time tj

lies within �t1 of the ends of the signal, the analysis win-
dow extends into a region with no available data, yield-
ing wavelet coefficients based on an “incomplete” signal.
Once again, this definition is based on the classical mean
square definition in Equation (6a), approximating the ef-
fective temporal duration as a single standard deviation
of the Gaussian window. Revisiting Figure 2, in light of
the previous discussion with respect to frequency reso-
lution, a more stringent condition may be obtained by
defining the effective temporal resolution of the Morlet
wavelet as 2σ or 2�ti, so as to account for about 95%
of the Gaussian window. Defining a 3�ti as the tempo-

Fig. 4. Illustration of region susceptible to end effects.

ral resolution can impose an even more stringent con-
dition. Dependent on the desired level of accuracy, ei-
ther of these conditions can be imposed to quantify the
regions potentially at risk to end effects. The general
expression

β�ti ≤ t j ≤ T − β�ti (10)

where β can be set to any nonzero integer value, provides
a practical limit on the translations t that can be consid-
ered in a wavelet analysis of a signal of length T. Thus,
only wavelet coefficients satisfying Equation (10) can be
reliably analyzed. Equation (9) dictates that meaning-
ful analyses at low frequencies require larger amounts
of data, so that several cycles of the low-frequency phe-
nomena can be retained.

The end effects can have substantial influence on the
quality of wavelet coefficients, as discussed in more de-
tail in Kijewski and Kareem (2002b). An illustration of
the implications of end effects on instantaneous spectral
amplitude is provided in Figure 5, where the calculated
instantaneous spectra at each time are plotted one atop
the other, essentially collapsing the scalogram in time. In
comparison with the theoretical prediction, the improve-
ment in instantaneous spectral amplitude and shape is
obvious as the result of progressively neglecting more
of the end-effect region, requiring a value of β = 4 in
Equation (10) to sufficiently negate the end-effect phe-
nomenon. However, in the case of more sensitive spec-
tral measures such as the bandwidth, β = 6 is necessary
to eliminate any significant deviation between the theo-
retical prediction and the wavelet result (Kijewski and
Kareem, 2002b,c). Though such deviations are easily ex-
plained by the end-effect phenomenon, simply neglect-
ing these regions in analysis results in a considerable loss
of data.

2.3 End effects melioration: Signal padding

The loss of considerable regions of a signal is the unfor-
tunate consequence of end effects. One possible solution
to this problem would be to pad the beginning and end of
the signal with surrogate values, placing the true signal of
interest at the center of an elongated vector, and leaving
the virtual values at the tails to be corrupted by end ef-
fects. In the padding operation detailed in Kijewski and
Kareem (2002b), the signal’s characteristics are locally
preserved by reflecting a portion of the signal about its
beginning and end. As the lowest frequency being con-
sidered in the analysis f 1 will yield the largest temporal
resolution �t1, it dictates the maximum end effects antic-
ipated. β is then selected based on the desired accuracy
level, and the time ordinates of the sampled time vector
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Fig. 5. Deviations of simulated instantaneous spectra (gray) from theoretical result (black) as end-effect regions are
progressively neglected.

t = [t1 · · · tN] closest to the termination of the end-effect
regions are then identified by

tn = min[t > β�t1] and tm = max[t < (tN − β�t1)]

(11)

The modified signal xMOD is constructed by reflecting the
signal x (for even functions) or its negative (for odd func-
tions) for the duration of β�t1 about t1 and tN , according
to

xMOD =
[±xn ±xn−1 · · · x1 · · · xN ±xN−1 · · · ±xm]

(12)

where xn and xm are the values of the sampled signal x at
time tn and tm. xMOD is then wavelet transformed and the
coefficients calculated from the padded regions are sim-
ply neglected, retaining only the coefficients of the true
signal for meaningful analysis. As discussed in Kijewski
and Kareem (2002c), the addition of the padding op-
eration with β = 4 markedly improves the amplitude
of the wavelet coefficients, as well as the bandwidth of
wavelet instantaneous spectra, although within 3�t1 of
the ends the bandwidth still deviates, a result that can-
not be fully improved with larger values of β. This is
due to the fact that the remaining slight inaccuracies
in the amplitude lead to a more marked inaccuracy in
the bandwidth measure, being more sensitive. Further
illustrations of the merits of this padding operation are
discussed in Kijewski and Kareem (2002b,c), whereas
subsequent examples in this study will demonstrate the

improvements in wavelet-based system identification as
a result of this padding operation, as well as the lingering
limitations.

3 WAVELET-BASED SYSTEM IDENTIFICATION
FOR FREE VIBRATION RESPONSE

Having defined a number of processing considerations
relevant to wavelet transforms, this section will introduce
the most common means of wavelet-based system identi-
fication utilizing Morlet wavelets, which will then be used
in subsequent examples to demonstrate the relevance
of these processing considerations for civil engineering
applications.

The analysis of free vibration or impulse response
functions (IRF) from a structure serves as one of the
simplest means to identify the frequency and damp-
ing in the time domain. In the case of single-degree-
of-freedom (SDOF) structures, this identification may
be easily conducted using techniques such as the log-
arithmic decrement, the Hilbert transform, or a least
squares fit of the decay curve. However, in cases where
multiple degrees of freedom (MDOF) are participating,
the identification becomes more involved and necessi-
tates the use of bandpass filtering or more advanced
MDOF identification schemes. Recognizing the ability
of wavelet transforms to decouple multicomponent sig-
nals, a number of researchers began applying this tech-
nique in various forms for analysis of impulse (Huang
et al., 1994; Robertson et al., 1998a,b) and free vibra-
tion response (Hans et al., 2000; Lamarque et al., 2000;
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Ruzzene et al., 1997; Staszewski, 1997). The three latter
studies drew upon the unique characteristics of Morlet
wavelets and the relationships developed for the classi-
cal analytic signal and the Hilbert transform, creating a
wavelet-based analog capable of accommodating mul-
ticomponent signals. It should be noted that the direct
application of Hilbert transforms for system identifica-
tion of MDOF systems was not previously possible, as it
explicitly requires a monocomponent signal, necessitat-
ing pre-processing through the use of bandpass filtering
or techniques such as Empirical Mode Decomposition
(Huang et al., 1998; Yang et al., 2000).

The foundations for wavelet-based system identi-
fication from IRFs and free vibration response are
grounded in the development of the complex analytical
signal (Gabor, 1946), taking the form of an exponential
function given by

z(t) = A(t)eiφ(t) (13)

with time-varying amplitude A(t) and phase φ(t). From
this definition, Ville (1948) proposed the concept of in-
stantaneous frequency as the time-varying derivative of
the phase

f (t) = 1
2π

d
dt

φ(t) = 1
2π

d
dt

[ � z(t)] (14)

Thus the phase of the complex-valued analytic function
provides a simple means to identify the time-varying fre-
quency of the system. In the case of free vibration decay
curves, the oscillator responds at the damped natural fre-
quency ωD, and the time-varying amplitude term takes
the form of an exponential, decaying based on the sys-
tem’s natural frequency ωn = 2π f n and damping ξ(ωD ∼
ωn, for lightly damped systems)

z(t) = (
Aoe−ξωnt) ei(ωDt+θ) (15)

where Ao is an initial amplitude value and θ is a phase
shift. Note that this complex analytic signal would typi-
cally be generated by

z(t) = x(t) + i H[x(t)] (16)

where x(t) is the original signal and the operatorH [ · ]
represents the Hilbert transform. Ruzzene et al. (1997)
pointed out undesirable behaviors manifested by the use
of the Hilbert transform in Equation (16) based on vi-
olation of strict asymptotic signal assumptions. Further,
the necessary bandpassing operations required for mul-
ticomponent signals can be problematic; however, they
are simply overcome by employing a transform that di-
rectly yields a complex-valued signal, such as the wavelet
transform.

As discussed previously, when the Fourier transform
of the parent wavelet is sharply concentrated at a fixed

value of frequency, as in the case of the Morlet wavelet,
the continuous wavelet transform will have the tendency
to “concentrate” at the frequency values associated with
dominant harmonics in the signal. These locations where
the frequency of the scaled wavelet coincides with the
local frequency of the signal, denoted by

ar (t) = ωo

φ′(t)
= 2π fo

fi (t)
(17)

are characterized by a high level of similitude resulting
in large wavelet coefficients (Mallat, 1998). Note that
Equation (17) illustrates that the scales corresponding
to the ridges ar can be directly used to identify the in-
stantaneous frequency, as shown in Figure 1, and further
that these ridges are points of stationary phase (Mallat,
1998). By seeking out the points where wavelet coeffi-
cients take on local maximum values, according to

|W(ar , t)| = max
a

|W(a, t)| (18)

as done in this study, or by seeking out stationarity in
the phase, the ridges can be identified (Carmona et al.,
1998).

What is important to note is that, in the case of the
Morlet wavelet, the real and complex components of
the wavelet transform along the ridge are directly pro-
portional to the signal content at that frequency and its
corresponding Hilbert transform (Figure 1), yielding a
means to directly reproduce Gabor’s analytic signal in
Equation (13) (Staszewski, 1997). The resulting phase
can then be used in Equation (14) to identify the in-
stantaneous frequency, and the amplitude can be fitted
according to Equation (15) to determine the damping
of the system, as detailed in Ruzzene et al. (1997) and
Staszewski (1997, 1998). As this identification can be
time varying, piecewise linear fits to the phase and the
natural log of the amplitude can be used to identify the
system as it evolves with time.

Variations of these concepts, first presented in
Ruzzene et al. (1997) and Staszewski (1997), illustrate its
applicability to linear system identification. Staszewski
(1998) later demonstrated the applicability of the ap-
proach for nonlinear systems, where the time-varying
estimates of frequency and damping are truly required.
Though Staszewski’s work (1997, 1998) was primarily
directed toward mechanical systems with higher funda-
mental frequencies, Ruzzene et al. (1997) and Hans et al.
(2000) provided examples geared specifically toward
civil engineering, applying the techniques to full-scale
data. However, as one begins to consider civil engineer-
ing structures of longer period, for which the charac-
teristics of narrowbanded response become increasingly
prevalent, previously unaddressed processing concerns
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highlighted in this study begin to surface and shall be
explored through the following examples.

4 SYSTEM IDENTIFICATION FOR FREE
VIBRATION: MDOF EXAMPLE

The Morlet wavelet-based analysis allows flexibility in
the value of the central frequency f o to obtain desired
resolutions, as discussed previously. This selection be-
comes critical if closely spaced modes are suspected.
Staszewski (1997) discussed the use of shifted Morlet
wavelets for separation of closely spaced, high frequency
modes; however, in the case of low-frequency systems,
the judicious selection of the central frequency of the
Morlet wavelet can similarly accomplish the same op-
eration directly. This is illustrated by the analysis of
100 seconds of IRF data (shown in Figure 6), sampled
at 10 Hz, for a three-degree-of-freedom system. The
stiffness and mass matrices, provided in the Appendix,
were selected to achieve a response with both low fre-
quency content and closely spaced modes. The resulting
frequencies are 0.567, 1.006 and 1.095 Hz, and all three
modes have a critical damping ratio of 0.01. The latter
two modes are within 10% of one another, requiring
a refined frequency resolution, and thus providing an
ideal venue in which to explore the significance of f o for
optimal modal separation.

Without a priori knowledge of the system, the selec-
tion of a central frequency for analysis should initiate
from information gathered through a visual inspection
of the time series, as discussed in Kijewski and Kareem
(2002a). Such inspection indicates that one obvious pe-
riod of oscillation is on the order of 1 second. As a general
rule of thumb, a frequency resolution of one-tenth the
period of oscillation is desirable, that is, �f 1,2 = 0.1 Hz.
This serves as a starting point for the analysis and may be
refined even further in subsequent analyses to uncover
additional details. For the purposes of demonstration,
varying levels of α in Equation (8) are used to demon-
strate the influence of analysis window overlap in the
adjacent frequency bands. Assuming α = 1 defaults to

Fig. 6. Impulse response function of MDOF system with
closely spaced modes.

a direct application of Gabor’s mean square duration
and necessitates a minimum wavelet central frequency
of 2.25 Hz. To simplify, 3 Hz is chosen for analysis. As sug-
gested previously, α = 2 and 3 provide a more accurate
means of modal separation. To demonstrate these cases,
f o = 6 Hz and 8 Hz wavelet analyses are also performed
on the same signal. Table 1 lists the resulting frequency
and temporal resolutions as defined by Equations (5)
and (6).

4.1 Ridge extraction and wavelet
instantaneous spectra

As shown in Figure 7a, the wavelet instantaneous fre-
quencies identified from the ridges for f o = 3 Hz suc-
cessfully identify the first mode, but have difficulty fully
separating the second and third modes, clearly indicat-
ing that the choice of central frequency did not provide
adequate frequency resolution. The ridge identification
becomes very poor beyond 80 seconds—a direct conse-
quence of the diminished amount of signal energy at this
point and demonstration of the influence of end effects.
Figure 7b reveals that separation was possible for f o =
6 Hz, again with some difficulty at the final seconds of the
signal. The analysis for f o = 8 Hz in Figure 7c merely ex-
tends the end-effect region deeper into the signal. With
the introduction of the aforementioned padding scheme
to f o = 6 Hz, the slight end effects at the initiation of
the signal are remedied in Figure 7d and diminished at
the termination of the signal, although the lack of signal
energy in this region makes identification of the high-
est mode difficult. In general, the influence of end ef-
fects is not observed to significantly influence ridge fre-
quencies (Kijewski and Kareem, 2002c). Instantaneous
spectra are provided in Figure 8, demonstrating the con-
centration of energy at the ridge frequencies. Note that
Figures 8a and b demonstrate the intermittency of modal
separation evident in the first mode ridge (Figure 7a) for
the f o = 3 Hz analysis. Further, the progressive narrow-
ing of the instantaneous spectral bandwidth within the
frames, thereby indicating more complete modal sepa-
ration, illustrates the refinement of frequency resolution
as central frequency is increased.

4.2 Wavelet skeletons and end effects

The wavelet skeleton can be extracted from the ridges
identified in Figure 7, with the real component being
proportional to the signal itself. Figure 9a reiterates
the inability of the f o = 3 Hz analysis to separate the
two higher modes. The analyses in Figures 9b and c
demonstrate that such modal separation is possible with
sufficient frequency resolution. It was noted in Kijewski
and Kareem (2002c) that, in general, the wavelet
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Table 1
Wavelet-based identification of MDOF system with closely spaced modes

Resolutions Actual Analytic signal ID Ridge IF & Log Dec ID

Mode �ti (s) �f i (Hz) avg[f n] (Hz) avg[f n] (Hz) avg[f n] (Hz) avg[ξ] CoV[ξ] avg[f n] (Hz) avg[ξ] CoV[ξ]

f o = 3 Hz, β = 0
1 3.74 0.021 0.567 0.01 Incomplete modal separation
2 2.11 0.038 1.006 0.01
3 1.94 0.041 1.095 0.01

f o = 6 Hz, β = 0
1 7.49 0.011 0.567 0.01 0.567 0.0098 4.48% 0.566 0.0099 4.61%
2 4.21 0.019 1.006 0.01 1.006 0.0099 4.43% 1.005 0.0099 8.15%
3 3.87 0.020 1.095 0.01 1.095 0.0098 10.0% 1.094 0.0098 10.4%

f o = 8 Hz, β = 0
1 9.98 0.008 0.567 0.01 0.567 0.0098 6.58% 0.565 0.0097 5.93%
2 5.62 0.014 1.006 0.01 1.006 0.0098 4.79% 1.008 0.0097 9.48%
3 5.17 0.015 1.095 0.01 1.095 0.0098 3.98% 1.098 0.0096 12.5%

f o = 6 Hz, β = 4
1 7.49 0.011 0.567 0.01 0.567 0.0099 1.12% 0.566 0.0100 2.47%
2 4.21 0.019 1.006 0.01 1.006 0.0100 1.53% 1.005 0.0101 7.09%
3 3.87 0.020 1.095 0.01 1.095 0.0100 8.93% 1.095 0.0100 13%

f o = 8 Hz, β = 4
1 9.98 0.008 0.567 0.01 0.567 0.0099 1.74% 0.565 0.0099 2.91%
2 5.62 0.014 1.006 0.01 1.006 0.0100 1.13% 1.008 0.0101 8.58%
3 5.17 0.015 1.095 0.01 1.095 0.0100 0.91% 1.098 0.0098 10.4%

skeletons are not capable of accurately capturing the am-
plitude of the signal for the first 3�ti due to the end-effect
phenomenon, requiring β = 3 in Equation (10). These
critical regions are marked by the vertical dotted line in
each plot. Within this region, the initiation of the im-
pulse response function manifests a rounded hump, very
evident from the second mode in Figures 9b and c. In ad-
dition, at the end of the signal, a flare in amplitude also
occurs in this 3�ti region, intensifying with time. Partic-
ularly in the case of f o = 8 Hz, the end-effect regions for
the first mode can consume a significant portion of the

Fig. 7. Instantaneous frequencies identified from ridges of wavelet transform for (a) f o = 3 Hz, (b) f o = 6 Hz, (c) f o = 8 Hz, and
(d) f o = 6 Hz with padding.

signal. It becomes evident that for high-resolution anal-
yses, the end effects at low frequencies leave little use-
able signal for reliable system identification. Note that
such marked end effects were not apparent in previous
work due to the smaller central frequencies employed,
as a result of the attention toward higher frequency phe-
nomenon and the lack of closely spaced modes. How-
ever, in the analysis of many civil engineering structures,
such manifestations should be expected. In an effort to
diminish the presence of end effects, the aforementioned
padding procedure is employed in Figure 9d, revealing
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Fig. 8. Instantaneous wavelet spectra for (a) f o = 3 Hz when
two modes are present, (b) f o = 3 Hz when three modes are

present, (c) f o = 6 Hz, and (d) f o = 8 Hz.

the marked improvement in the wavelet approximations
of the signal (Kijewski and Kareem, 2002b,c), shifting the
vertical bars denoting the 3�t i regions engulfed by end
effects to t = 0 and t = T = 100 seconds.

Fig. 9. Real component of wavelet skeleton: each panel contains skeleton for the ridge associated with modes 1, 2, and 3,
respectively, for (a) f o = 3 Hz, (b) f o = 6 Hz, (c) f o = 8 Hz, and (d) f o = 6 Hz with padding. Dotted vertical line demarks the 3�ti

region of end effects.

4.3 System identification via wavelet
amplitude and phase

Figure 10 displays the phase and amplitude curves of the
wavelet-transformed data for each mode, later used to
identify frequency and damping for the f o = 6 and 8 Hz
analyses, which produced meaningful wavelet skeletons.
For this system with constant dynamic properties, these
should be straight lines, although some minor rippling
occurs in the amplitude envelopes, particularly near the
end-effects region. Using the analytic signal theory dis-
cussed previously, the frequency and damping may be
identified via Equations (14) and (15) through a piece-
wise linear fit to the phase and the natural log of the
wavelet amplitude along the ridges, respectively. While
the identification of frequency is generally not difficult,
damping proves to be a far more elusive parameter to
identify. As shown in Figure 11, the piecewise fits of
the amplitude curves in Figure 10 produce damping es-
timates that gradually approach the actual damping of
0.01. The initial inaccuracies are the result of end effects,
producing negative values of damping in Figures 11a and
c due to the rounding of the skeleton shown in Figures 9b
and c. As outlined in Kijewski and Kareem (2002c),
without padding, damping values do not stabilize until
5�ti, marked by the third vertical bar in each plot. By
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Fig. 10. Wavelet phase and amplitude curves for system identification of MDOF system (solid line) with linear least squares fit
(dotted line), for (a) f o = 6 Hz and (b) f o = 8 Hz. Each panel contains data for modes 1, 2, and 3 from left to right.

introducing the padding operation, Figures 11b and d,
do not manifest negative damping and stabilize within
3�ti. As discussed in Kijewski and Kareem (2002b), the
manifestation of end effects in the wavelet amplitudes
can be minimized through the simple padding procedure
presented here; however, slight inaccuracies in the am-
plitude remain, of the order of a few percent, for the
first 3�ti. For the more sensitive bandwidth measures,
the presence of even slight errors in the amplitude trans-
lates into more significant deviations in parameters such
as damping. Still, the introduction of padding eliminates
negative damping estimates and stabilizes the damping
estimate sooner, although system identification for the

Fig. 11. Identification of damping from piecewise fit to amplitude curves of MDOF system for (a) f o = 6 Hz, (b) f o = 6 Hz with
padding, (c) f o = 8 Hz, and (d) f o = 8 Hz with padding. Each panel contains data for modes 1, 2, and 3 from left to right. Dotted

vertical line demarks the 3�ti, 4�ti, and 5�ti end-effect regions.

purpose of damping estimation should not be performed
on the first or last 3�ti of the wavelet skeleton. In light
of this, the fact that many civil engineering structures
possess very low levels of damping is actually a benefit,
as the IRFs will take longer to decay, leaving adequate
amounts of data for analysis despite neglecting some
regions.

By constraining the identification of the system to the
regions beyond 3�ti of ends, the frequency and damping
can be identified on average with considerable accuracy,
as summarized in Table 1. The natural frequencies of the
system show little fluctuation and are identified with pre-
cision and manifest little sensitivity to end effects. The
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Fig. 12. Identification of damping via logarithmic decrement of wavelet skeleton for f o = 8 Hz with padding. Modes 1, 2, and 3
shown from left to right.

damping estimates, in terms of their mean and coefficient
of variation (CoV), are also quite reliable, although they
temporally vary. The introduction of padding to the sys-
tems, results in a decrease in the CoV, again affirming
the efficacy of this pre-processing tool. The increase in
central frequency does not markedly affect the statistics
of the damping estimation, although Figure 11 demon-
strates that the behavior temporally is more reasonable.
Therefore, if estimates of frequency and damping are to
be obtained for a known linear system, a linear fit to the
entire curve in Figure 10 may be performed to yield esti-
mates similar to the averaged quantities in Table 1, and a
value of α = 2 should be sufficient. However, in the case
of nonlinear systems, as explored by Staszewski (1998),
a piecewise analysis is necessary to capture time-varying
dynamic properties. However, note the rippling of damp-
ing estimates in the f o = 6 Hz analysis (Figures 11a
and b). The rippling in this case is indicative of incom-
plete modal separation. While the frequency ridges in
Figure 7b indicated that separation was successful, it is
again the more sensitive damping measure that verifies
that the bandwidths of the two systems are still slightly
overlapping. This is evident when comparing Figures 8c
and d. The increase in f o eliminates this spurious behav-
ior (Figures 11c and d), although again at the expense
of temporal resolution, requiring some compromise be-
tween achieving modal separation and minimizing end
effects. Unfortunately, a choice of too small a f o may
produce rippling such as that in Figure 11a that may
be mistaken for nonlinear behavior. Therefore, if the
assumption of a linear system cannot be safely made,
α = 3 may be more appropriate for time-varying system
identification.

For comparison, the frequencies corresponding to the
scales (frequencies) of the ridges are listed in Table 1
and are reasonably accurate estimates of the natural
frequency. As a result, for time-frequency analysis such
as that presented in Kijewski and Kareem (2002a), fre-
quencies can usually be identified solely from the am-
plitude of the wavelet transform for α = 1 or α = 2

if closely spaced modal components are suspected. For
further comparison, an alternative means for damping
estimation is provided by a logarithmic decrement ap-
proach applied to wavelet skeletons (Hans et al., 2000;
Lamarque et al., 2000). Such an approach, being reliant
on the peaks of the amplitude decay, is more susceptible
to fluctuations, particularly in the higher modes, even
when modal separation is achieved. Figure 12 demon-
strates this for the logarithmic decrement identification
of damping for f o = 8 Hz with padding applied. Note
that the stabilization trend in the damping witnessed in
Figure 11 is again apparent, although with more irregu-
lar variations. The statistics of the logarithmic decrement
identification are also provided in Table 1 for comparison
and reveal that the damping estimates are reasonable in
the mean. Without padding, the CoV of the logarithmic
decrement results is comparable to those obtained using
the method based on analytic signal theory. However,
when padding is applied and complete modal separation
is assured ( f o = 8 Hz, β = 4), the CoV of the loga-
rithmic decrement technique is significantly larger than
the other identification approach presented, especially
for the higher modes. This highlights that much of the
variance in damping identified by the analytic signal ap-
proach is merely due to end effects and the lack of modal
separation.

5 SYSTEM IDENTIFICATION FROM AMBIENT
VIBRATION DATA: FULL-SCALE EXAMPLE

Obtaining the IRF or free vibration curve can be difficult
if not impossible for many civil engineering structures, so
there is interest in developing approaches to permit the
extraction of decay curves from ambient vibration data.
The random decrement technique (RDT) has evolved
as a popular analysis tool that applies the use of a trig-
ger condition to capture segments of ambient time his-
tories possessing the same amplitude and slope (Cole,
1973; Gurley and Kareem, 1996). Subsequent averaging
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Fig. 13. Example of random decrement signature (gray) and
variance envelope.

of these segments yields a random decrement signature
(RDS), which is proportional to the free vibration curve
of mechanical systems. Though Ruzzene et al. (1997) em-
ployed this technique to analyze full-scale bridge data,
some added concerns surface when the wavelet system
identification approach discussed here is merged with
the RDT for low-frequency systems. It has been shown
that the variance of RDS signatures increases with each
cycle of oscillation (Vandiver et al., 1982) as one moves
further from the trigger condition, indicating that system
identification should be restricted to the first few cycles
of the RDS. Through a bootstrap resampling scheme de-
veloped by Kijewski and Kareem (2002d), an envelope of
variance in a random decrement signature may be visual-
ized, as presented in Figure 13. The figure illustrates the
limited number of cycles over which identification can be
reasonably made. The degradation of decrement signa-
tures is problematic for low-frequency civil engineering
structures, when wavelets are employed, since the end-
effect region described in Equation (10) lengthens. While
padding does repair the amplitudes considerably, reli-
able damping identification should only proceed outside
of the 3�ti end-effect region, although frequency iden-
tification and signal amplitude reconstruction remains
viable throughout. The amount of data lost can be offset
to some extent by decreasing the analyzing frequency f o

of the Morlet wavelet, albeit compromising the ability to
distinguish closely spaced modes. This permits the iden-
tification of damping from more reliable portions of the
RDS.

To illustrate, the RDT is applied to 1.5 hours of accel-
eration data, sampled at 20 Hz and shown in Figure 14.
The data were measured along the y-axis of a tower in
Japan during a typhoon (Tamura et al., 1993). Note that

Fig. 14. Ten minutes of acceleration response (y-direction) of
tower in typhoon.

during simple free vibration tests, the tower was found
to have a fundamental sway period of 1.6 seconds in
both directions, with a critical damping ratio of 0.015.
The application of RDT, with 225 averaged segments,
yields the signature shown in Figure 15a. Note that the
signature lacks the smooth characteristic one would an-
ticipate from a decay of a SDOF damped oscillator, in-
dicating the presence of higher modes or other noise in
the RDS, which would normally have to be separated
through some bandpass filtering. Such modal separation
is achieved using a f o = 0.5 Hz Morlet wavelet trans-
form. The low value of central frequency was chosen so
as to maximize the amount of usable transformed signal
in light of the competing restrictions of variance in the
random decrement signature and the end effects of the
wavelet transform, minimized to some extent with the
padding operation. The real component of the wavelet
coefficients, given in Figure 15b, identifies a single mode
contributing to the response, as typically observed under
wind excitation, and the decaying oscillatory character
of the decrement signature. The breadth of the scalo-
gram in the frequency domain reiterates the loss in fre-
quency resolution, which resulted from the choice of a
Morlet wavelet with superior time resolution. The skele-
ton extracted from the ridge of the wavelet is shown in
Figure 15c and is clean and smooth, as the wavelet trans-
form has separated the higher frequency noise in the
RDS in Figure 15a. The RDS embodied by the skeleton
appears to be relatively stable up to about 10 seconds,
after which it degrades in quality as a result of the increas-
ing variance shown in Figure 13. As a result, the system
identification should be performed at most on the first
10 seconds of the RDS. Figure 15d shows a comparison
between the signature in the first 10 seconds and the an-
ticipated signature, based on the structure’s known fre-
quency and damping. Inconsistencies in amplitude and
phase between the two propagate with time, as a result
of RDS variance, and suggest that system identification
should be performed within the first 3–4 seconds of the
RDS. Though the comparison in Figure 15d is not avail-
able during the typical system identification process, the
variance envelopes shown in Figure 13 allow the user to
make a similar conclusion that the RDS quality is suspect
beyond 4 seconds.
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Fig. 15. (a) Random decrement signature, (b) real component of wavelet-transformed random decrement signature in 3D, (c)
real-valued skeleton, (d) zoom of real-valued skeleton (solid line) with theoretical skeleton (dotted line) for f n = 0.625 Hz

and ξ = 0.015.

As discussed previously, due to minor end effects re-
maining in spite of padding, identification of damping
should proceed beyond 3�t1 of the initiation of the
wavelet-transformed random decrement signature. Thus
the useable portion of the RDS may be first defined as,
tuse = 1.657 to 10 seconds. The end-effect region was
minimized as a result of compromising frequency reso-
lution, which will not significantly affect the results for
this system since no closely spaced modes are present.
Identification of frequency and damping by the proce-
dure based on analytic signal theory produced estimates
of frequency and damping shown in Figures 16a and c.
Note that beyond 10 seconds, the quality of estimates
rapidly degrades, due to the variance of the RDS. Zoom-
ing in on the first 10 seconds in Figures 16b and d reaf-
firms two previous observations: the identified frequency
suffers very little as the result of end effects, and even
with the padding operation, damping estimates are less
reliable in the first 3�t1 (marked by the dashed line in
Figure 16d) although gradually approaching more sta-

ble levels. As summarized in Table 2, piecewise fits of the
amplitude and phase of the RDS over only tuse produced
mean frequency and damping estimates consistent with
that observed from free vibration testing, although with
considerable variance in the damping estimate. Note that
the tracking of nonlinear frequency and damping charac-
teristics via the random decrement technique, discussed
by Tamura and Suganuma (1996), can be accomplished
by varying the trigger condition on captured segments.
The resulting decrement signature will manifest, in its
first few reliable cycles, the frequency and damping ref-
erenced to the amplitude level defined by the trigger.
Therefore, the RDS associated with a given trigger level
can be assumed linear and any nonlinearity will be evi-
dent as the trigger level is changed and other RDS are
analyzed.

In such cases where the RDS is known to represent a
linear system, it is more reasonable to conduct a best fit
of the entire length of tuse to smooth out any variation,
as shown in Figures 16e and f. Note that there is still
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Fig. 16. (a) Frequency and (c) damping identified from wavelet skeleton, zoom of (b) frequency and (d) damping estimates, (e)
wavelet phase along ridge, (f) wavelet amplitude along ridge.

Table 2
Wavelet-based identification from full-scale ambiently-excited data

Measured in free Identified piecewise Identified from Identified from
vibration test over tuse tuse = 3�t1–10 s tuse = 3�t1–4 s

f n (Hz) ξ f n (Hz) avg[ξ] CoV[ξ] f n (Hz) ξ f n (Hz) ξ

0.625 0.0150 0.650 0.0141 18.43% 0.651 0.0136 0.645 0.0151

a slight deviation in the log of the amplitude, produc-
ing a slightly smaller damping estimate than the piece-
wise mean. However, re-inspection of Figure 15d reveals
that significant deviations in phase and amplitude in the
decrement signature are evident beyond the 4th second,
a fact affirmed by Figure 13. Therefore, restricting the
identification to tuse = 1.657 to 4 seconds, is more reason-
able. The resulting estimates of damping (0.0151) and
frequency (0.645 Hz) are both within a few percent of
the values observed in free vibration test. These results
are also consistent with the findings of Tamura et al.
(1993) from data collected during the passage of several
typhoons. The results in Table 2 and Figure 16 highlight
the importance of identification in the early stages of the
degrading random decrement signatures. It is interesting
to note that Ruzzene et al. (1997) found some discrep-
ancy between the identified damping values and those
observed previously by other techniques, possibly due
to estimation of damping from the later, less-reliable cy-
cles of the RDS. Such characteristics of the RDT make
it vital that the end effects issues in wavelet transformed

random decrement signatures are recognized and ac-
counted for to insure reliable system identification.

6 CONCLUSIONS

The wavelet transform, by virtue of its multiresolution,
time-frequency analysis capabilities, is gaining popular-
ity, not only for identification of time-varying frequency
content, but also for total system identification of multi-
degree-of-freedom systems. In particular, the Morlet
wavelet has become a popular choice by virtue of
its direct relationship to the Fourier transform. How-
ever, the application of this parent wavelet for any
analysis, including system identification, must be done
with care, in light of the ramifications of the resolu-
tions chosen for the analysis. These considerations be-
come significant for civil engineering structures, whose
dynamics are often more narrowbanded than tradi-
tional mechanical systems. As a result, this study intro-
duced guidelines for modal separation, revealing that the
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classical mean square frequency bandwidth definition for
Morlet wavelet analysis does not accurately capture the
full bandwidth of the analysis. Rationalized in light of
the characteristics of Gaussian windows, doubling this
bandwidth can separate closely spaced modes permitting
reliable identification of averaged frequency and damp-
ing in known linear systems. However, if time-varying
dynamic properties are to be tracked in nonlinear sys-
tems with potentially closely spaced modes, complete
modal separation and stability of damping estimates
requires tripling the classical mean square bandwidth
measure.

In addition, the study explored the end-effect phe-
nomenon, which is more marked for low-frequency civil
engineering structures and introduced a padding pro-
cedure that repairs the amplitude of wavelet skele-
tons, eliminates the appearance of negative damping,
and more quickly stabilizes the behavior of damp-
ing estimates, reducing their coefficient of variation.
However, the sensitivity of the damping measure still
results in some inaccuracy within 3�ti of the ends, defin-
ing the acceptable analysis regimes of the transformed
signal.

Examples reiterated these findings and demonstrated
that proper selection of Morlet wavelet central frequen-
cies is important to balance modal separation and the
length of usable signal for system identification, an im-
portant consideration when the random decrement tech-
nique is applied for analysis of ambient vibration data.
The examples further confirmed that the instantaneous
frequency, identified from the wavelet phase or from
ridges of the amplitude is relatively insensitive to end ef-
fects. A comparison of the wavelet-identification scheme
based on analytic signal theory and a wavelet logarithmic
decrement revealed the latter’s susceptibility to fluctu-
ations, although in a mean sense; both techniques per-
formed equally well for damping identification of linear
systems. It was observed that when adequate modal sepa-
ration was achieved and when padding was applied, the
coefficient of variation in the analytic signal approach
is quite low, highlighting that much of the variance in
damping estimates may be attributed to end effects
and modal overlap and not the identification technique
itself.
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APPENDIX

The impulse response of a MDOF described by

mẍ + cẋ + kx = δ(t) (A.1)

where m, c, and k are the mass, damping and stiffness
matrices, respectively; x is the vector of displacements;
ẋ and ẍ are the first and second derivatives of x; and δ(t)
is the unit impulse function. To achieve the desired fre-
quency characteristics, the following mass and stiffness
matrices were defined:

m = mI and k = k




4 −1 0

−1 2 −1

0 −1 4


 (A.2a,b)

where I is the identity matrix, m = 1000 kg and k =
10 kN/m. As the system is assumed to have a critical
damping ratio ξ = 0.01 in each mode, a damping matrix
can be defined as

c = [mΦM−1]




2ξω1 M1 0 0

0 2ξω2 M2 0

0 0 2ξω3 M3


[M−1ΦTm]

(A.3)

where M1,2,3 are the modal masses of the modal mass
matrix M, the modal frequencies are ω1,2,3 = 2π f 1,2,3, and
Φ is the matrix of mode shapes. The response at the third
degree of freedom of the MDOF system as the result of
a unit impulse at that location was then generated via
state-space simulation of Equation (19).


