
mping
en two

the mode
s behavior
cy loci is

e system
envalues
system

s of this
stem, a
heaving
quency
standing
Curve Veering of Eigenvalue Loci of Bridges
with Aeroelastic Effects

Xinzhong Chen1 and Ahsan Kareem2

Abstract: The eigenvalues of bridges with aeroelastic effects are commonly portrayed in terms of a family of frequency and da
loci as a function of mean wind velocity. Depending on the structural dynamic and aerodynamic characteristics of the bridge, wh
frequencies approach one another over a range of wind velocities, their loci tend to repel, thus avoiding an intersection, whereas
shapes associated with these two frequencies are exchanged in a rapid but continuous way as if the curves had intersected. Thi
is referred to as the curve veering phenomenon. In this paper, the curve veering of cable-stayed and suspension bridge frequen
studied. A perturbation series solution is utilized to estimate the variations of the complex eigenvalues due to small changes in th
parameters and establish the condition under which frequency loci veer, quantified in terms of the difference between adjacent eig
and the level of mode interaction. Prior to the discussion of bridge frequency loci, the curve veering of a two-degree-of-freedom
comprised of a primary structure and tuned mass damper is discussed, which not only provides new insight into the dynamic
system, but also helps in understanding the veering of bridge frequency loci. To study this more complicated dynamic sy
closed-form solution of a two-degree-of-freedom coupled flutter is obtained, and the underlying physics associated with the
branch flutter is discussed in light of the veering of frequency loci. It is demonstrated that the concept of curve veering in bridge fre
loci provides a correct explanation of multimode coupled flutter analysis results for long span bridges and helps to improve under
of the underlying physics of their aeroelastic behavior.
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Introduction

Wind–bridge interaction results in the generation of self-exci
forces, which provide additional aerodynamic damping and s
ness to that already present in the structure. In addition, th
self-excited forces induce aerodynamic coupling of structu
modes, changing the eigenmodes of the bridge. Therefore,
real-valued structural modes are only observed when the m
wind velocity is zero, while complex modes are present un
wind excitation. To avoid confusion, these complex modes
referred to as complex mode branches. The eigenvalues as
ated with complex mode branches can be estimated utilizin
complex eigenvalue analysis~e.g., Katsuchi et al. 1999; Che
et al. 2000!. These eigenvalues are commonly portrayed in ter
of a family of frequency and damping loci as a function of me
wind velocity.

The behavior of these loci has interesting ramifications for
bridge flutter problem. Depending on the structural dynamic a
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aerodynamic characteristics of the bridge, two adjacent freque
loci may approach each other over a range of wind velociti
When this occurs, the curves may intersect or repel each ot
However, even in the case where the curves repel each other
eigenmodes~eigenvectors! associated with these two eigenvalue
are exchanged continuously as if the curves had intersected~Chen
et al. 2001!. This behavior has been termed the ‘‘curve veerin
phenomenon.’’

Because of this ambiguous behavior of frequency loci, tra
tional flutter analysis that employs an iterative calculation proc
dure, based on frequency-dependent state-space equation
proven to be computationally cumbersome. In this approach,
target mode identification has to be done iteratively, which m
not permit complete automation of the analysis procedure~Chen
et al. 2000!.

This behavior of frequency loci may also result in couple
multimode flutter, involving more than two structural mode
which may initiate from a complex mode branch that is differe
from the commonly observed torsional mode branch. For e
ample, in multimode bridge flutter analyses, it has been sho
that a suspension bridge coupled flutter initiated from a late
mode branch~Miyata and Yamada 1988; Chen et al. 2000; Ch
et al. 2001!, and a cable-stayed bridge coupled flutter initiate
from a mode branch associated with a tower bending mode as
wind velocity increased~Chen et al. 2001!. This behavior may
give the impression that the physics of the multimode coup
flutter is different from the general understanding of coupled flu
ter in which two fundamental structural modes of the bridge de
i.e., heaving and torsional fundamental structural modes, are m
important. This general understanding of coupled flutter has b
the foundation of both the analytical bimodal flutter prediction
and wind tunnel based spring-supported section model stud
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However, as a result of the contributions to aerodynamic damp
arising from aerodynamic coupling among structural modes
has been demonstrated that the multimode flutter is physic
consistent with bimodal flutter, although consideration of high
modes offers a more accurate prediction~Chen et al. 2000; Chen
et al. 2001!. In addition, the coupled self-excited force comp
nents acting on the bridge deck, i.e., lift due to torsional mot
and pitching moment due to heaving motion, play a critical role
developing negative aerodynamic damping. While the und
standing of the multimode flutter has been significantly improv
the behavior of adjacent bridge frequency loci and the conditi
under which they repel rather than intersect have yet to be cle
understood.

Recent studies of coupled flutter using spring-supported bri
section models have shown that even in the case of bimodal
ter, the heaving branch may also be the origin of so-called ‘‘he
ing branch coupled flutter’’~Matsumoto et al. 1999!. The physics
of this type of flutter has not yet been fully identified. This type
flutter may be related to the behavior of adjacent bridge freque
loci as discussed previously for the multimode coupled flutter

This veering phenomenon has also manifested itself in a w
range of other fields, following its initial identification in th
study of crystals by Anderson~1958!, who coined the term
‘‘curve veering.’’ Later, Leissa~1974! demonstrated veering o
eigenvalue loci due to the approximate vibration mode analysi
a rectangular membrane. Nair and Durvasula~1973! showed ana-
lytically that the natural frequencies of plates belonging to
same symmetry group yield the veering phenomena when plo
versus geometric parameters, such as the skew angle and
ratio, proposing a criterion for identifying the conditions und
which the eigenvalue loci veer rather than cross. Perkins
Mote ~1986! studied the conditions under which the eigenva
loci veer for a general real-valued eigenvalue problem utilizin
perturbation method, while Pierre~1988! discussed the relation
ship between veering of the eigenvalue loci and mode local
tion. This work was continued by Chen and Ginsberg~1992! who
established criteria governing the occurrence of veering and s
ied the relationship between the veering of eigenvalue loci
the parameter sensitivity of eigenvectors, in which the pertur
tion series solution utilized included the adjacent eigenvector
the zeroth-order expansion~Nair and Durvasula 1973!. The curve
veering phenomenon for eigenvalues of a system dependen
one or two parameters has also been discussed by Morand
Ohayon~1995!.

In this paper, a perturbation series solution is presented
estimate the variations of the complex eigenvalues due to s
changes in the system parameters. Based on the perturbatio
ries solution, the curve veering of cable-stayed and suspen
bridge frequency loci is studied to establish the condition un
which frequency loci veer. In order to better understand this p
nomenon, the curve veering of a structure with a tuned m
damper~TMD! is first discussed using a two-degree-of-freedo
~2DOF! model. After illustrating the curve veering phenomen
in the familiar structure–TMD system, this concept is used
explore the underlying physics associated with heaving bra
flutter in the 2DOF coupled flutter of bridges. The discussion
curve veering offers new insights into the dynamics of t
structure–TMD system, provides a correct explanation of the
sults of the multimode coupled flutter analysis, and helps to
prove understanding of the underlying physics of long sp
bridge aeroelastic behavior.
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Perturbation Analysis of Eigenvalue Problem

The eigenvalue problem of a dynamic system with a system
trix A is expressed as

AFj5l jFj (1)

wherel j andFj5 j th eigenvalue and eigenvector~eigenmode!.
It is insightful to consider the variations of eigenvalues a

eigenvectors due to small changes in the system matrixA to A
1eA0 , where eA05variation of the system matrix, ande5
small perturbation parameter. The system described by matrA
is referred to as the unperturbed system, and thej th eigenvaluel j8
and eigenvectorFj8 of the perturbed system with a system mat
A1eA0 is given by

~A1eA0!Fj85l j8Fj8 (2)

Assuming thatl i ,...,lk are a set of adjacent eigenvalues
the unperturbed system, the corresponding eigenvalue and e
vector matrices are expressed as

L5diag@l i ,...lk#; G5@Fi ,...,Fk# (3)

The perturbed eigenvectorFj8 ( i< j <k) can be expressed in
terms of the eigenvectors of the unperturbed system, in which
adjacent eigenvectors are included in the zeroth-order expan

Fj85GD1eG1E (4)

whereG15the eigenvector matrix of the unperturbed system
cluding G; andD andE5the coefficient vectors.

Substituting Eq.~4! into Eq. ~2! and multiplying by the left-
hand side eigenvector matrix ofA corresponding toL, i.e., GL ,
leads to a system equation forl j8 andD

~L1eH!D5l j8D (5)

whereH is defined as

H5GLA0G (6)

andGL satisfies the following:

GLA5GLL; GLG5I ; GLAG150 (7)

Accordingly, thel j8 and D can be determined through th
solution of the eigenvalue problem defined in Eq.~5!, which pro-
vides a relationship among the modal properties of the un
turbed and perturbed systems.

In the following, the case where only two eigenvalues of
unperturbed system are adjacent is considered, and the c
sponding eigenvalues and eigenvectors of the perturbed sy
are discussed. For the sake of illustration, these adjacent e
values are written asl1 andl2 , accordingly reducing Eq.~5! to

Fl11eH11 eH12

eH21 l21eH22
G FD1 j

D2 j
G5l j8FD1 j

D2 j
G (8)

The solution of the preceding equation leads to the eigenva
l j8 ( j 51,2):

l j85 1
2 ~l1* 1l2* !7 1

2 @~l1* 2l2* !214e2H12H21#
1/2 (9)

with the eigenvectors~normalized to unit!:

D1 j52eH12/A~l1* 2l j8!21e2H12
2

D2 j5~l1* 2l j8!/A~l1* 2l j8!21e2H12
2 (10)
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Fig. 1. General picture of curve veering of eigenvalue loci
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veering, the eigenvector associated withl18 changes from2F1 to
F2 , passing through (2F11F2)/&. In the same way, the ei-
genvector associated withl28 changes fromF2 to F1 , passing
through (F11F2)/&.

For a general complex eigenvalue problem, the curve vee
of frequency loci can be explained as follows. From Eq.~9!, it is
obvious that only when

D5@~l1* 2l2* !214e2H12H21#
1/250 (13)

two adjacent eigenvalues are equal, i.e.,

l185l285 1
2 ~l1* 1l2* ! (14)

This means that both the frequency and damping ratio loci of
two adjacent complex modes intersect. Since, in general,D is not
necessarily equal to zero, the frequencies or damping ratios o
two adjacent complex modes will generally be different fro
each other.

As shown in Eqs.~9! and ~10! and Fig. 1 and Table 1, at the
region wherel1* and l2* are sufficiently distinct, i.e.,ul1* 2l2* u
@2eu(H12H21)

1/2u, the interaction between adjacent modes
weak, and the eigenvalues and eigenvectors of the perturbed
tem,l j8 andFj8 , are close tol j* andFj .

On the other hand, at the region wherel1* and l2* are suffi-
ciently adjacent, i.e.,ul1* 2l2* u'2eu(H12H21)

1/2u, the mode inter-
action between adjacent modes is strong, and the eigenvalue
significantly influenced by the term 2e(H12H21)

1/2. The curve
veering exists, and the eigenvectorsF18 and F28 result from a
significant coupling betweenF1 and F2 . During curve veering,
the eigenvectors~eigenmodes! of the perturbed system are appa
ently different from those for whichl1* and l2* are sufficiently
distinct, and the eigenmodes exhibit dramatic yet continuo
change with variations of the perturbation parameters. This p
nomenon is referred to as mode shape localization.

The following criterion can be utilized to identify the existenc
of curve veering, i.e., when

d5ul1* 2l2* u/@2eu~H12H21!
1/2u#<O~1! (15)

the frequency loci veer, otherwise, these intersect. It is noted
the mode interaction index,d, represents the distance betwee
two eigenvalues of the unperturbed system which have been
rected to include the influence of the diagonal terms of pertur
tion matrix eH, normalized by the off-diagonal terms ofeH. A
lower value of the mode interaction index corresponds to a str
ger modal interaction.

Expressing the complex eigenvalues,l j* ( j 51,2), in terms of
their frequencies,v j* , and damping ratios,j j*

l j* 52j j* v j* 1 iv j*A12~j j* !2 (16)

the difference in the eigenvalues of the adjacent complex mo
can be approximated as follows when the frequencies are clos
each other

ul1* 2l2* u'v* uj1* 2j2* u (17)

where v1* 'v2* 'v* . Consequently, the curve veering of fre
quency loci is obviously related to the difference in the damp
ratios of these two adjacent modes compared to 2e(H12H21)

1/2.

Curve Veering of Frequency Loci
of Structure–Tuned Mass Damper System

Although the thrust of this work is focused on the veering
bridge frequency loci, a 2DOF structure–TMD system is chos
where l j* ( j 51,2)5the eigenvalues of the unperturbed syste
corrected for the influence of the diagonal terms of matrixeH

l1* 5l11eH11; l285l21eH22 (11)

It is obvious thatH125H2150 leads tol j85l j* and Fj8
5Fj , indicating that the existence of the diagonal terms ofeH
only modifies the eigenvalues but does not influence the eig
modes of the unperturbed system.

The eigenvectors of the perturbed system in the zeroth-o
expansion are then given by

Fj85D1 jF11D2 jF2 (12)

In the case whereeA and A0 are real-valued symmetric ma
trices, eH becomes a real-valued symmetric matrix, and the
genvalues and eigenvectors of both unperturbed and pertu
systems are real valued. However, note that in the case of bri
with aeroelastic effects, the system matrix including aerodyna
stiffness and damping terms are nonsymmetric~see the Appen-
dix!, thus the eigenvalues and eigenvectors of both the un
turbed and perturbed systems are generally complex valued
the matrixeH is generally nonsymmetric.

Detailed discussion on the curve veering of real-valued eig
value loci can be found in Chen and Ginsberg~1992! and Morand
and Ohayon~1995! based on Eq.~9!. A general picture of curve
veering of eigenvalue loci is plotted in Fig. 1, and the correspo
ing eigenmodes are shown in Table 1. The following parame
were used in this numerical example:l151.0, l251.02, H11

50.2,H22520.1, andH125H2150.05. It is evident thatl1* and
l2* intersect ate50.0667. However,l18 and l28 are generally
different, wherel18 andl28 denote lower and upper eigenvalues
the perturbed system, respectively. The presence of the
diagonal terms ofeH results in separation of the eigenvalues.
pointed out by Chen and Ginsberg~1992! and Morand and
Ohayon~1995! and as indicated by Fig. 1 and Table 1, during t

Table 1. Eigenmodes of Example

e

Mode 1 Mode 2

D11 D21 D12 D22

0.02 À1.00 0.07 0.07 1.00
0.04 À0.97 0.23 0.23 0.97
0.06 À0.81 0.58 0.58 0.81
0.0667 À0.71 0.71 0.71 0.71
0.08 20.53 0.85 0.85 0.53

0.10 20.38 0.92 0.92 0.38

0.12 20.32 0.95 0.95 0.32



m can be
as a simple, first example to illustrate the veering phenomenon of frequency loci. The free vibration of the structure–TMD syste
described in the following nondimensional state-space equations

H ys8

yt8

ys9

yt9
J 5F 0 0 1 0

0 0 0 1

2~11mmm f
2! mmm f

2 22js22mmj tm f 2mmj tm f

m f
2 2m f

2 2j tm f 22j tm f

G H ys

yt

ys8

yt8
J (18)
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H ys8

yt8

ys9

yt9
J 5F 0 0 1 0

0 0 0 1

21 0 22js 0

0 2m f
2 0 22j tm f

G H ys

yt

ys8

yt8
J (19)

with eigenvalues

l152js1 iA12js
2; l252j tm f1 im fA12j t

2 (20)

and eigenvectors

F15@1 0 l1 0#T; F25@0 1 0 l2#T (21)

By expressing the eigenvectors of the structure–TMD sys
in terms of those of the unperturbed system, the eigenvalue
eigenvectors of the perturbed system can be estimated bas
Eqs.~9! and ~10! with the matrixeH given by
eH520.5i F2mmm f~m f12j tl1!/A12js
2 mmm f~m f12j tl2!/A12js

2

~m f12j tl1!/A12j t
2 0

G (22)
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The modal properties of the structure–TMD system sugg
that there are generally two distinct frequencies for a given se
parameters except whenm f5(m f)opt51/(11mm) andj t>(j t)opt

5Amm, where (m)opt and (j t)opt are the optimal frequency tuning
ratio and damping ratio of TMD withjs50. It is clear from Fig.
4, which shows the modal frequencies of the structure–TMD s
tem atm f5(m f)opt, that the two frequencies coalesce only whe
j t>(j t)opt. Obviously, when the frequency loci of structure
TMD system are plotted versus the frequency ratiom f , the two
loci will veer for j t,(j t)opt and intersect forj t>(j t)opt at m f

5(m f)opt. However, it is emphasized that despite the veering
intersection of the frequency loci, the physics of the structur
TMD interaction are exactly the same.

Curve Veering of Eigenvalue Loci of Bridges
with Aeroelastic Effects

Long Span Cable-Stayed Bridge

A wind-excited cable-stayed bridge with a center span of ab
1000 m was chosen as an example to illustrate the curve vee
of eigenvalue loci in bridges~Chen et al. 2001!. The logarithmic
decrement for each structural mode was assumed to be 0.02
the sake of illustrating the fundamental characteristics of bridg
with aeroelastic effects, only the aerodynamic forces acting on
bridge deck were included. The self-excited drag component
wheremm5mt /ms5the mass ratio;m f5v t /vs5the tuning fre-
quency ratio;m, j, and v5the mass, damping ratio, and fre-
quency, respectively;y5the displacement; subscriptss and t
5the structure and TMD, respectively; and the prime denotes th
derivative with respect to the nondimensional timet5vst. It is
obvious that the dynamics of the structure–TMD system depend
on the mass ratiomm , tuning frequency ratiom f , TMD damping
ratio j t , and structural damping ratiojs . The effect of structural
damping, which is generally small, can be neglected.

The eigenvalues of the structure–TMD system can be calcu
lated through the complex eigenvalue analysis based on the pr
ceeding state-space equations. These can also be estimated ba
on a perturbation analysis. The system consisting of the isolate
structure and TMD is chosen as the unperturbed system wit
state-space equations
It is noted that the perturbation series solution results in e
actly the same solutions of modal properties as the direct comp
eigenvalue analysis@Eq. ~18!#. This is due to that fact that the two
equations are strictly equivalent and are related by a transform
tion of the modal coordinates of the isolated structure and TM

In Fig. 2, the frequencies, damping ratios and eigenmodes
terms of the amplitude ratios between the TMD and the structu
for two complex modes versus frequency ratiom f varying from
0.8 to 1.2 withj t55%, js50%, andmm51% are presented.
Fig. 3 shows the results for the same parameters as Fig. 2 with
exception ofj t512%. The modal interaction index for these two
cases are calculated based on Eq.~15! and are presented in Figs.
2~d! and 3~d!.

The cure veering of frequency loci for the case ofj t55% is
observed. The upper frequency locus~dashed line! corresponds to
the structure dominated mode in the range of a lower-frequen
ratio which changes to the TMD dominated mode at a highe
frequency ratio locale. On the other hand, the lower-frequen
locus ~solid line! changes from the TMD dominated mode to th
structure dominated mode as the frequency ratio increased. T
cure veering is due to a strong interaction between the TMD a
the structure as indicated by Fig. 2~d!. In the case ofj t512%,
higher TMD damping resulted in a relatively weak interactio
between the TMD and the structure@Fig. 3~d!# such that the fre-
quency loci intersect like those of the isolated TMD and the stru
ture system~unperturbed system!.
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Fig. 2. Modal properties and interaction index of structure–tuned mass damper system (j t50.05)
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modes, along with coupled components of the other struct
modes. At the wind velocities of about 100 m/s, the frequencie
complex mode branches 10 and 13 approach each other wi
intersecting. Consequently, the mode shapes of these two m
branches exhibit strong coupling. Both modes contain signific
contributions from structural modes 10 and 13 with an additio
coupled component of structural mode 3 and only a small c
ponent of structural mode 7. As wind velocity increases, the m
shapes of complex mode branches 10 and 13 are graduall
changed to the complex modes dominated by structural mode
and 10, respectively. At the wind velocities of about 112 m/s,
frequencies of complex mode branches 7 and 10 are close to
other which results in a significant coupling of these modes.
fore this wind velocity range, complex mode 7 is actually str
tural mode 7, and beyond this range, it becomes a coupled c
plex mode consisting structural modes 3, 10, and 13. On the o
hand, beyond this range, complex mode 10 turned to be d
nated by the structural mode 7. The veering of frequency
between complex mode branches 10 and 13 was noted aroun
wind velocity of 100 m/s, and between complex mode branch
and 10 around the wind velocity of 112 m/s, respectively. T
mode shapes associated with these two pairs of eigenvalue
exchanged during veering in a rapid but continuous way as if
curves has intersected. In the curve veering range, mode s
localization is observed, which is attributed to the interaction
these two adjacent complex modes. Taking into account the p
ence of the veering of frequency loci, the physics of the mu
mode coupled flutter consisting of more than two structu
modes is actually the same as the flutter predicted from the an
sis based on the two fundamental modes. Both scenarios
dominant contributions of the two fundamental modes to flu
duced by the lateral motion was calculated based on the qu
steady theory. The coupled self-excited force components
tween the lateral and vertical motions and between the lateral
torsional motions are generally negligible and, therefore, we
neglected. The flutter derivativesHi* and Ai* ( i 51,2,3,4) were
calculated using the Theodorsen function.

The variations of the bridge frequencies and damping ratios
the wind velocity increases are shown in Fig. 5. These were c
culated utilizing the complex eigenvalue analysis of the line
invariant state-space formulations with augmented aerodyna
states~see the Appendix!. In the calculation, only several impor-
tant structural modes, modes 3, 7, 10, and 13, were conside
where modes 3 and 13 are the fundamental vertical bending
torsional modes, respectively; mode 7 is the bending mode of
tower in the bridge plane; and mode 10 is the second symme
lateral bending mode of the bridge deck. The critical flutter v
locity (Ucr) was predicted to be 114.1 m/s, which is close to 113
m/s based on the first 20 structural modes. The eigenvalue loc
these four complex mode branches are also very close to th
based on the first 20 structural modes. The results predicted
only including the two fundamental structural modes~3 and 13!
are also plotted for comparison as the dashed lines in Fig. 5 w
Ucr of 119.3 m/s. The mode shapes of these four complex mo
branches are summarized in Table 2 in terms of the amplitu
ratios of the structural modal components. The phase lag in
mation is not present herein for the sake of brevity. The structu
mode shapes were normalized in accordance with the maxim
translateral displacement or torsional displacement of the brid
deck multiplied by the half width of the bridge deck to be unit

It is noted that at low wind velocities, the complex mod
shapes are dominated by their respective real-valued struct



Fig. 3. Modal properties and interaction index of structure–tuned mass damper system (j t50.12)
in

ig
nt
f
n
u
tu
at

o
7,
ct
as
p

at
and similar variations of frequency and damping loci with
creasing wind velocity.

A perturbation analysis was conducted to describe the e
value loci around the two veering regions and, more importa
to discuss the curve veering conditions. For the discussion o
veering between complex mode branches 10 and 13, the u
turbed system was chosen as the system excluding the co
aerodynamic terms of structural mode 10 with other struc
modes, i.e., modes 3, 7, and 13. This was realized by elimin
the corresponding elements in the aerodynamic matricesAs and
Ad ~see the Appendix!. It is worth noting that the eigenvalues
the unperturbed system corresponding to mode branches 3,
13 are actually the same as the case considering only stru
modes 3, 7, and 13, and that of mode branch 10 is the same
case considering only the single structural mode 10. The

Fig. 4. Frequencies of structure–tuned mass damper systemm f

5(m f)opt
-

en-
ly,
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Fig. 5. Eigenvalue loci of cable-stayed bridge~— with structural
modes 3,7,10,13; –– with structural modes 3 and 13!
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Table 2. Amplitude Ratios of Structural Modes in Complex Mode Branches~the Cable-Stayed Bridge!

U ~m/s!

Mode Branch 7 Mode Branch 10 Mode Branch 13

3 7 10 13 3 7 10 13 3 7 10 13

90 0.09 1.00 0.03 0.04 0.57 0.04 1.00 0.50 0.55 0.03 0.48 1.00
95 0.13 1.00 0.04 0.05 0.88 0.07 1.00 0.72 0.63 0.03 0.69 1.00
100 0.20 1.00 0.05 0.08 1.43 0.13 1.00 1.00 0.69 0.04 0.95 1.00
105 0.36 1.00 0.09 0.14 2.27 0.27 1.00 1.25 0.73 0.04 1.22 1.00

110 1.00 1.00 0.25 0.38 3.26 0.90 1.00 1.43 0.76 0.04 1.47 1.00

112 1.95 1.00 0.45 0.72 3.51 1.77 1.00 1.47 0.77 0.04 1.47 1.00

114 3.32 1.00 0.70 1.15 3.65 2.97 1.00 1.49 0.77 0.04 1.66 1.00

120 9.44 1.00 1.60 2.80 3.95 8.06 1.00 1.52 0.80 0.04 1.92 1.00

130 21.44 1.00 2.63 5.11 4.23 16.63 1.00 1.55 0.82 0.05 2.31 1.00
.
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turbed system is the original system accounting for all uncoupled
terms~diagonal terms! and coupled terms~off-diagonal terms! in
As andAd at the same wind velocity as the unperturbed system
Therefore, the difference between the unperturbed and perturbe
systems is due to the aerodynamic intermode coupling terms o
structural mode 10 with other structural modes. Only adjacen
mode branches 10 and 13 of the unperturbed system were in
cluded in the zero-order expansion.

Fig. 6. Comparison of eigenvalue loci of complex mode branches 10
and 13~–– and — are calculated by complex eigenvalue analysis
with and without coupled terms of structural mode 10 with other
structural modes; circles are calculated by perturbation analysis!: ~a!
frequency versus wind velocity and~b! damping ratio versus wind
velocity
152 / JOURNAL OF ENGINEERING MECHANICS / FEBRUARY 2003
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The eigenvalues of the unperturbed system were predicte
using the complex eigenvalue analysis~see the Appendix! and are
plotted as solid lines in Fig. 6. For this example and the following
examples of the perturbation analysis of bridge eigenvalues, th
perturbation in the system matrix only results in the existence o
the off-diagonal terms of the matrixeH, thus the eigenvaluesl i*
are the same as the eigenvalues of the unperturbed system, i.
l i5l i* . It is evident that the frequency loci of mode branches 10
and 13 of the unperturbed system intersect. The eigenvalues o
the perturbed system were estimated based on the perturbatio
series solution@Eq. ~9!# ~circles in Fig. 6! and were compared to
those based on the complex eigenvalue analysis~see the Appen-
dix! ~dashed lines!. Excellent agreement of the results demon-
strated the efficacy of the perturbation series solution. It was als
demonstrated that the veering of frequency loci between mod
branches 10 and 13 was due to the aerodynamic intermode co
pling terms of structural mode 10 with other structural modes.
Based on the perturbation analysis, the interaction index of thes
two complex modes was calculated as shown in Fig. 7. It is ob
vious that the curve veering corresponds to a low value of this
index, representing a strong mode interaction. This demonstrate
the utility of the criterion for identifying the onset of curve veer-
ing. Similar results for complex modes 7 and 10 at wind veloci-
ties around 112 m/s are presented in Figs. 8 and 9. Results aga
reaffirmed the efficacy of the perturbation series solution and
demonstrated that the aerodynamic coupling terms of structura
mode 7 with other structural modes resulted in veering of the
eigenvalue loci.

In Fig. 6, a slight difference can be observed in the predicted
damping ratios of the perturbed system between those based o
the perturbation series solution and the direct complex eigenvalu
analysis. It was attributed to the contribution of complex mode
Fig. 7. Interaction index of adjacent complex mode branches 10 and
13
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and 10~–– and — are calculated by complex eigenvalue analys
with and without coupled terms of structural mode 7 and other stru
tural modes; circles are calculated by perturbation analysis!: ~a! fre-
quency versus wind velocity and~b! damping ratio versus wind ve-
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Long-Span Suspension Bridge

A wind-excited long-span suspension bridge with a center span
nearly 2,000 m was used as another example to illustrate t
veering of eigenvalue loci~Chen et al. 2000!. The logarithmic
decrement for each structural mode was assumed to be 0.02.
modeling of the self-excited forces was the same as the aforem
tioned cable-stayed bridge.

Calculations with different mode combinations using a com
plex eigenvalue analysis were conducted for estimating the eige
values with increasing wind velocity. It was found that the analy

7
s
-

d

Fig. 10. Comparison of damping loci of complex mode branches 1
and 13~–– and — are calculated by complex eigenvalue analys
with and without coupled terms of structural mode 10 and othe
structural modes; circles are calculated by perturbation analysis w
three adjacent modes!

Fig. 11. Eigenvalue loci of the suspension bridge~— with structural
modes 2,9,10; –– with structural modes 2 and 10!: ~a! frequency
versus wind velocity and~b! damping ratio versus wind velocity
branch 3 of the unperturbed system to the eigenvalues of m
branches 10 and 13 of the perturbed system. This effect can
included by taking into account this complex mode branch alo
with complex mode branches 10 and 13 in the zeroth-order
pansion of the perturbation analysis. Accordingly, a more accur
perturbation series solution can be obtained by including mo
mode components in the zeroth-order expansion as shown
Fig. 10.

Fig. 9. Interaction index of adjacent complex mode branches 7 a
10
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Table 3. Amplitude Ratios of Structural Modes in Complex Mo
Branches~the Suspension Bridge!

U ~m/s!

Mode Branch 9 Mode Branch 10

2 9 10 2 9 10

60 0.44 1.00 0.37 0.73 0.53 1.00
62 0.60 1.00 0.49 0.79 0.71 1.00
64 0.84 1.00 0.65 0.85 0.94 1.00
66 1.15 1.00 0.84 0.90 1.22 1.00

68 1.55 1.00 1.05 0.93 1.55 1.00

70 2.04 1.00 1.27 0.96 1.91 1.00

75 3.51 1.00 1.80 1.02 2.84 1.00

80 5.18 1.00 2.22 1.05 3.68 1.00
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the complex eigenvalue analysis@Eq. ~45!#, respectively. Circles
represent the results estimated by the perturbation series solu
@Eq. ~9!#. These results illustrate that the behavior of eigenva
loci can be accurately described by the perturbation series s
tion. The corresponding interaction index is shown in Fig. 1
indicating that a strong interaction between complex mo
branches 9 and 10 around a wind velocity of 65 m/s resulted
the veering of frequency loci.

For comparison, the flutter analysis considering structu
modes 2, 8, and 10 was also conducted, where mode 8 is
second symmetric vertical bending mode. The frequency a
damping ratio loci are shown in Fig. 14, in which the dashed a
solid lines are the results with and without the off-diagonal term
in aerodynamic matricesAs andAd representing the aerodynami
coupling between structural modes 8 and 2, and between st
tural modes 8 and 10. Fig. 15 shows the interaction index
complex modes 8 and 10. The relatively large values of this
rameter indicate that the eigenvalue loci are only slightly infl
enced by the weak interaction of complex mode branches 8
10. As a result, the frequency loci of these branches remain in
sected. The weak interaction is due to the remarkable differe
in the damping ratios of these two mode branches compared
the term 2e(H12H21)

1/2.
l

s 9
-
ural
rtur-
sis including structural modes 2,9,10, which are the fundame
vertical symmetric bending, second lateral symmetric bend
and fundamental torsional symmetric modes, respectively,
sulted inUcr of 65.3 m/s, which is close to 66.5 m/s based on
first 15 natural modes. The eigenvalue loci are also similar
coupled flutter initiated from complex mode branch 9 as indica
by solid lines in Fig. 11. In Table 3, the complex mode shape
these complex mode branches, in terms of the amplitude ratio
the structural mode components, are presented. The struc
mode shapes were normalized in accordance with the maxim
translateral displacement or torsional displacement of the br
deck multiplied by the half width of the bridge deck to be uni

At around 65 m/s, the eigenvalues of complex mode branc
9 and 10 are close to each other without intersection. The m
shapes of both complex modes consist of strongly coupled c
ponents of structural modes 9 and 10 with an additional cou
component of the structural mode 2. As wind velocity exceeds
m/s, complex mode 9 gradually transitions to a mode domin
by coupled components of structural modes 2 and 10. In the s
way, complex mode 10 gradually changes to the mode domin
by structural mode 9. The veering of frequency loci between c
plex mode branches 9 and 10 occurs around a wind velocity o
m/s. Mode shape localization again occurs in branches 9 an
during the veering, indicated by the coupling of structural mod
with other structural modes. Away from the veering region,
coupling of structural mode 9 becomes marginal. As compare
the eigenvalues based on the two fundamental modes~structural
modes 2 and 10! as shown in dashed lines in Fig. 11, it is cle
that the underlying physics of the multimode coupled flutter
volving more than two modes is essentially the same as the
mode coupled flutter, despite the fact that the flutter appears
initiated from different branches.

A perturbation analysis was conducted for estimating the
genvalue loci of complex modes 9 and 10 around the wind ve
ity of 65 m/s. The perturbation series solution was based on
jacent complex modes 9 and 10 at the same wind velo
predicted by neglecting some of the off-diagonal terms in
aerodynamic matricesAs andAd representing the coupled term
between structural modes 9 and 2, and between structural m
9 and 10. It is worth noting that the eigenvalues of the unp
turbed system corresponding to mode branches 2 and 10 ar
tually the same as the case considering only structural mod
and 10, and that of mode branch 9 is the same as the case
sidering only the single structural mode 9. Therefore, the dif
ence between the unperturbed and perturbed systems is due
aerodynamic intermode coupling terms of structural mode 9 w
other modes. Solid and dashed lines in Fig. 12 represent th
genvalues of the unperturbed and the perturbed systems bas
s
e
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Fig. 12. Comparison of eigenvalue loci of complex mode branche
and 10 for the suspension bridge~–– and — are calculated by com
plex eigenvalue analysis with and without coupled terms of struct
mode 9 with other structural modes; circles are calculated by pe
bation analysis!: ~a! frequency versus wind velocity and~b! damping
ratio versus wind velocity
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Fig. 15. Interaction index of adjacent complex mode branches 8 a
10 for suspension bridge
Curve Veering of Frequency Loci
of Two-Degree-of-Freedom Coupled Flutter

Closed-Form Solution of Two-Degree-of-Freedom
Coupled Flutter

The equations of motion of a spring-supported bridge sec
model with heave and torsional degrees of freedom are give

Mq̈1Cq̇1Kq5
1

2
rU2S Asq1

b

U
Adq̇D (23)
gth

di-

tem
an

the
where

M5Fmh 0

0 I a
G ; C5F2mhjhvh 0

0 2I ajava
G

(24)

K5Fmhvh
2 0

0 I ava
2 G ; q5F h

a G
As5F 2k2H4* ~k! 2k2bH3* ~k!

2k2bA4* ~k! 2k2b2A3* ~k!
G

(25)

Ad5F 2kH1* ~k! 2kbH2* ~k!

2kbA1* ~k! 2kb2A2* ~k!
G

mh and I a5the mass and mass moment of inertia per unit len
of the bridge deck,vh andva ; jh andja5mechanical circular
frequencies and damping ratios in the heaving and torsional
rections, respectively,H j* ; Aj* ( j 51,2,3,4)5the flutter deriva-
tives, which can be identified through wind tunnel tests; andh and
a5the heaving~downward! and torsional~nose-up! displace-
ments.

The eigenvalues and eigenvectors of the bridge section sys
without the coupled self-excited forces can be expressed in
explicit form as

vh0
2 5vh

22rvh0
2 b2H4* ~kh0!/mh (26)

jh05jhvh /vh02rb2H1* ~kh0!/~2mh!

va0
2 5va

22rva0
2 b4A3* ~ka0!/I a (27)

ja05java /va02rb4A2* ~ka0!/~2I a!

l j5lh0 ,la0 ; Fj5Fh0 ,Fa0 (28)

lh052jh0vh01 ivh0A12jh0
2

(29)

la052ja0va01 iva0A12ja0
2

Fh05F h
a

ḣ
ȧ

G5F 1
0

lh0

0
G ; Fa05F h

a

ḣ
ȧ

G5F 0
1
0

la0

G (30)

The equivalent eigenvalue equation of the system without
coupled self-excited forces is given as

AFi5l jFj (31)

where
Fig. 14. Eigenvalue loci of the example suspension bridge w
structural modes 2, 8, and 10~–– and — are with and withou
coupled terms of structural mode 8 with other structural modes!: ~a!
frequency versus wind velocity and~b! damping ratio versus win
velocity
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A5F 0 0 1 0

0 0 0 1

2vh0
2 0 22jh0vh0 0

0 2va0
2 0 22ja0va0

G (32)

The eigenvalues and eigenvectors of the system with
coupled self-excited forces can be estimated through a comp
eigenvalue analysis based on Eq.~23!. Here, a perturbation series
solution is presented at the wind velocity range where the f
quencies in heaving and torsional branches are closely align
The perturbation series solution renders more physical insi
into the influence of coupled self-excited forces on bridg
aeroelastic behavior. Choosing the system without the coup
self-excited forces as the unperturbed system, the perturbed
tem described in Eq.~23!, involving the contribution of coupled
self-excited forces, can be expressed in terms of the eigenva
problem defined in Eq.~2! with

A1eA05F 0 I

2M21S K2
1

2
rU2AsD 2M21S C2

1

2
rbAdD G

(33)

The frequency-dependent aerodynamic matricesAs and Ad

can be approximated as constant matrices defined at known
c

h
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duced frequencies corresponding to the frequencies of the un
turbed system:

As5F 2kh0
2 H4* ~kh0! 2kha0

2 bH3* ~kha0!

2kha0
2 bA4* ~kha0! 2ka0

2 b2A3* ~ka0!
G

(34)

Ad5F 2kh0H1* ~kh0! 2kha0bH2* ~kha0!

2kha0bA1* ~kha0! 2ka0b2A2* ~ka0!
G

where

kh05vh0b/U; ka05va0b/U; kha05vha0b/U
(35)

vha05 1
2 ~vh01va0!

This approximation inAs andAd is generally acceptable base
on the fact that the coupled self-excited forces only slightly infl
ence the frequencies, and that the aerodynamic matrices ar
sensitive to the changes in the reduced frequency. This app
mation is particularly valid for the region where the frequenc
in heaving and torsional branches are adjacent, which is exa
the region in which the perturbation series solution is being
plied.

Accordingly, the perturbation in the system matrix is appro
mated by
eA05rvha0b3F 0 0 0 0

0 0 0 0

0 vha0H3* ~kha0!/mh 0 H2* ~kha0!/mh

vha0A4* ~kha0!/I a 0 A1* ~kha0!/I a 0

G (36)

By expressing the eigenvectors of the perturbed system in terms of those of the unperturbed system, i.e.,Fj85D1F11D2F25GD, the
eigenvalue equations of the perturbed system, i.e.,l j85lh8 ,la8 are given by (L1eH)D5l j8D in which L5diag@lh0 la0#, and

eH5GLeA0G5rvha0b3F 0 2 i ~vha0H3* 1la0H2* !/~2mhvh0
D !

2 i ~vha0A4* 1lh0A1* !/~2I ava0
D ! 0 G (37)
s
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coupled self-excited forces and the coupled flutter derivative
H2* , H3* , A1* , andA4* .

At the wind velocity range where the frequencies in heaving
and torsional branches of the unperturbed system are very clos
we havevha0'vh0'va0 and the matrixeH can be further ap-
proximated as

eH'rvha0b3F 0 ~H2* 2 iH 3* !/~2mh!

~A1* 2 iA4* !/~2I a! 0 G
(41)

and the veering condition of the frequency loci of the heaving an
torsional branches can thus be approximately expressed in an e
plicit form

d5
ujh02ja0u

rb3/AmhI a$@~A1* !21~A4* !2#@~H2* !21~H3* !2#%1/4
<O~1!

(42)
where

GL5@Fh0L Fa0L#T (38)

Fh0L5
2 i

2vh0
D @2vh0

2 /lh0 0 1 0#

(39)

Fa0L5
2 i

2va0
D @0 2va0

2 /la0 0 1#

vh0
D 5vh0A12jh0

2 ; va0
D 5va0A12ja0

2 (40)

and the superscriptT denotes the matrix transpose operator.
By solving Eq.~5! with the aforementioned coefficient matrix,

the eigenvalues and eigenvectors with coupled self-excited for
can be readily determined based on Eqs.~9! and ~10!, which are
given in terms of the eigenvalues and eigenvectors without t



ith
Fig. 16. Comparison of eigenvalue loci of heaving and torsional mode branches~–– and — are calculated by complex eigenvalue analysis w
and without coupled self-excited forces; circles are calculated by perturbation analysis!: ~a! frequency versus wind velocity~Case A!; ~b! damping
ratio versus wind velocity~Case A!; ~c! frequency versus wind velocity~Case B!; ~d! damping ratio versus wind velocity~Case B!; ~e! frequency
versus wind velocity~Case C!; and ~f! damping ratio versus wind velocity~Case C!
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50.075 m, mh52 kg, I a55.e203 kg•m, f h54.5 Hz, f a

56 Hz, andjh5ja50.32%. The self-excited forces are given
three different ways for comparison purpose: case A: All flut
derivatives were calculated through the Theodorsen function,
B: All flutter derivatives were the same as case A except thatA2*
andA3* were twice those in case A, case C: All flutter derivativ
were the same as case A except thatA2* andA3* were three times
those in case A. The preceding changes inA2* and A3* was to
simply simulate cases of different bridge sections with disti
aerodynamic characteristics leading to different flutter behavi

Fig. 16 shows the frequency and damping ratio loci versus
mean wind velocity for these three cases calculated through
complex eigenvalue analysis~see the Appendix!. The solid and
dashed lines in Fig. 16 are the results with and without the c
sideration of coupled self-excited forces presented byH2* , H3* ,
A1* , and A4* . Without the coupled self-excited forces, the tw
frequency loci intersect in these three cases. The coupled
excited forces result in the separation of two frequency loci.
cases A and B, a coupled flutter is initiated from the torsio
Table 4. Comparison of Flutter Conditions

Case no. Branch
Ucr

~m/s!
f

~Hz! Ucr / f B h/Ba
f(h)2f(a)

~degrees!

A Torsion 10.57 5.14 13.71 0.68 11.05
B Torsion 9.19 4.76 12.87 1.30 23.03
C Heaving 8.41 4.63 12.12 2.07 41.27
Heaving Branch Coupled Flutter

Recent studies of coupled flutter using spring-supported bridge
section models have shown that the heaving branch may also b
the origin of so-called heaving branch coupled flutter~Matsumoto
et al. 1999!. The following discussion will highlight the physics
of this type of flutter from the viewpoint of curve veering of
frequency loci.

A spring-supported bridge section model with heave and tor-
sional degrees of freedom having the following parameters wa
used to investigate heaving branch flutter. These are:b
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of examples. In order to better understand the curve veerin
frequency loci, a 2DOF structure–TMD system was first studi
The perturbation in system parameters was chosen as the co
terms between the structure and the TMD. It was demonstr
that the frequency loci may veer or intersect depending on
damping ratio of the TMD, which controlled the interaction lev
between the TMD and the structure. For long-span bridges,
perturbation in system parameters was chosen as the aerodyn
coupling terms between the structural modes. It was found
the curve veering of adjacent bridge frequency loci was due to
influence of strong aerodynamic coupling. The detailed disc
sion on the curve veering of frequency loci offered new insig
into the dynamics of a structure–TMD system, provided a cor
explanation of the results of the multimode coupled flutter ana
ses of long span bridges, and helped in improved understan
of the underlying physics of their aeroelastic behavior.

Heaving branch coupled flutter observed in spring-suppo
bridge section models was investigated from the viewpoint
curve veering. Closed-form expressions were developed to
scribe the eigenvalues of the coupled system and a veering
dition of frequency loci. It was revealed that the heaving mo
branch flutter corresponded to the intersection of frequency
of heaving and torsional mode branches due to the weak influe
of the coupled self-excited forces. It was noted that the heav
mode branch flutter was physically consistent with the gener
observed torsional mode branch flutter.
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Appendix: Eigenvalue Analysis of Bridges
with Aeroelastic Effects

For the sake of completeness and clarity, the framework for e
mating the eigenvalues of bridges with aeroelastic effects
briefly outlined here. The approach employs time-invariant st
space formulations with augmented aerodynamic states. A m
detailed discussion can be found in literature~e.g., Chen et al.
2000; Chen et al. 2001!.

The governing equations of a bridge motion in modal coor
nates are given by

Mq̈1Cq̇1Kq5Qse1Qb (43)

whereM , C, and K5the generalized mass, damping, and st
ness matrices, respectively;q, Qse, and Qb5the modal coordi-
nates, the generalized self-excited, and buffeting force vec
respectively; and the over-dot denotes partial differentiation w
respect to time. The buffeting term has been excluded in the
lowing discussion since it does not influence the bridge mo
properties in the linear aerodynamic analysis.

The self-excited forces corresponding to the steady-state s
soidal motionq(t)5q̄eivt can be approximated in terms of
rational function as

Qse~ t !5
1

2
rU2~As1~ ik !Ad!q̄eivt

5
1

2
rU2S A11~ ik !A21~ ik !2A31 (

,51

m
~ ik !A,13

ik1d,
D q̄eivt

(44)
mode branch. The curve veering phenomenon is noted in the
quency loci in both cases. In case C, the coupled self-exc
forces only slightly change the eigenvalues of this system, and
frequency loci remain intersected. As a consequence, a cou
flutter is initiated from the heaving mode branch in case C. Ta
4 compares the coupled flutter conditions including the flu
mode branch, critical flutter velocity, frequency, reduced veloc
amplitude ratio, and phase difference between heaving and
sional motions in the coupled flutter mode for each case. I
noted that the coupled flutter motion in these three cases is s
lar, i.e., the torsional motion lags the coupled heaving motion

The eigenvalue loci calculated by the perturbation analysis
also presented in Fig. 16 as indicated by circles. Results il
trated the accuracy of the approximation of the self-excited for
and the perturbation solution in a closed form. Fig. 17 shows
mode interaction index@Eq. ~15!# for these three cases indicatin
the influence of the coupled self-excited forces at the wind ve
ity region where two frequency loci are close each other. As
luded to earlier, a lower value corresponds to a stronger inte
tion. The mode interaction decreases successively in cases A
and C. In both cases A and B, a strong interaction between
heaving and torsional motions results in curve veering. The re
of case C indicates that a heaving branch flutter correspond
the intersection of frequency loci. Comparing these three case
light of the eigenvalue loci, coupled motions in terms of the a
plitude ratio and phase difference corresponding to the bra
where the coupled flutter is initiated, flutter condition at the cr
cal flutter velocity, and the role of the self-excited forces to t
development of aerodynamic damping, it is concluded that
heaving branch coupled flutter is physically consistent with
generally observed torsional branch coupled flutter. Similar to
torsional branch coupled flutter, the heaving branch coupled
ter, resulting from the negative aerodynamic damping introdu
by the coupled self-excited forces, shows coupled heaving
torsional motions in which the torsional motion lags the heav
motion.

Concluding Remarks

The curve veering phenomenon of frequency loci of bridges w
aeroelastic effects was studied utilizing cable-stayed and sus
sion bridges. A perturbation series solution that includes the
jacent complex eigenvectors in the zeroth-order expansion
presented, and its effectiveness and accuracy in estimating
variations of the complex eigenvalues of dynamic systems, du
small changes in the system parameters, was demonstrated
condition for veering of frequency loci was quantified by mod
interaction parameter, and its efficacy was illustrated by the w
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wherer5the air density,U5the mean wind velocity,k5vb/U
5the reduced frequency,B52b5the bridge deck width,v
5the circular frequency of motion,i 5the imaginary unitA21,
A1 , A2 , A3 , A,13 and d, (d,>0;,51,2, . . . ,m)
5frequency-independent matrices and parameters, andm5the
order of the rational terms. This approximation can be determin
by curve-fitting experimental data of the aerodynamic matric
As( ik) andAd( ik) defined at a set of discretized reduced freque
cies kj ( j 51,2, . . . ) using a least-square approach.As( ik) and
Ad( ik) are functions of the mode shapes and the flutter deri
tives ~e.g., Chen et al. 2001!.

After some manipulations, the equations of motions at t
mean wind velocityU are expressed in terms of the following
frequency-independent, time-invariant state-space equations:

Ẏ~ t !5AY ~ t ! (45)

where

A53
0 I 0 ¯ 0

2M̄21K̄ 2M̄21C̄
1

2
rU2M̄21

¯

1

2
rU2M̄21

0 A4 2
U

b
d1I ¯ 0

] ] ] ]

0 A31m 0 ¯ 2
U

b
dmI

4
Y5F q

q̇
qse,

]

qsem

G (46)

M̄5M2 1
2 rb2A3 ; C̄5C2 1

2 rUbA2 ; K̄5K2 1
2 rU2A1

(47)

qsel (,51,2, . . . ,m) are the augmented unsteady aerodynam
states.

The eigenvalue problem is then expressed as
AFj5l jFj (48)

wherel j andFj5eigenvalue and eigenmode associated with
j th complex mode branch. The eigenvalues corresponding
structural modes can be expressed as

l j52j jv j1 iv jA12j j
2 ~ j 51,2, . . . ,N! (49)

wherev j and j j5frequency and damping ratio in thej th com-
plex mode branch, which include aeroelastic effects.
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