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Abstract: This paper examines efficacy of tuned mass dampers~TMD! in controlling self-excited motion resulting from negativ
damping. New optimal TMD parameters are suggested which provide better performance than those suggested in the litera
dependence of TMD performance on structural damping is highlighted. The equations of motion of a combined system com
multiple TMDs attached to a bridge deck are presented where the bridge motion is described in terms of reduced-order modal co
Details concerning the multimode coupled flutter of long-span bridges with auxiliary TMDs are provided. The effectiveness and
tions of TMDs for controlling multimode bridge flutter are examined, emphasizing the dependence of TMD performance on th
dynamic and aerodynamic characteristics. This study shows that the effectiveness of TMDs is rather limited in controlling a h
flutter characterized by negative aerodynamic damping that grows rapidly with increasing wind speed beyond the onset o
However, it is relatively effective in controlling a soft-type flutter in which the negative damping builds up slowly with increasing
speed. Robust TMD design issues are also discussed in light of their sensitivity to design parameters in the vicinity of optimal
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Introduction

Flutter instability is of primary concern for wind-resistant desi
of long-span bridges. The flutter performance of a long-span
pension bridge can be improved through modifications of
structural system such as addition of stay-cables or cross ha
to the original suspension bridge system. These structural m
fications result in an increase in not only the structural stiffne
particularly in torsion, but also the generalized modal mass du
three-dimensional mode shapes. The most effective means o
ter control, however, is to improve the aerodynamic performa
of a bridge deck section through modifications in its geome
configuration. This helps to control the development of s
excited forces, particularly, it reduces the coupled self-exc
forces, i.e., the lift induced by torsional motion and the pitch
moment induced by heaving motion.

A number of studies utilizing auxiliary damping devices su
as tuned mass dampers~TMDs! or tuned liquid column damper
~TLCDs! have been conducted in controlling bridge flut
~Nobuto et al. 1988; Gu et al. 1998; Lin et al. 2000; Xu et
2000!. In Nobuto et al.~1988!, both numerical analysis and win
tunnel tests of a bridge section model with two TMDs were c
ducted to demonstrate the effectiveness of TMDs. In Gu e
~1998!, using wind tunnel tests of a box section model, the p
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formance of TMDs with different parameters for controlling flut
ter was investigated and compared to a numerical study. In
et al.~2000!, a combination of heaving and torsional dampers w
studied to suppress coupled vertical and torsional buffeting
sponse and flutter instability. A TLCD for controlling torsiona
flutter and buffeting of a long-span bridge was investigated
Xue et al.~2000!. The role of modal damping on both flutter and
buffeting response of bridges was studied by Jain et al.~1998!.
For their specific bridge example, slight changes in modal dam
ing resulted in a significant change in response that emphasi
the importance of reliable estimates of modal damping for acc
rate response prediction and the potential advantage of exte
dampers in controlling bridge response.

While the effectiveness of auxiliary damping in controlling
bridge flutter has been demonstrated in foregoing studies for th
specific example bridges, its limitation and the dependence of
performance on the bridge structural dynamic and aerodynam
characteristics have not been fully addressed thus far. In t
paper, the optimal TMD design for controlling self-excited mo
tions having negative damping is examined. New optimal TM
parameters are proposed which offer better performance t
those previously suggested in the literature. The dependence
TMD performance on structural damping is highlighted. Th
equations of motion for a bridge with multiple TMDs attached t
the bridge deck are presented in which the bridge motion is d
scribed in terms of reduced-order modal coordinates. Two e
ample long-span bridges with different flutter characteristics a
utilized to study the effectiveness and limitations of TMDs i
controlling multimode coupled bridge flutter. Emphasis is place
on delineating the dependence of the TMDs performance on
original bridge dynamic and aerodynamic characteristics. Iss
related to robust TMD design are also discussed in light of th
sensitivity to design parameters around the optimal values.

Tuned Mass Dampers Characteristics in Controlling
Self-Excited Motion
To better understand the fundamental characteristics of a TMD
controlling self-excited motion, a single-degree-of-freedo
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~SDOF! structure with negative net damping combined with
TMD is considered here. The equations of motion of th
structure-TMD system are expressed as

ms~ ÿs12jsvsẏs1vs
2ys!52mtj tv t~ ẏt2 ẏs!1mtv t

2~yt2ys!
(1)

mtÿt12mtj tv t~ ẏt2 ẏs!1mtv t
2~yt2ys!50 (2)

wherem, j, andv5mass, damping ratio, and frequency, respe
tively; y5displacement; and subscriptss and t represent the
structure and TMD, respectively.

By introducing nondimensional timet and associated deriva-
tives

t5vst;
d

dt
5vs

d

dt
;

d2

dt
5vs

2
d2

dt2 (3)

the equations of motion can be expressed in the following non
mensional state-space format:

H ys8

yt8

ys9

yt9
J

5F 0 0 1 0

0 0 0 1

2~11mmm f
2! mmm f

2 22js22mmj tm f 2mmj tm f

m f
2 2m f

2 2j tm f 22j tm f

G
3H ys

yt

ys8

yt8
J (4)

where mm5mt /ms5mass ratio;m f5v t /vs5tuning frequency
ratio; and the prime denotes the derivative with respect to
nondimensional timet. It is clear that the performance of a TMD
depends on the mass ratiomm , tuning frequency ratiom f , TMD
damping ratioj t , and structural damping ratiojs .

The eigenvalues of the structure-TMD system can be cal
lated through the complex eigenvalue analysis based on the
ceding state-space equation. For an eigenvaluel, the characteris-
tic equation of the system described in Eq.~4! is given by

l412@js1~11mm!m fj t#l
31@11~11mm!m f

214m fjsj t#l
2

12m f@j t1jsm f #l1m f
250 (5)

When the two conjugate eigenvalue pairs are identical a
given by

l5a6bi52jv6 ivA12j2 (6)

wherej andv5damping ratio and frequency; andi 5A21, the
characteristic equation reduces to

l424al31~6a212b2!l224a~a21b2!l1~a21b2!50
(7)

For a TMD with a given mass ratiomm , the maximum per-
missible negative damping (2js)max, under which the structure-
TMD system is stable, can be obtained from the condition that
real parts of both eigenvalues of the structure-TMD system
zero, i.e.,l56 iv. By comparing the coefficients in Eqs.~5! and
~7!, and using the condition of zero real part, the following TM
1292 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / OCTOBER 2
-

parameters can be obtained, which are generally suggested a
optimal TMD design parameter for controlling self-excited mo
tion ~Rowbottom 1981; Fujino and Abe 1993!:

m f5
1

A11mm

(8)

j t5AA11mm21

2A11mm

'Amm/2 (9)

~2js!max5A~11mm!2A11mm

2
'Amm/2 (10)

However, it is noteworthy that these parameters result in op
mal performance only when the negative damping of the se
excited motion is equal to the maximum permissible negati
damping (2js)max for a given TMD mass ratio. Obviously, this is
a very special case. In real TMD design practice for controlling
self-excited motion with a given negative dampingjs , the opti-
mal TMD design involves the determination of an adequate ma
optimal frequency, and damping ratio to achieve maximum po
tive damping available to the structural-TMD system. Changin
the negative damping to zero damping only is often not sufficie
for motion control. Therefore, the optimal TMD parameter
should not be limited to the condition that two identical conjuga
eigenvalue pairs have zero real parts. Rather, these should
determined in the general sense as the two identical conjug
eigenvalue pairs reach the maximum of their real parts that c
respond to the maximum positive damping. By comparing t
coefficients in Eqs.~5! and~7!, the optimal TMD parameters be-
come

~m f !opt5
1

11mm
2

Ammjs

~11mm!A11mm2js
2

'
1

11mm
2Ammjs

(11)

~j t!opt5
js

11mm
1

AmmA11mm2js
2

11mm
'

js

11mm
1

Amm

A11mm
(12)

and the identical frequencies and damping ratios are

v5A~m f !opt (13)

j5S js

11mm
1

Amm~11mm22js
2!

2~11mm!A11mm2js
2D /A~m f !opt'Amm/21js

(14)

It can be easily illustrated that for the special case where
mass ratiomm and damping ratiojs satisfy the conditionjs5
2(2js)max, the optimal parameters given in Eqs.~11! and ~12!
become the same as those given in Eqs.~8! and ~9!, correspond-
ing to zero damping ratios of the structural-TMD system.

In the case wherejs is small and negligible, by submitting
js50 into Eqs. ~11! and ~12!, these parameters reduce to th
following values used in the optimal TMD design for controlling
the free vibration:

~m f !opt51/~11mm! (15)

~j t!opt5Amm /~11mm! (16)

v51/A11mm (17)

j5Amm/2 (18)
003



Fig. 1. Frequencies of structure-TMD system (mm50.0256,
js520.06)
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As an illustrative example, a design of a TMD for controllin
a self-excited motion having a negative damping ofjs520.06
with a goal of achieving damping ratios of the structure-TM
system at a level ofj50.02 is considered. Based on Eq.~14!, the
TMD mass ratio is first determined, which should not be less t
0.0256. Formm50.0256, the optimal tuning frequency ratio
calculated to be (m f)opt50.9843 based on Eq.~11!. Figs. 1 and 2
show the changes in frequencies and damping ratios of
structure-TMD system withmm50.0256 and (m f)opt50.9843 for
different TMD damping ratios as indicated by the solid lines. It
obvious that the optimal TMD damping ratio is (j t)opt50.0992
@Eq. ~12!#, as indicated by the dot in Figs. 1 and 2, correspond
to a damping ratio ofj50.02 @Eq. ~14!# for the structure-TMD
system.

On the other hand, when the TMD is designed based on
formulations previously suggested in the literature@Eqs. ~8! and
~9!#, thenm f50.9874 andj t50.080. The corresponding frequen
cies and damping ratios, as indicated by the squares in Figs. 1
2, are not identical and suggest a damping ratio ofj50.0093 for
the structural motion dominated mode. The frequencies
damping ratios of the structure-TMD system withmm50.0256
and m f50.9874 and different TMD damping ratios are al
shown in Figs. 1 and 2 by the dashed lines. It is obvious t
whenm f50.9874, the optimal TMD damping ratio should bej t

50.0933 rather thanj t50.080, corresponding to a damping rat
of j50.0123 for the structure motion dominated mode. Clea
the TMD design based on the formulations presented here is
monstrably more effective.
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Fig. 2. Damping ratios of structure-TMD system (mm50.0256,
js520.06)
JOURNA
Fig. 3. Influence of structural damping on the performance of TMD
(mm50.0256); ~a! m f50.9843 and~b! m f50.9750
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It is worth mentioning that for a given TMD mass ratio, whe
the tuning frequency is not aligned with the optimal frequen
the optimal TMD damping ratio should be determined from t
eigenvalue analysis of the structure-TMD system including
structural damping. In practice for simplicity, the addition
damping by the TMD is often first evaluated through eigenva
analysis of the structure-TMD system with zero structural dam
ing, and it is then considered that the structure-TMD system
be stable when the damping added by the TMD is larger than
negative damping caused by the self-excited motion. This prac
is based on the premise that the damping added by the TM
not influenced by the structural damping. This is true when
structural damping is small, but not valid for relative large stru
tural damping as in the case of self-excited motion resulting fr
a certain level of negative damping. Fig. 3 shows the damp
ratio of the structural motion dominated mode at varying levels
original structural damping and TMD damping ratios. It clea
demonstrates the remarkable influence of the original struct
damping on the TMD performance in terms of the net damp
added by the TMD. This influence is particularly significant for
TMD with a damping ratio close to its optimal value. Howeve
this influence will become less significant when the TMD is d
signed with higher damping.

As observed in Figs. 2 and 3 and also noted by others,
reaffirmed that TMD performance is very sensitive to TMD tu
ing frequency and damping ratio. The robustness of a TMD
be enhanced if multiple tuned mass dampers with distributed
quencies are introduced~Yamaguchi and Harnpornchai 1993
Igusa and Xu 1994; Kareem and Kline 1995!, or a TMD with a
damping ratio higher than the optimal value is utilized. The la
option, however, will compromise the effectiveness of the TM
An increase in the mass ratio certainly increases effectiveness
OF STRUCTURAL ENGINEERING © ASCE / OCTOBER 2003 / 1293
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not without the adverse effects of higher cost associated with
necessary structural system to support the TMD and the ad
space requirements.

Multimode Flutter Analysis of Bridge-Tuned Mass
Dampers System

A long-span bridge under wind excitation with a number
TMDs attached to the bridge deck is considered. Each TMD i
SDOF system vibrating in the vertical direction. The wind forc
on TMDs are assumed to be negligible as the TMDs are cons
ered to be installed inside the bridge box girder. It is assumed
the mass ratio of the TMDs to the equivalent bridge mass is v
small, therefore, the attachment of TMDs does not introduce
meaningful change to the static equilibrium of the bridge, and
structural mode shapes remain the same as those of the orig
bridge without the TMDs. Accordingly, the dynamic displaceme
of the bridge in the vertical, lateral, and torsional direction
h(x,t), p(x,t), anda(x,t) can be expressed in terms of reduce
order modal coordinates as

h~x,t !5(
j

hj~x!qj~ t !; p~x,t !5(
j

pj~x!qj~ t !;

a~x,t !5(
j

a j~x!qj~ t ! (19)

wherehj(x), pj(x), anda j(x)5 j th mode shapes of the bridge in
the vertical, lateral, and torsional directions, respectively; andq
5$qj%5generalized mode coordinates. The positive displa
ments of vertical, lateral, and torsional components are defined
upward, down-wind, and nose-up, respectively.

The governing equations of motion of the bridge-TMDs sy
tem are given by

Mq̈1Cq̇1Kq5Qse1Qb1Qc (20)

M tŸt1Ct~Ẏt2Ẏ0!1K t~Yt2Y0!50 (21)

where M , C, and K5generalized mass, damping, and stiffne
matrices of the bridge, respectively;M t , Ct , and K t5mass,
damping, and stiffness matrices of the TMDs, respectively;Yt

5vertical displacement vector of the TMDs;Y05Btq5vertical
displacement vector of the bridge deck at the points of attachm
1294 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / OCTOBER
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of the TMDs; Bt5modal matrix at the points of attachment o
TMDs; Qse andQb5generalized self-excited and buffeting forc
vectors of the bridge, respectively; andQc5control force pro-
vided by the TMDs:

Qc5Bt
TCt~Ẏt2Ẏ0!1Bt

TK t~Yt2Y0! (22)

the over-dot denotes partial differentiation with respect to tim
and superscriptT denotes the matrix transpose operator.

The frequency dependent self-excited forces can be repla
by a rational function approximation as~Chen et al. 2000!

Qse5
1

2
rU2S Asq1

b

U
Adq̇D

5
1

2
rU2S A1q1

b

U
A2q̇1

b2

U2 A3q̈1(
l 51

m

qselD (23)

where

q̇sel52
Udl

b
qsel1A l 13q̇ ~ l 51,2,...,m! (24)

andAs andAd5aerodynamic stiffness and damping matrices, r
spectively; A1 , A2 , A3 , A l 13 , and dl (dl>0; l 51,2,...,m)
5frequency independent coefficients;qsel ( l 51,2,...,m)
5augmented unsteady aerodynamic states;m5order of the ratio-
nal function approximation;r5air density;B52b5width of the
bridge deck; andU5mean wind speed.

Accordingly, the equations of motion of the bridge-TMDs sy
tem can be cast in terms of a frequency independent tim
invariant state-space format

Ż~ t !5AZ ~ t !1BQb~ t ! (25)

where

Z55
q
Yt

q̇

Ẏt

qsel

]

qsem

6 ; B53
0
0

M̃21

0
0
]

0

4 (26)
A53
0 0 I 0 0 ... 0

0 0 0 I 0 ... 0

2M̄21~K̄1Bt
TK tBt! M̄21Bt

TK t 2M̄21~C̄1Bt
TCtBt! M̄21Bt

TCt

1

2
rU2M̄21 ...

1

2
rU2M̄21

M t
21K tBt 2M t

21K t M t
21CtBt 2M t

21Ct 0 ... 0

0 0 A4 0 2
U

b
d1I ... 0

] ] ] ]

0 0 A31m 0 0 ... 2
U

b
dmI

4 (27)
2003



x

nd
ed
-
lues
sys
state
lf-
ode

ma-
tha

table
ary
as a
ond

ral
tion
tion
out

ere
truc
ship
ral
on

d B
rac-
ita-
e
f the
dal

equ
p-

box
ridge

ally
ge

iva-
e B
ete

. 4,

t
fi-
of

d in

eck
ary
ger

m-
ted
can

the
the

sing
he
ent,
or-
ued
lued
due
tes
/s.
s of
M̄5M2
1

2
rb2A3 ; C̄5C2

1

2
rUbA2 ; K̄5K2

1

2
rU2A1

(28)

At a given wind speedU, the solution of a linear comple
eigenvalue problem given by

l jFj5AFj (29)

results in N1M conjugate pairs of complex eigenvalues a
eigenvectors~whereN is the number of structural modes includ
and M is the number of TMDs!, andm3N negative real eigen
values and real eigenvectors. The former group of eigenva
corresponds to the modes associated with the bridge-TMD
tem, and the latter represent the augmented aerodynamic
introduced by the rational function approximation of the se
excited forces. These complex modes are referred to as ‘‘m
branches.’’

The eigenvalue of thej th complex mode is expressed as

l j52j jv j1 iv jA12j j
2 (30)

wherev j andj j5mode frequency and damping ratio.
These eigenvalues at different wind speeds provide infor

tion concerning the changes in frequencies, damping ratios
take place with the increase in wind speed. The system is s
when all of the eigenvalues lie on the left side of the imagin
axis in the complex plane. When one of the eigenvalues h
zero real part, it represents the onset of flutter and the corresp
ing wind speed is referred to as the critical flutter speed.

The corresponding eigenvectorsFj ( j 51,2,...,) provide infor-
mation concerning intermodal coupling among the structu
modes, and the coupling between the bridge motion and mo
of the attached TMDs with phase lags. The preceding formula
reduces to the multimode flutter analysis of the bridge with
TMDs by dropping the terms with respect to the TMDs.

It is noted that the framework presented in this study, wh
the bridge motion is expressed in terms of reduced-order s
tural mode coordinates, provides a straightforward relation
regarding the influence of installed TMDs on the structu
dynamics/aerodynamics as compared to the analysis based
direct finite element model of the bridge-TMDs system.

Example Bridges

Two example long-span suspension bridges, i.e., Bridges A an
with same structural dynamics but different aerodynamic cha
teristics are considered to illustrate the effectiveness and lim
tions of TMDs in controlling bridge flutter. The length of th
bridge main span is nearly 2,000 m. The modal frequencies o
first 15 modes range from 0.03 to 0.18 Hz. The structural mo
damping ratio in each mode is assumed to be the same and
to 0.32% for the sake of illustration. The selection of this dam
ing ratio is based on the value for long-span bridges having
girders, which has been suggested by the Honshu-Shikoku B
wind resistant design code in Japan~Miyata et al. 1993!. The
modal damping ratios for different structural modes are gener
different. The influence of structural modal damping on brid
flutter will be further highlighted in the following.

Bridge A has a streamlined deck section whose flutter der
tives are calculated based on the Theodorsen function. Bridg
has a 2-edge box deck section whose flutter derivatives are d
mined through a wind tunnel test~Matsumoto et al. 1998!. Some
of their representative flutter derivatives are presented in Fig
including uncoupled torsional damping and stiffness terms,A2*
JOURNAL
-
s

t

-

-

a

,

al

r-

andA3* and coupled terms,H3* andA1* . The solid lines represen
those for Bridge A and the dashed lines for Bridge B. The de
nition of flutter derivatives and a detailed discussion on the role
each aerodynamic component on coupled flutter can be foun
Chen et al.~2000!. In the following multimode bridge flutter
analysis, only the self-excited forces acting on the bridge d
which dominate the bridge flutter are considered. The second
contributions of aerodynamic damping on the main cables, han
cables, and towers are neglected for the sake of illustration.

Flutter Response

The multimode coupled flutter analyses involving different co
bination of structural modes for both Bridges A and B sugges
that a consideration of only a few important structural modes
provide an accurate estimate of flutter response. Therefore,
following discussion is based on the analyses considering only
first and second symmetric vertical bending modes~Modes 2 and
8! and the first symmetric torsional mode~Mode 10!.

The changes in frequencies and damping ratios with increa
wind speed for Bridge A are shown in Figs. 5 and 6 by dots. T
damping ratios are expressed in terms of logarithmic decrem
i.e., d52pj. With an increase in the mean wind speed, the c
responding mode shapes vary with wind speed from real-val
structural mode shapes at zero wind speed to complex-va
shapes at higher wind speeds, indicating intermode coupling
to self-excited aerodynamic forces. The coupled flutter initia
from the Mode 10 branch with a critical wind speed of 67.7 m
Table 1 shows the flutter frequency and mode shape in term

Fig. 4. Flutter derivatives of bridge decks~—Bridge A: --Bridge B!

Fig. 5. Frequencies versus wind speed for Bridge A
OF STRUCTURAL ENGINEERING © ASCE / OCTOBER 2003 / 1295



Fig. 6. Damping ratios versus wind speed for Bridge A
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Fig. 7. Frequencies versus wind speed for Bridge B
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the amplitude ratios and phase lags of components in each s
tural mode. It is noted that the structural mode shapes were
malized according to the maximum vertical displacement or t
sional displacement multiplied by the half width of the bridg
deck to be unity for the vertical or torsional modes, respective
The vertical displacements of the bridge deck on the windw
and leeward sides at Points A and B located at 0.75b ~b is the
half-width of the bridge deck! from the deck centerline at the
midspan of the bridge are also calculated and presented in T
1. It is clearly demonstrated that the torsional displacement l
downward vertical displacement, and the vertical displacemen
the bridge deck at the leeward side is larger than that at windw
side. The flutter of Bridge A corresponds to a hard-type flut
characterized by negative aerodynamic damping that grows
idly with increasing wind speed beyond the onset of flutter.

The results for Bridge B with the modal damping ratio o
0.32% are shown in Figs. 7 and 8 and Table 2. The predic
critical flutter speed for Bridge B is 72.0 m/s. As compared
Bridge A, in which significant coupling between bridge motion
vertical and torsional directions was observed, the coupled mo
in Bridge B is relatively weak but remains essential to the dev
opment of coupled flutter initiated from Mode 10 branch. Fro
the flutter derivativeA2* , which shows a negative value, it i
obvious that the aeroelastic damping of torsional Mode 10 w
out coupling with the vertical modes would have remained po
tive and thus a single mode flutter would not exist. While t
torsional aerodynamic damping term~corresponding toA2* ) is
remarkably low compared to that of Bridge A, a significant d
crease in the coupled self-excited forces resulted in lowering
negative damping effects thus producing a better flutter per
c-
r-

le
s
f
d

-

n

e
-

mance of Bridge B. The flutter of Bridge B corresponds to
soft-type flutter in which the negative damping builds up slow
with increasing wind speed.

Influence of Structural Damping on Bridge Flutter

To investigate the effect of structural damping on the flutter
sponse, an analysis with different modal damping ratios has
conducted for both Bridges A and B. These include the analys
which different modal damping ratios for different modes we
assigned and identical damping ratios for each mode with
signed values of 0.0, 0.32, 1, and 2% were assumed.

Results illustrated that the influence of low structural mo
damping on the frequency, aerodynamic damping, and com
mode shapes is negligible. Total aeroelastic modal damping
be simply estimated as the sum of structural modal damping
the aerodynamic damping estimated with zero structural damp
The critical flutter speeds for Bridge A having structural mo
damping ratios of 0.0, 0.32, 1, and 2% are 66.0, 67.7, 69.7,
72.2 m/s, respectively. The effect of structural modal damping
the critical flutter speed is rather insignificant for this bridge. T
is because the negative damping grows rapidly with increa
wind speed beyond the flutter onset and the addition of dam
does not result in an apparent increase in the critical flutter sp

The critical flutter speeds for Bridge B with structural dampi
ratios of 0, 0.32, 1, and 2% are 63.9, 72.0, 80.7, and 88.0
respectively. Due to the weak coupled self-excited forces and
lower torsional aerodynamic damping, the development
aeroelastic damping in the torsional mode branch is rather s
ers
Table 1. Comparison of Flutter Condition for Bridge A

Without tuned mass dampers With tuned mass dampa

Wind speed 67.7 m/s 74.5 m/s 74.5 m/s
Frequency 0.1223 Hz 0.1155 Hz 0.1133 Hz
Damping ratio 0 20.0349 0
Mode number Amplitude/Phase~degrees! Amplitude/Phase~degrees! Amplitude/Phase~degrees!

Mode 2 1.21/2162.78 1.70/2154.04 1.74/2156.13
Mode 8 0.64/276.83 0.52/260.90 0.36/2.00
Mode 10 1.00/0 1.00/0 1.00/0
Point A ~windward! 1.02/2104.84 1.31/2113.68 0.84/2124.84
Point B ~leeward! 2.02/2150.86 2.35/2149.39 2.10/2160.76
Tuned mass dampers~windward! —/— —/— 9.99/166.27
Tuned mass dampers~leeward! —/— —/— 24.82/130.73

am t5175 t, f t50.1147 Hz,j t50.04
003



Fig. 8. Damping ratios versus wind speed for Bridge B
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with increasing wind speed. Accordingly, the critical flutter spe
can be significantly increased by the addition of auxiliary dam
ing. Similar to the example bridge studied by Jain et al.~1998!,
slight changes in modal damping will result in significantly di
ferent response which emphasized the importance of reliable
timates of modal damping for accurate prediction of response

Control of Bridge Flutter by Tuned Mass Dampers

For the sake of illustration, only two TMDs with the same param
eters vibrating in vertical direction were considered. They we
installed on the windward and leeward sides at Points A and
located at 0.75b from the deck centerline at the midspan of th
bridge. The TMDs are designed to control the initial couple
flutter having coupled bridge motion mainly attributed to the sym
metric structural modes. It is noted that such TMDs will hav
little contribution to controlling any subsequent bridge flutte
modes due to the lack of tuning and/or improper placement of
TMDs. To suppress these higher flutter modes, a properly
signed TMD configuration is required based on the frequen
damping ratio, and mode shape of each target flutter mode on
lines of the TMD design for the initial flutter mode. This issue
beyond the focus of this study and is therefore not further a
dressed.

The mass was set asmt5175 t for each individual TMD.
Therefore, the equivalent mass ratio of the TMDs to t
first symmetric vertical mode, i.e., Mode 2, i
2mth2

2(x)ux5L/2 /m250.57%, and the mass of inertia ratio of th
TMDs to the first symmetric torsional mode, i.e., Mode 10,
2mt@0.75ba10

2 (x)ux5L/2#/m1050.58%, wherem2 andm10 are the
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generalized mass in Modes 2 and 10, respectively. In practical
TMD design, multiple TMDs each comprised of a smaller mass
with the same or slightly detuned dynamic properties can be in-
stalled at different spanwise locations with consideration of space
limitation. In this study, since the emphasis is placed on the de-
pendence of TMD performance on the bridge aerodynamic char-
acteristics, a relatively simple TMD design configuration is con-
sidered.

Based on the dynamic characteristics of Bridge A, the TMDs
were designed to control Mode Branch 10 from which the
coupled flutter is initiated. Utilizing Eqs.~11! and~12!, the TMD
tuning frequency ratio and damping ratio are 0.9972 and 0.0533
for mm50.29% andjs50. However, the optimal TMD param-
eters for controlling a coupled flutter could not be directly deter-
mined based on explicit formulations for controlling a SDOF self-
excited motion. It is due to the fact that the frequency, damping
ratio, and the complex mode shape of the target mode branch vary
with increasing wind speed, which affects the performance of a
TMD. A better TMD design can be achieved through parametric
studies involving eigenvalue analysis of the bridge-TMDs system
at different wind speed. In this study, the frequency and damping
ratio of the TMDs were initially set asf t50.1159 Hz andj t

50.04, respectively.
The frequencies and damping ratios of the Bridge A-TMD

system are plotted versus the mean wind speed in Figs. 5 and 6 as
indicated by the solid lines. At low wind speeds, since the natural
frequencies of TMDs are separated from the frequencies of Mode
Branches 2 and 10 but are relatively close to the frequency of
Mode Branch 8, only the damping ratio associated with the Mode
Branch 8 is slightly influenced by the inclusion of the TMDs. At
a wind speed of around 74 m/s, due to the interaction between
Mode Branch 10 and the TMDs, particularly the TMD on the
leeward side, the damping in Mode Branch 10 increases and
damping in the TMD dominated mode branch decreases. The
curves of two frequency loci representing Mode Branch 10 and
leeward TMD branch repel each other thus avoiding an intersec-
tion. As a result, the coupled flutter initiates from the leeward
TMD branch. In this strong interaction region, two branches ex-
hibit coupled motions of the bridge and TMDs. Although the
curve veers, the properties of these two mode branches inter-
change during the veering, and the curve veering phenomenon is
observed in this interaction region. The curve veering phenom-
enon is widely observed in multimode coupled flutter problems
and other dynamic problems. A detailed discussion of this phe-
nomenon, including the criterion for identification of veering, has
been discussed using a perturbation analysis in Chen and Kareem
rs
Table 2. Comparison of Flutter Condition for Bridge B

Without tuned mass dampers With tuned mass dampea

Wind speed 72.0 m/s 94.7 m/s 94.7 m/s
Frequency 0.1495 Hz 0.1435 Hz 0.1413 Hz
Damping ratio 0 20.0347 0
Mode number Amplitude/Phase~degrees! Amplitude/Phase~degrees! Amplitude/Phase~degrees!

Mode 2 0.27/175.03 0.57/177.78 0.55/175.07
Mode 8 0.11/2167.48 0.21/2151.97 0.14/298.62
Mode 10 1.00/0 1.00/0 1.00/0
Point A ~windward! 0.37/20.07 0.08/293.69 0.20/153.27
Point B ~leeward! 1.13/2179.98 1.51/2177.09 1.32/2176.04
Tuned mass dampers~windward! —/— —/— 2.42/293.73
Tuned mass dampers~leeward! —/— —/— 15.86/177.17

amm5175 t, f t50.1433 Hz,j t50.04.
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r r
Fig. 9. Effectiveness of TMDs versus damping ratio of TMD fo
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~2003!. Beyond this strong interaction region, the flutter mod
branch mainly consists of bridge motions and only slightly i
volves the motions of TMDs.

Table 1 shows the flutter frequency and mode shape of
Bridge A-TMDs system in terms of the amplitude ratios an
phase lags of the components in each structural mode, the ver
displacements of the bridge deck at the Points A and B where
TMDs were attached, and the displacements of the TMDs. F
comparison, the results of the bridge without TMDs at 74.5 m
are also presented. It is illustrated that the addition of TMDs do
not significantly change the coupled motion of the bridge, whi
is due to self-excited aerodynamic forces on the bridge. The
tached TMDs experience large amplitude of motions, particula
the leeward side TMD compared to the windward side TM
However, two TMDs show similar dynamic responses with rega
to the respective displacements of the bridge deck. The amplit
ratios and phase lags of the TMDs displacements with respec
the downward displacements of the bridge deck at Points A an
are almost the same for the two TMDs, which are around 11.8 a
68.5°. It is not surprising that the stabilization role of the TMDs
mainly due to the leeward side TMD corresponding to a larg
bridge deck excitation at the Point B. As a result, the critic
flutter speed is increased to 74.5 m/s from 67.7 m/s with t
addition of the TMDs.

Fig. 10. Effectiveness of TMDs versus frequency of TMD fo
Bridge A
1298 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / OCTOBER
e

al
e
r

s

t-
,

e
to
B
d

r

Figs. 9 and 10 show the effectiveness of TMDs expressed
terms of increase ratio of the critical flutter speed due to t
addition of the TMDs, i.e., (Ucrw2Ucr)/Ucr , with different TMD
tuning frequencies and damping ratios, where theUcrw and Ucr

are the critical flutter speed with and without TMDs. The optim
parameters are aboutf t50.1171 Hz andj t50.04. Similar to the
TMD characteristics in controlling a SDOF self-excited motio
the TMD performance in controlling a multimode coupled flutte
is sensitive to their own dynamic parameters, particularly, th
frequencies. Optimal TMD design in controlling bridge flutte
requires an accurate estimate of the torsional mode branch
quency. For long-span bridges with low fundamental frequenci
it may be very difficult to design a robust set of TMDs due to
high sensitivity of the TMD effectiveness around optimal param
eters. The design of TMDs with a damping ratio higher than t
optimal value may add to the robustness, but not without so
compromise on the overall effectiveness.

Since the coupled self-excited forces result in a rapid incre
in negative aerodynamic damping at higher wind speeds
Bridge A, the addition of damping provided by TMDs does n
result in an appreciable change in the critical flutter speed.
this hard-type of flutter, the addition of auxiliary damping con
tributes only marginally toward controlling the flutter instability

The changes in frequencies and damping ratios for Bridge
with TMDs at increasing wind speeds are shown in Figs. 7 an
as indicated by the solid lines. The frequency and damping ra
of the TMDs were set asf t50.1433 Hz andj t50.04. The critical
flutter speed is increased from 72.0 to 94.7 m/s. The TMD a
pears to be very efficient in controlling this soft-type flutter o
Bridge B. However, similar to the case of Bridge A, the TMD
performance strongly depends on the TMD tuning frequency a
damping ratio as noted in Figs. 11 and 12.

Table 2 summarizes the flutter frequency and mode shape
the Bridge B-TMDs system in terms of the amplitude ratios a
phase lags of the components in each structural mode, the ver
displacements of the bridge deck at Points A and B where
TMDs were attached, and the displacements of the TMDs. F
comparison, the results of Bridge A without TMDs at 94.7 m/s a
also presented. Similar to the case of Bridge A, it is reaffirm
that two TMDs show similar dynamic responses with regard
the respective displacements of the bridge deck. The amplit
ratio and phase lags of TMD with respect to the deck displa
ment are almost the same for the two TMDs, which are arou
11.9 and 66.8°. The leeward side TMD plays an essential role
controlling the bridge flutter.

Fig. 11. Effectiveness of TMDs versus damping ratio of TMD fo
Bridge B
2003
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The TMD stroke has been a major constraint in TMD desi
along with the TMD mass. The information concerning the d
placements of the TMDs with respect to the displacement of
bridge deck in the flutter mode provided in Tables 1 and 2 he
to clarify this important issue.

Concluding Remarks

Optimal TMD design in controlling self-excited motion resultin
from a given negative damping was examined with a goal
achieving a target positive damping, and a new set of express
for the optimal TMD parameters was presented. It was illustra
that the optimal design parameters suggested in the literature
sult in an optimal performance only when the resulting damp
ratios of the structure-TMD system are identical and equal
zero. The optimal TMD design suggested by the present st
offers a better performance. It was emphasized that the T
performance may be remarkably influenced by structural damp
as in the case of self-excited motion with a certain level of ne
tive damping.

A low structural damping value has negligible influence on t
aeroelastic modal characteristics of bridges, i.e., frequency, a
dynamic damping and complex mode shapes. Total aeroela
modal damping can be simply estimated as the sum of struct
modal damping and the aerodynamic damping estimated w
zero structural damping.

A detailed discussion of the eigenvalues of the bridge-TM
system and the intermodal coupling among structural modes
coupling between bridge and TMDs was provided using exam
bridges. The complex eigenvalue analysis of bridge-TMDs s
tem provided essential information concerning the bridge-TM
interaction. The displacements of the TMDs with respect to
bridge deck in the flutter mode helped to clarify the issue of TM
stroke which has been a main constraint in TMD design alo
with the TMD mass.

It was illustrated that the addition of TMDs did not signifi
cantly change the coupled motion of the bridge, which was due
self-excited aerodynamic forces on the bridge. The attac
TMDs experienced large amplitude motions, particularly, the l
ward side TMD as compared to the windward side. Howev
both side TMDs showed similar dynamic responses with regar
the respective displacements of the bridge deck. The stabiliz
role of TMDs was mainly due to the leeward side TMD whic
corresponded to a larger bridge deck excitation as compare
those at windward side.
JOURN
n
-
e
s

f
ns
d
re-
g
o
dy
D
g
-

e
ro-
tic
ral
th

s
nd
le
s-
s
e

g

to
d
-

r,
to
g

to

While the effectiveness of auxiliary dampers in controllin
bridge flutter has been demonstrated in foregoing studies for t
specific example bridges, their limitation and the dependenc
their performance on the original structural dynamic and aero
namic characteristics have not been fully addressed thus far in
literature. This study showed that the performance of TM
strongly depends on the bridge aerodynamic characteristics. F
hard-type flutter characterized by negative damping that gr
rapidly with increasing wind speed beyond the flutter onset,
influence of structural modal damping on the critical flutter spe
was insignificant. Accordingly, the effectiveness of TMDs in co
trolling this type of flutter was rather marginal. However, for
soft-type flutter in which the negative damping of bridges gro
slowly with increasing wind speed, addition of auxiliary dampi
may result in significantly higher flutter speed. For this type
flutter, a reliable estimate of structural modal damping was c
cal for accurate estimation of flutter, and auxiliary dampers s
as TMDs would be relatively effective in controlling flutter.

From a practical viewpoint, in addition to the need to provi
a support system and the space needed for the housing of T
with large dynamic displacements, it may be very difficult
configure robust TMDs in light of the sensitivity of their perfo
mance to design parameters around their optimal values for lo
span bridges with very low frequencies. It is emphasized that
controlling flutter instability, instead of adding indirect dampin
to the bridge system through the use of TMDs or even ac
control devices, attention must be focused on controlling the
velopment of self-excited aerodynamic forces through pas
and/or active aerodynamic control schemes. A proper comb
tion involving modification of aerodynamic characteristics
allow a hard-type flutter to become a soft-type flutter and addit
of auxiliary damping devices may offer an effective solution f
bridge flutter control.
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