Efficacy of Tuned Mass Dampers for Bridge Flutter Control
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Abstract: This paper examines efficacy of tuned mass dampeKD) in controlling self-excited motion resulting from negative
damping. New optimal TMD parameters are suggested which provide better performance than those suggested in the literature. Th
dependence of TMD performance on structural damping is highlighted. The equations of motion of a combined system comprised of
multiple TMDs attached to a bridge deck are presented where the bridge motion is described in terms of reduced-order modal coordinate
Details concerning the multimode coupled flutter of long-span bridges with auxiliary TMDs are provided. The effectiveness and limita-
tions of TMDs for controlling multimode bridge flutter are examined, emphasizing the dependence of TMD performance on the bridge
dynamic and aerodynamic characteristics. This study shows that the effectiveness of TMDs is rather limited in controlling a hard-type
flutter characterized by negative aerodynamic damping that grows rapidly with increasing wind speed beyond the onset of flutter.
However, it is relatively effective in controlling a soft-type flutter in which the negative damping builds up slowly with increasing wind
speed. Robust TMD design issues are also discussed in light of their sensitivity to design parameters in the vicinity of optimal values.
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formance of TMDs with different parameters for controlling flut-
ter was investigated and compared to a numerical study. In Lin
Flutter instability is of primary concern for wind-resistant design et al.(2000, a combination of heaving and torsional dampers was
of long-span bridges. The flutter performance of a long-span sus-studied to suppress coupled vertical and torsional buffeting re-
pension bridge can be improved through modifications of the sponse and flutter instability. A TLCD for controlling torsional
structural system such as addition of stay-cables or cross hangerflutter and buffeting of a long-span bridge was investigated by
to the original suspension bridge system. These structural modi-Xue et al.(2000. The role of modal damping on both flutter and
fications result in an increase in not only the structural stiffness, buffeting response of bridges was studied by Jain et1£98.
particularly in torsion, but also the generalized modal mass due toFor their specific bridge example, slight changes in modal damp-
three-dimensional mode shapes. The most effective means of fluting resulted in a significant change in response that emphasized
ter control, however, is to improve the aerodynamic performance the importance of reliable estimates of modal damping for accu-
of a bridge deck section through modifications in its geometric rate response prediction and the potential advantage of external
configuration. This helps to control the development of self- dampers in controlling bridge response.
excited forces, particularly, it reduces the coupled self-excited  While the effectiveness of auxiliary damping in controlling
forces, i.e., the lift induced by torsional motion and the pitching bridge flutter has been demonstrated in foregoing studies for their
moment induced by heaving motion. specific example bridges, its limitation and the dependence of its
A number of studies utilizing auxiliary damping devices such performance on the bridge structural dynamic and aerodynamic
as tuned mass dampdfBMDs) or tuned liquid column dampers  characteristics have not been fully addressed thus far. In this
(TLCDs) have been conducted in controlling bridge flutter paper, the optimal TMD design for controlling self-excited mo-
(Nobuto et al. 1988; Gu et al. 1998; Lin et al. 2000; Xu et al. tions having negative damping is examined. New optimal TMD
2000. In Nobuto et al(1988, both numerical analysis and wind  parameters are proposed which offer better performance than

Introduction

tunnel tests of a bridge section model with two TMDs were con-
ducted to demonstrate the effectiveness of TMDs. In Gu et al.
(1998, using wind tunnel tests of a box section model, the per-
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those previously suggested in the literature. The dependence of
TMD performance on structural damping is highlighted. The
equations of motion for a bridge with multiple TMDs attached to
the bridge deck are presented in which the bridge motion is de-
scribed in terms of reduced-order modal coordinates. Two ex-
ample long-span bridges with different flutter characteristics are
utilized to study the effectiveness and limitations of TMDs in
controlling multimode coupled bridge flutter. Emphasis is placed
on delineating the dependence of the TMDs performance on the
original bridge dynamic and aerodynamic characteristics. Issues
related to robust TMD design are also discussed in light of their
tsensitivity to design parameters around the optimal values.

Tuned Mass Dampers Characteristics in Controlling
Self-Excited Motion

To better understand the fundamental characteristics of a TMD in
controlling self-excited motion, a single-degree-of-freedom
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(SDOB structure with negative net damping combined with a
TMD is considered here. The equations of motion of the
structure-TMD system are expressed as

Mg(Ys+ 2805y s+ ‘”éys) =2m&o(Yi—Ys) + mt‘ﬂtz(yt_ Ys)

1)
mtyt+2mt§twt(yt_ys)+mtwtz(yt_ys)zo @

wherem, &, andw =mass, damping ratio, and frequency, respec-
tively; y=displacement; and subscriptsand t represent the
structure and TMD, respectively.

By introducing nondimensional time and associated deriva-
tives

d d
dt~ “sdr’
the equations of motion can be expressed in the following nondi-
mensional state-space format:
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where p,,=m,/mg=mass ratio;u;=w;/ws=tuning frequency
ratio; and the prime denotes the derivative with respect to the
nondimensional time. It is clear that the performance of a TMD
depends on the mass rajig,, tuning frequency ratiqu¢, TMD
damping ratio;, and structural damping ratig, .

The eigenvalues of the structure-TMD system can be calcu-

lated through the complex eigenvalue analysis based on the pre-

ceding state-space equation. For an eigenvalube characteris-
tic equation of the system described in E4). is given by

N 2[Eg+ (L4 pp) RN H [T+ (L4 p) p i+ 4prEsE N2

+2ui[E+EspuiIN+p?=0 (%)

When the two conjugate eigenvalue pairs are identical and
given by

N=a*tbi=—fw*inyl1—§° (6)

where& and w =damping ratio and frequency; amek —1, the
characteristic equation reduces to

N—4an3+ (6a%+ 2b%)N2—4a(a?+ b))\ +(a?+b?)=0
(7

For a TMD with a given mass ratip.,,, the maximum per-
missible negative damping—(&s) max, Under which the structure-
TMD system is stable, can be obtained from the condition that the
real parts of both eigenvalues of the structure-TMD system are
zero, i.e.A=*iw. By comparing the coefficients in Eq%) and
(7), and using the condition of zero real part, the following TMD

parameters can be obtained, which are generally suggested as the
optimal TMD design parameter for controlling self-excited mo-

tion (Rowbottom 1981; Fujino and Abe 1993

1
Mf:\/l"‘—l&m (8)
B Vitpp—1
&= EN T Viem/2 9)
(I+pm = Vi+tpnm
(=€) max— \/ > Vieml2 (10)

However, it is noteworthy that these parameters result in opti-
mal performance only when the negative damping of the self-
excited motion is equal to the maximum permissible negative
damping &) max fOr @ given TMD mass ratio. Obviously, this is
a very special case. In real TMD design practice for controlling a
self-excited motion with a given negative dampifg the opti-
mal TMD design involves the determination of an adequate mass,
optimal frequency, and damping ratio to achieve maximum posi-
tive damping available to the structural-TMD system. Changing
the negative damping to zero damping only is often not sufficient
for motion control. Therefore, the optimal TMD parameters
should not be limited to the condition that two identical conjugate
eigenvalue pairs have zero real parts. Rather, these should be
determined in the general sense as the two identical conjugate
eigenvalue pairs reach the maximum of their real parts that cor-
respond to the maximum positive damping. By comparing the
coefficients in Egs(5) and(7), the optimal TMD parameters be-
come

Vitmés 1
(Mf)OPt_l+Mm_ (1+p.,m)\/1+um—§§~ l+““m_ mgs
(11)
& emltpe—E & Vitm
(gt)optfl_kp“m T+ ~1+Mm+m
(12)

and the identical frequencies and damping ratios are

W= \/(P«f)opt

(13)

& Viem(1+ pm—22) N

(14)

It can be easily illustrated that for the special case where the
mass ratiow,, and damping raticts satisfy the conditiorés=
—(— &) max, the optimal parameters given in Ed41) and(12)
become the same as those given in Egsand(9), correspond-
ing to zero damping ratios of the structural-TMD system.

In the case wherg, is small and negligible, by submitting
£,=0 into Egs.(11) and (12), these parameters reduce to the
following values used in the optimal TMD design for controlling
the free vibration:

(1f)op= L1+ ) (15)
(E)op= Vitm/(1+ ) (16)
o=11+p, (17)

£= Vw2 (18)
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11 . [— w=0.9843, Eq.(T1)
© | _ _ n=0.9874, Eq.(8)
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Fig. 1. Frequencies of structure-TMD systemu 4= 0.0256, 0.1 i r r
£,=—0.06) K, =0.0256
wr 1=0.9750
£ 0.05 :
As an illustrative example, a design of a TMD for controlling 2
a self-excited motion having a negative dampingégf —0.06 g
with a goal of achieving damping ratios of the structure-TMD 8
system at a level af =0.02 is considered. Based on E#4), the .
TMD mass ratio is first determined, which should not be less than : : §,=-0.06
0.0256. Forun,=0.0256, the optimal tuning frequency ratio is '0'050 0.05 0.1 0.15 0.2
calculated to be{),,=0.9843 based on E@l1). Figs. 1 and 2 (b) Damping ratio of TMDZ,

show the changes in frequencies and damping ratios of the

structure-TMD system witl.n=0.0256 and ) op=0.9843 for - [jg 3 |nfluence of structural damping on the performance of TMD
d|ﬁgrent TMD dampmg ratios as |nd|qated by the solid lines. It is (pom=0.0256): (a) p;=0.9843 andb) p;=0.9750

obvious that the optimal TMD damping ratio i§)p=0.0992
[Eq. (12)], as indicated by the dot in Figs. 1 and 2, corresponding
to a damping ratio of£ =0.02 [Eq. (14)] for the structure-TMD
system.

On the other hand, when the TMD is designed based on the It is worth mentioning that for a given TMD mass ratio, when
formulations previously suggested in the literat{is. (8) and the tuning frequency is not aligned with the optimal frequency,
(9)], thenp.;=0.9874 andt,=0.080. The corresponding frequen- the optimal TMD damping ratio should be determined from the
cies and damping ratios, as indicated by the squares in Figs. 1 an@igenvalue analysis of the structure-TMD system including the
2, are not identical and suggest a damping ratig-e0.0093 for structural damping. In practice for simplicity, the addition of
the structural motion dominated mode. The frequencies anddamping by the TMD is often first evaluated through eigenvalue
damping ratios of the structure-TMD system with,=0.0256 analysis of the structure-TMD system with zero structural damp-
and 1;=0.9874 and different TMD damping ratios are also ing, and itis then considered that the structure-TMD system will
shown in Figs. 1 and 2 by the dashed lines. It is obvious that be stable when the damping added by the TMD is larger than the
when .= 0.9874, the optimal TMD damping ratio should &g negative damping caused by the self-excited motion. This practice
=0.0933 rather thag, = 0.080, corresponding to a damping ratio iS based on the premise that the damping added by the TMD is
of £=0.0123 for the structure motion dominated mode. Clearly, not influenced by the structural damping. This is true when the

the TMD design based on the formulations presented here is de-structural damping is small, but not valid for relative large struc-
monstrably more effective. tural damping as in the case of self-excited motion resulting from

a certain level of negative damping. Fig. 3 shows the damping
ratio of the structural motion dominated mode at varying levels of
original structural damping and TMD damping ratios. It clearly
0.04 — 10,9843, Eq.(11) 7 demonstrates the remarkable influence of the original structural
0.03| _ _ 1=09874,Eq.(8) |- Y damping on the TMD .pe.rformancg in te(ms of th.e qgt damping
7 added by the TMD. This influence is particularly significant for a
TMD with a damping ratio close to its optimal value. However,
this influence will become less significant when the TMD is de-
signed with higher damping.
As observed in Figs. 2 and 3 and also noted by others, it is
reaffirmed that TMD performance is very sensitive to TMD tun-
: ing frequency and damping ratio. The robustness of a TMD can
02 - ‘ : be enhanced if multiple tuned mass dampers with distributed fre-
0.04 0.06 . 0'98 01 0.12 qguencies are introduce@vamaguchi and Harnpornchai 1993;
Damping ratio of TMD &, Igusa and Xu 1994; Kareem and Kline 1996r a TMD with a
damping ratio higher than the optimal value is utilized. The latter
option, however, will compromise the effectiveness of the TMD.
An increase in the mass ratio certainly increases effectiveness, but

Damping ratio §

Fig. 2. Damping ratios of structure-TMD systemu = 0.0256,
£s=—0.06)
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not without the adverse effects of higher cost associated with theof the TMDs; B,=modal matrix at the points of attachment of

necessary structural system to support the TMD and the addedTMDs; Q.. and Q,= generalized self-excited and buffeting force

space requirements. vectors of the bridge, respectively; ai@}.=control force pro-
vided by the TMDs:

Multimode Flutter Analysis of Bridge-Tuned Mass T . T
Dampers System Qc=B; Ci(Y—Yo) +B{Ki(Y(—Yo) (22)

] ) o ) the over-dot denotes partial differentiation with respect to time;
A long-span bridge under wind excitation with a number of 5nq superscripT denotes the matrix transpose operator.

TMDs attached to th_e bndge deck_ is cqn5|d_ered. Each TMDisa qpe frequency dependent self-excited forces can be replaced
SDOF system vibrating in the vertical direction. The wind forces by a rational function approximation #4Ehen et al. 2000

on TMDs are assumed to be negligible as the TMDs are consid-

ered to be installed inside the bridge box girder. It is assumed that 1

the mass ratio of the TMDs to the equivalent bridge mass is very QseZEpUZ
small, therefore, the attachment of TMDs does not introduce a
meaningful change to the static equilibrium of the bridge, and the

b .
Asg+ UAdq

m

2

structural mode shapes remain the same as those of the original = EpUZ ALq+ EA2Q+ b—2A3q+E q |) (23)
bridge without the TMDs. Accordingly, the dynamic displacement 2 U U <1
of the bridge in the vertical, lateral, and torsional directions where
h(x,t), p(x,t), anda(x,t) can be expressed in terms of reduced-
order modal coordinates as Ud

. | .

Osel™ — quel+ Airsq (1=1,2,..m) (24)

h(x,t)= 2 hj(x)q;(t);  p(x,t)= ; Pj(x)a;(t); andA, andA =aerodynamic stiffness and damping matrices, re-

spectively; Ay, Ay, A;, A3, and d; (d,=0;1=1,2,..m)
_ =frequency independent coefficientsgy (1=1,2,..m)
ax,t)= 2 a;(x)q;(t) (19) =augmented unsteady aerodynamic statesjorder of the ratio-
) ) ) nal function approximationp = air density;B=2b=width of the
whereh;(x), pj(x), anda;(x)=jth mode shapes of the bridge in  prigge deck; andJ =mean wind speed.
the vertical, lateral, and torsional directions, respectively; @nd Accordingly, the equations of motion of the bridge-TMDs sys-

={0;}=generalized mode coordinates. The positive displace- tem can be cast in terms of a frequency independent time-
ments of vertical, lateral, and torsional components are defined aspyariant state-space format

upward, down-wind, and nose-up, respectively.
The governing equations of motion of the bridge-TMDs sys-

tem are given by Z()=AZ (1) +BQy(1) (5)
where
Mg + Ca+Kg = Qset Qpt+ Q¢ (20) )
( q \ 0
MY+ Ci(Yi— Yo) +Ki(Y1—Yo) =0 (21) Yi 0
whereM, C, and K =generalized mass, damping, and stiffness q M~
matrices of the bridge, respectiveliyl;, C,, and K,=mass, Z={ Yy (; B= 0 (26)
damping, and stiffness matrices of the TMDs, respectiv¥ly; Usel 0
=vertical displacement vector of the TMD¥},=B,q=vertical : :
displacement vector of the bridge deck at the points of attachment | Osem) . 0 ]
|
i 0 0 I 0 0 0 7
0 0 0 I 0 0
M- 1(K+BT M- 1BT M-1(C+BT M~ 1BT L et L ola-1
~M YK+B{KB) M 'BK, —M YC+B{CB) M 'B{C, pUM ! ... SpUM
M, KB -M; K M, CB -M;'C 0 0
A= t t=t t t t =t t t } (27)
0 0 Ay 0 — Hdll 0
U
0 0 Asim 0 0 Ol
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_ 1 _ 1 _ 1 40 H.*/5 r !
M=M-—zpb?A;; C=C—-pUbA,; K=K--pU?A; —©- 3*/ ; : F
2 2 2 - A1 .

a T T i

(28) g 20 A Ay g h

At a given wind speedJ, the solution of a linear complex g S AR ; - —x

eigenvalue problem given by B _— =X KT X.—;:?&.‘. ......

2 - SE5T4 A

results inN+M conjugate pairs of complex eigenvalues and =20 o A

eigenvectorgwhereN is the number of structural modes included

andM is the number of TMDs andmX N negative real eigen- -40 : . :

values and real eigenvectors. The former group of eigenvalues 0 5 10 15 20

Reduced wind speed U/B

corresponds to the modes associated with the bridge-TMD sys-

tem, and the latter represent the augmented aerodynamic stategig. 4.
introduced by the rational function approximation of the self-
excited forces. These complex modes are referred to as “mode

Flutter derivatives of bridge decKks—Bridge A: --Bridge B

branches.”
The eigenvalue of th¢th complex mode is expressed as andA3 and coupled termsi3 andA7 . The solid lines represent
) > those for Bridge A and the dashed lines for Bridge B. The defi-
Nj=—§jo;Tiojy1- E,— (30) nition of flutter derivatives and a detailed discussion on the role of
wherew; and§;=mode frequency and damping ratio. each aerodynamic component on coupled flutter can be found in

These eigenvalues at different wind speeds provide informa- €hen et al.(2000. In the following multimode bridge flutter
tion concerning the changes in frequencies, damping ratios that2nalysis, only the self-excited forces acting on the bridge deck
take place with the increase in wind speed. The system is stableVhich dominate the bridge flutter are considered. The secondary
when all of the eigenvalues lie on the left side of the imaginary Contributions of aerodynamic damping on the main cables, hanger
axis in the complex plane. When one of the eigenvalues has acables, and towers are neglected for the sake of illustration.
zero real part, it represents the onset of flutter and the correspond-
ing wind speed is referred to as the critical flutter speed.

The corresponding eigenvectals (j=1,2,...,) provide infor- Flutter Response
mation concerning intermodal coupling among the structural . . . .
modes, and the coupling between the bridge motion and motionT_he r_nult|mode coupled flutter analyses_ involving different com-
of the attached TMDs with phase lags. The preceding formulation bination of structural modes for both Bridges A and B suggested
reduces to the multimode flutter analysis of the bridge without that a consideration of only a few important structural modes can
TMDs by dropping the terms with respect to the TMDs. provide an accurate estimate of flutter response. Therefore, the

It is noted that the framework presented in this study, where following discussion is based on the analyses considering only the
the bridge motion is expressed in terms of reduced-order struc-first and second symmetric vertical bending motdsdes 2 and
tural mode coordinates, provides a straightforward relationship 8 and the first symmetric torsional modelode 10. .
regarding the influence of installed TMDs on the structural ~ The changes in frequencies and damping ratios with increasing
dynamics/aerodynamics as compared to the analysis based on ¥ind speed for Bridge A are shown in Figs. 5 and 6 by dots. The

direct finite element model of the bridge-TMDs system. damping ratios are expressed in terms of logarithmic decrement,
i.e.,, d=2mw§&. With an increase in the mean wind speed, the cor-

responding mode shapes vary with wind speed from real-valued

Example Bridges structural mode shapes at zero wind speed to complex-valued

] ] ) ] shapes at higher wind speeds, indicating intermode coupling due

Two example long-span suspension bridges, i.e., Bridges Aand B,tg self-excited aerodynamic forces. The coupled flutter initiates
with same structural dynamics but different aerodynamic charac- from the Mode 10 branch with a critical wind speed of 67.7 m/s.

teristics are considered to illustrate the effectiveness and limita- Taple 1 shows the flutter frequency and mode shape in terms of
tions of TMDs in controlling bridge flutter. The length of the

bridge main span is nearly 2,000 m. The modal frequencies of the
first 15 modes range from 0.03 to 0.18 Hz. The structural modal
damping ratio in each mode is assumed to be the same and equal 01651 mode 10 [ —— w/ TMD
to 0.32% for the sake of illustration. The selection of this damp- :

ing ratio is based on the value for long-span bridges having box § -
girders, which has been suggested by the Honshu-Shikoku Bridge ;;;0.12‘ AR T S B
wind reS|sta_nt des_lgn cod_e in Japéviyata et al. 1998 The -g }5 " TMD (windwa?g)"eﬂ@
modal damping ratios for different structural modes are generally g TMD (leeward) - : :
different. The influence of structural modal damping on bridge £0.08 : : :

flutter will be further highlighted in the following. w

Bridge A has a streamlined deck section whose flutter deriva-
tives are calculated based on the Theodorsen function. Bridge B ; ; ; ;
has a 2-edge box deck section whose flutter derivatives are deter- 0 20 40 60 80 100
mined through a wind tunnel te@latsumoto et al. 1998 Some Wind speed U(m/s)
of their representative flutter derivatives are presented in Fig. 4,
including uncoupled torsional damping and stiffness terAds,

Fig. 5. Frequencies versus wind speed for Bridge A
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o -O- w/o TMD : b : i i : :
= -01 ' : 0.05 : : ' :
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Wind speed U(m/s) Wind speed U(m/s)
Fig. 6. Damping ratios versus wind speed for Bridge A Fig. 7. Frequencies versus wind speed for Bridge B

the amplitude ratios and phase lags of components in each strucmance of Bridge B. The flutter of Bridge B corresponds to a
tural mode. It is noted that the structural mode shapes were nor-soft-type flutter in which the negative damping builds up slowly
malized according to the maximum vertical displacement or tor- with increasing wind speed.
sional displacement multiplied by the half width of the bridge
deck to be unity for the vertical or torsional modes, respectively.
The vertical displacements of the bridge deck on the windward Influence of Structural Damping on Bridge Flutter
and leeward sides at Points A and B located at 9.@#bis the
half-width of the bridge deckfrom the deck centerline at the To investigate the effect of structural damping on the flutter re-
midspan of the bridge are also calculated and presented in Tablesponse, an analysis with different modal damping ratios has been
1. It is clearly demonstrated that the torsional displacement lagsconducted for both Bridges A and B. These include the analysis in
downward vertical displacement, and the vertical displacement of which different modal damping ratios for different modes were
the bridge deck at the leeward side is larger than that at windwardassigned and identical damping ratios for each mode with as-
side. The flutter of Bridge A corresponds to a hard-type flutter signed values of 0.0, 0.32, 1, and 2% were assumed.
characterized by negative aerodynamic damping that grows rap- Results illustrated that the influence of low structural modal
idly with increasing wind speed beyond the onset of flutter. damping on the frequency, aerodynamic damping, and complex
The results for Bridge B with the modal damping ratio of mode shapes is negligible. Total aeroelastic modal damping can
0.32% are shown in Figs. 7 and 8 and Table 2. The predicted be simply estimated as the sum of structural modal damping and
critical flutter speed for Bridge B is 72.0 m/s. As compared to the aerodynamic damping estimated with zero structural damping.
Bridge A, in which significant coupling between bridge motion in  The critical flutter speeds for Bridge A having structural modal
vertical and torsional directions was observed, the coupled motiondamping ratios of 0.0, 0.32, 1, and 2% are 66.0, 67.7, 69.7, and
in Bridge B is relatively weak but remains essential to the devel- 72.2 m/s, respectively. The effect of structural modal damping on
opment of coupled flutter initiated from Mode 10 branch. From the critical flutter speed is rather insignificant for this bridge. This
the flutter derivativeA5 , which shows a negative value, it is is because the negative damping grows rapidly with increasing
obvious that the aeroelastic damping of torsional Mode 10 with- wind speed beyond the flutter onset and the addition of damping
out coupling with the vertical modes would have remained posi- does not result in an apparent increase in the critical flutter speed.
tive and thus a single mode flutter would not exist. While the The critical flutter speeds for Bridge B with structural damping
torsional aerodynamic damping tertaorresponding tA%) is ratios of 0, 0.32, 1, and 2% are 63.9, 72.0, 80.7, and 88.0 m/s,
remarkably low compared to that of Bridge A, a significant de- respectively. Due to the weak coupled self-excited forces and the
crease in the coupled self-excited forces resulted in lowering thelower torsional aerodynamic damping, the development of
negative damping effects thus producing a better flutter perfor- aeroelastic damping in the torsional mode branch is rather slow

Table 1. Comparison of Flutter Condition for Bridge A

Without tuned mass dampers With tuned mass darfipers

Wind speed 67.7 m/s 74.5 m/s 74.5 m/s
Frequency 0.1223 Hz 0.1155 Hz 0.1133 Hz
Damping ratio 0 —0.0349 0
Mode number Amplitude/Phagdegrees Amplitude/Phasédegreep Amplitude/Phasédegreep

Mode 2 1.21+-162.78 1.70+154.04 1.744156.13

Mode 8 0.64+-76.83 0.52-60.90 0.36/2.00

Mode 10 1.00/0 1.00/0 1.00/0

Point A (windward 1.02/~104.84 1.31+113.68 0.841-124.84

Point B (leeward 2.02/~150.86 2.35+149.39 2.10+160.76

Tuned mass dampefwindward —l— —l— 9.99/166.27

Tuned mass dampetkeeward —/— —/— 24.82/130.73

34, =175t f,=0.1147 Hz,£,=0.04
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generalized mass in Modes 2 and 10, respectively. In practical
TMD design, multiple TMDs each comprised of a smaller mass
with the same or slightly detuned dynamic properties can be in-
stalled at different spanwise locations with consideration of space
limitation. In this study, since the emphasis is placed on the de-
pendence of TMD performance on the bridge aerodynamic char-
acteristics, a relatively simple TMD design configuration is con-

sidered.

Based on the dynamic characteristics of Bridge A, the TMDs

— w/TMD | mode 10

Logarithmic decrement =2nk

_0.2 ~O- wioTMD. - ; were designed to control Mode Branch 10 from which the
0 20 40 60 80 100 coupled flutter is initiated. Utilizing Eqg11) and(12), the TMD
Wind speed U(m/s) tuning frequency ratio and damping ratio are 0.9972 and 0.0533

for w,=0.29% andg¢,=0. However, the optimal TMD param-
eters for controlling a coupled flutter could not be directly deter-
mined based on explicit formulations for controlling a SDOF self-

with increasing wind speed. Accordingly, the critical flutter speed €xcited motion. It is due to the fact that the frequency, damping
can be significantly increased by the addition of auxiliary damp- ratio, and the complex mode shape of the target mode branch vary
ing. Similar to the example bridge studied by Jain et(2998), with increasing wind speed, which affects the performance of a
slight changes in modal damping will result in significantly dif- TMD. A better TMD design can be achieved through parametric
ferent response which emphasized the importance of reliable esstudies involving eigenvalue analysis of the bridge-TMDs system

timates of modal damping for accurate prediction of response. ~at different wind speed. In this study, the frequency and damping
ratio of the TMDs were initially set a$,=0.1159 Hz andé;

=0.04, respectively.
Control of Bridge Flutter by Tuned Mass Dampers The frequencies and damping ratios of the Bridge A-TMD
system are plotted versus the mean wind speed in Figs. 5 and 6 as
For the sake of illustration, only two TMDs with the same param- indicated by the solid lines. At low wind speeds, since the natural
eters vibrating in vertical direction were considered. They were frequencies of TMDs are separated from the frequencies of Mode
installed on the windward and leeward sides at Points A and B Branches 2 and 10 but are relatively close to the frequency of
located at 0.76 from the deck centerline at the midspan of the Mode Branch 8, only the damping ratio associated with the Mode
bridge. The TMDs are designed to control the initial coupled Branch 8 is slightly influenced by the inclusion of the TMDs. At
flutter having coupled bridge motion mainly attributed to the sym- a wind speed of around 74 m/s, due to the interaction between
metric structural modes. It is noted that such TMDs will have Mode Branch 10 and the TMDs, particularly the TMD on the
little contribution to controlling any subsequent bridge flutter leeward side, the damping in Mode Branch 10 increases and
modes due to the lack of tuning and/or improper placement of the damping in the TMD dominated mode branch decreases. The
TMDs. To suppress these higher flutter modes, a properly de-curves of two frequency loci representing Mode Branch 10 and
signed TMD configuration is required based on the frequency, leeward TMD branch repel each other thus avoiding an intersec-
damping ratio, and mode shape of each target flutter mode on thetion. As a result, the coupled flutter initiates from the leeward
lines of the TMD design for the initial flutter mode. This issue is TMD branch. In this strong interaction region, two branches ex-
beyond the focus of this study and is therefore not further ad- hibit coupled motions of the bridge and TMDs. Although the
dressed. curve veers, the properties of these two mode branches inter-
The mass was set as,=175t for each individual TMD. change during the veering, and the curve veering phenomenon is
Therefore, the equivalent mass ratio of the TMDs to the observed in this interaction region. The curve veering phenom-
first symmetric vertical mode, i.e., Mode 2, is enon is widely observed in multimode coupled flutter problems
2mh3(x) |x=1,2/M,=0.57%, and the mass of inertia ratio of the and other dynamic problems. A detailed discussion of this phe-
TMDs to the first symmetric torsional mode, i.e., Mode 10, is nomenon, including the criterion for identification of veering, has
2mt[0.750afo(x)|X:L,2]/m10=0.58%, wherem, andm, are the been discussed using a perturbation analysis in Chen and Kareem

Fig. 8. Damping ratios versus wind speed for Bridge B

Table 2. Comparison of Flutter Condition for Bridge B

Without tuned mass dampers With tuned mass darfipers

Wind speed 72.0 m/s 94.7 m/s 94.7 m/s
Frequency 0.1495 Hz 0.1435 Hz 0.1413 Hz
Damping ratio 0 —0.0347 0
Mode number Amplitude/Phagdegrees Amplitude/Phasédegreep Amplitude/Phasédegreep

Mode 2 0.27/175.03 0.57/177.78 0.55/175.07

Mode 8 0.11+167.48 0.21+151.97 0.144-98.62

Mode 10 1.00/0 1.00/0 1.00/0

Point A (windward 0.37/~0.07 0.08+-93.69 0.20/153.27

Point B (leeward 1.13/~179.98 1.51+177.09 1.32+176.04

Tuned mass dampefsindward —/— —/— 2.42/-93.73

Tuned mass dampetkeeward —/— —/— 15.86/177.17

4m=1751, f;=0.1433 Hz,£,=0.04.
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Fig. 9. Effectiveness of TMDs versus damping ratio of TMD for Fig. 11. Effectiveness of TMDs versus damping ratio of TMD for
Bridge A Bridge B

Figs. 9 and 10 show the effectiveness of TMDs expressed in

(2003. Beyond this strong interaction region, the flutter mode terms of increase ratio of the critical flutter speed due to the
branch mainly consists of bridge motions and only slightly in- addition of the TMDs, i.e.,{c—Uc)/U, with different TMD
volves the motions of TMDs. tuning frequencies and damping ratios, where lthg, and U,
Table 1 shows the flutter frequency and mode shape of theare the critical flutter speed with and without TMDs. The optimal
Bridge A-TMDs system in terms of the amplitude ratios and parameters are abofit=0.1171 Hz and;=0.04. Similar to the
phase lags of the components in each structural mode, the verticall MD characteristics in controlling a SDOF self-excited motion,
displacements of the bridge deck at the Points A and B where thethe TMD performance in controlling a multimode coupled flutter
TMDs were attached, and the displacements of the TMDs. For iS sensitive to their own dynamic parameters, particularly, their
comparison, the results of the bridge without TMDs at 74.5 m/s frequencies. Optimal TMD design in controlling bridge flutter
are also presented. It is illustrated that the addition of TMDs does requires an accurate estimate of the torsional mode branch fre-
not significantly change the coupled motion of the bridge, which quency. For long-span bridges with low fundamental frequencies,
is due to self-excited aerodynamic forces on the bridge. The at-it may be very difficult to design a robust set of TMDs due to a
tached TMDs experience large amplitude of motions, particularly, high sensitivity of the TMD effectiveness around optimal param-
the leeward side TMD compared to the windward side TMD. eters. The design of TMDs with a damping ratio higher than the
However, two TMDs show similar dynamic responses with regard optimal value may add to the robustness, but not without some
to the respective displacements of the bridge deck. The amplitudecompromise on the overall effectiveness.
ratios and phase lags of the TMDs displacements with respect to ~ Since the coupled self-excited forces result in a rapid increase
the downward displacements of the bridge deck at Points A and Bin negative aerodynamic damping at higher wind speeds for
are almost the same for the two TMDs, which are around 11.8 andBridge A, the addition of damping provided by TMDs does not
68.5°. It is not surprising that the stabilization role of the TMDs is result in an appreciable change in the critical flutter speed. For
mainly due to the leeward side TMD corresponding to a larger this hard-type of flutter, the addition of auxiliary damping con-
bridge deck excitation at the Point B. As a result, the critical tributes only marginally toward controlling the flutter instability.

flutter speed is increased to 74.5 m/s from 67.7 m/s with the ~ The changes in frequencies and damping ratios for Bridge B
addition of the TMDs. with TMDs at increasing wind speeds are shown in Figs. 7 and 8

as indicated by the solid lines. The frequency and damping ratio
of the TMDs were set af=0.1433 Hz and;= 0.04. The critical
flutter speed is increased from 72.0 to 94.7 m/s. The TMD ap-
pears to be very efficient in controlling this soft-type flutter of

12 Bridge B. However, similar to the case of Bridge A, the TMD

10 performance strongly depends on the TMD tuning frequency and
8 damping ratio as noted in Figs. 11 and 12.
r.s 8 Table 2 summarizes the flutter frequency and mode shape of
2 the Bridge B-TMDs system in terms of the amplitude ratios and
;a 6 phase lags of the components in each structural mode, the vertical
lE 4 displacements of the bridge deck at Points A and B where the
=5 TMDs were attached, and the displacements of the TMDs. For

2

comparison, the results of Bridge A without TMDs at 94.7 m/s are

: : : ; also presented. Similar to the case of Bridge A, it is reaffirmed

09105 0..11 0_1'15 0_'12 0.125 0.13 that two TMDs show similar dynamic responses with regard to

the respective displacements of the bridge deck. The amplitude
ratio and phase lags of TMD with respect to the deck displace-
ment are almost the same for the two TMDs, which are around
11.9 and 66.8°. The leeward side TMD plays an essential role in
controlling the bridge flutter.

Frequency of TMD 1‘t (Hz)

Fig. 10. Effectiveness of TMDs versus frequency of TMD for
Bridge A
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While the effectiveness of auxiliary dampers in controlling
bridge flutter has been demonstrated in foregoing studies for their
specific example bridges, their limitation and the dependence of
their performance on the original structural dynamic and aerody-
namic characteristics have not been fully addressed thus far in the
literature. This study showed that the performance of TMDs
strongly depends on the bridge aerodynamic characteristics. For a
hard-type flutter characterized by negative damping that grows
rapidly with increasing wind speed beyond the flutter onset, the
: ; influence of structural modal damping on the critical flutter speed
8_12 0.14 0.16 0.18 was insignificant. Accordingly, the effectiveness of TMDs in con-

trolling this type of flutter was rather marginal. However, for a

Frequency of TMD  (Hz) soft-type flutter in which the negative damping of bridges grows

Fig. 12. Effectiveness of TMDs versus frequency of TMD for slowly with i.ncr(.-:‘as.ir.\g wind speed, addition of auxiliary.damping
Bridge B may result in S|gn|f|_cantly higher flutter speed. For_ this type _o_f
flutter, a reliable estimate of structural modal damping was criti-
cal for accurate estimation of flutter, and auxiliary dampers such

The TMD stroke has been a major constraint in TMD design 28 TMDs would be relatively effective in controlling flutter.
along with the TMD mass. The information concerning the dis- From a practical viewpoint, in addition to the need to provide
placements of the TMDs with respect to the displacement of the & SUpPort system and the space needed for the housing of TMDs

bridge deck in the flutter mode provided in Tables 1 and 2 helps With large dynamic displacements, it may be very difficult to
to clarify this important issue. configure robust TMDs in light of the sensitivity of their perfor-

mance to design parameters around their optimal values for long-

span bridges with very low frequencies. It is emphasized that for
Concluding Remarks controlling flutter instability, instead of adding indirect damping

to the bridge system through the use of TMDs or even active

Optimal TMD design in controlling self-excited motion resulting control devices, attention must be focgsed on controlling the c_ie-
from a given negative damping was examined with a goal of velopment. of self-excneq aerodynamic forces through passive
achieving a target positive damping, and a new set of expressions2nd/or active aerodynamic control schemes. A proper combina-
for the optimal TMD parameters was presented. It was illustrated tion involving modification of aerodynamic characterlstlcs. Fo
that the optimal design parameters suggested in the literature re&llow a hard-type flutter to become a soft-type flutter and addition
sult in an optimal performance only when the resulting damping of.auxmary damping devices may offer an effective solution for
ratios of the structure-TMD system are identical and equal to Pridge flutter control.

zero. The optimal TMD design suggested by the present study

offers a better performance. It was emphasized that the TMD

performance may be remarkably influenced by structural damping/ACknowledgments

as in the case of self-excited motion with a certain level of nega-
tive damping.
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