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Abstract: The eigenvalues of bridges with aeroelastic effects are commonly portrayed in terms of a family of frequency and damping
loci as a function of mean wind velocity. Depending on the structural dynamic and aerodynamic characteristics of the bridge, when two
frequencies approach one another over a range of wind velocities, their loci tend to repel, thus avoiding an intersection, whereas the moc
shapes associated with these two frequencies are exchanged in a rapid but continuous way as if the curves had intersected. This behay
is referred to as the curve veering phenomenon. In this paper, the curve veering of cable-stayed and suspension bridge frequency loci
studied. A perturbation series solution is utilized to estimate the variations of the complex eigenvalues due to small changes in the systel
parameters and establish the condition under which frequency loci veer, quantified in terms of the difference between adjacent eigenvalu
and the level of mode interaction. Prior to the discussion of bridge frequency loci, the curve veering of a two-degree-of-freedom system
comprised of a primary structure and tuned mass damper is discussed, which not only provides new insight into the dynamics of this
system, but also helps in understanding the veering of bridge frequency loci. To study this more complicated dynamic system, &
closed-form solution of a two-degree-of-freedom coupled flutter is obtained, and the underlying physics associated with the heaving
branch flutter is discussed in light of the veering of frequency loci. It is demonstrated that the concept of curve veering in bridge frequency
loci provides a correct explanation of multimode coupled flutter analysis results for long span bridges and helps to improve understandin
of the underlying physics of their aeroelastic behavior.
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Introduction aerodynamic characteristics of the bridge, two adjacent frequency
) ) ) ) ) ) ) loci may approach each other over a range of wind velocities.
Wind-bridge interaction results in the generation of self-excited \yhen this occurs, the curves may intersect or repel each other.
forces, which provide additional aerodynamic damping and stift- However, even in the case where the curves repel each other, the
ness to that already present in the structure. In addition, thesegjgenmodegeigenvectorsassociated with these two eigenvalues

self-excited forces induce aerodynamic coupling of structural 4e exchanged continuously as if the curves had interséCtezh
modes, changing the eigenmodes of the bridge. Therefore, thegt 5. 2001. This behavior has been termed the “curve veering
real-valued structural modes are only observed when the mearyhenomenon.”

wind velocity is zero, while complex modes are present under = gecause of this ambiguous behavior of frequency loci, tradi-
wind excitation. To avoid confusion, these complex modes are tiona| flutter analysis that employs an iterative calculation proce-
referreq to as complex mode branches. The el'genvalue.s. assOCigure, based on frequency-dependent state-space equation, has
ated with complex mode branches can be estimated utilizing aproven to be computationally cumbersome. In this approach, the
complex eigenvalue analysi@.g., Katsuchi etal. 1999; Chen  arget mode identification has to be done iteratively, which may
et al. 2000. These eigenvalues are commonly portrayed in terms ¢ permit complete automation of the analysis procedGieen

of a family of frequency and damping loci as a function of mean ¢t 4|, 2000.

wind velocity. ) _ ) o This behavior of frequency loci may also result in coupled
The behavior of these loci has interesting ramifications for the ltimode flutter, involving more than two structural modes,
bridge flutter problem. Depending on the structural dynamic and \ypich may initiate from a complex mode branch that is different
from the commonly observed torsional mode branch. For ex-
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However, as a result of the contributions to aerodynamic damping Perturbation Analysis of Eigenvalue Problem

arising from aerodynamic coupling among structural modes, it

has been demonstrated that the multimode flutter is physically The eigenvalue problem of a dynamic system with a system ma-
consistent with bimodal flutter, although consideration of higher trix A is expressed as

modes offers a more accurate predicti@hen et al. 2000; Chen

et al. 200). In addition, the coupled self-excited force compo- AD;= NP @
nents acting on the bridge deck, i.e., lift due to torsional motion where); and®;=jth eigenvalue and eigenvect@genmodg

and pitching moment due to heaving motion, play a critical role in |t is insightful to consider the variations of eigenvalues and
developing negative aerodynamic damping. While the under- eigenvectors due to small changes in the system matria A
standing of the multimode flutter has been significantly improved, +eA,, where eAy=variation of the system matrix, and=

the behavior of adjacent bridge frequency loci and the conditions small perturbation parameter. The system described by matrix
under which they repel rather than intersect have yet to be clearlyis referred to as the unperturbed system, and theigenvalue\ |
understood. and eigenvecto®; of the perturbed system with a system matrix

Recent studies of coupled flutter using spring-supported bridge A+ €A, is given by
section models have shown that even in the case of bimodal flut-
ter, the heaving branch may also be the origin of so-called “heav-
ing branch coupled flutterfMatsumoto et al. 1999 The physics Assuming that\; ...\, are a set of adjacent eigenvalues of
of this type of flutter has not yet been fully identified. This type of the unperturbed system, the corresponding eigenvalue and eigen-
flutter may be related to the behavior of adjacent bridge frequencyvector matrices are expressed as
loci as discussed previously for the multimode coupled flutter. .

This veering phenomenon has also manifested itself in a wide A=diadhi.,.. Al T=[®;,... By ®)
range of other fields, fO”OWing its initial identification in the The perturbed eigenvect@j’ (Igjgk) can be expressed in
study of crystals by Andersori1958, who coined the term  terms of the eigenvectors of the unperturbed system, in which the
“curve veering.” Later, Leissa(1974 demonstrated veering of  adjacent eigenvectors are included in the zeroth-order expansion
eigenvalue loci due to the approximate vibration mode analysis of ,

a rectangular membrane. Nair and Durvagdi@73 showed ana- ‘I’j =I'D+el,E 4

lytically that the naturallfrequencies. of plates belonging to the whereI', =the eigenvector matrix of the unperturbed system ex-
same symmetry.group yield the veering phenomena when plo“‘?dcluding I': andD andE=the coefficient vectors.
versus geometric parameters, such as the skew angle and side gypstituting Eq(4) into Eq. (2) and multiplying by the left-

ratio, proposing a criterion for identifying the conditions under phand side eigenvector matrix & corresponding to\, i.e., T,
which the eigenvalue loci veer rather than cross. Perkins andjeads to a system equation fof andD

Mote (1986 studied the conditions under which the eigenvalue
loci veer for a general real-valued eigenvalue problem utilizing a (A+eH)D=\{D (5)
perturbation method, while Pier@988 discussed the relation-
ship between veering of the eigenvalue loci and mode localiza-
tion. This work was continued by Chen and Ginsb@@92 who H=I Aol (6)
established criteria governing the occurrence of veering and stud-

ied the relationship between the veering of eigenvalue loci and andI’,

(A+eAg)®] =\ D] )

whereH is defined as

satisfies the following:

the par:_:lmeter s_ensiti\_/?ty of_ eigenvectors, i_n which_the perturba- I A=T A; II'=l; T,A}=0 (7
tion series solution utilized included the adjacent eigenvectors at ) ) )
the zeroth-order expansi@Nair and Durvasula 1933The curve Accordingly, theXj and D can be determined through the

veering phenomenon for eigenvalues of a system dependent orsolution of the eigenvalue problem defined in &), which pro-

one or two parameters has also been discussed by Morand andides a relationship among the modal properties of the unper-
Ohayon(1995. turbed and perturbed systems.

In this paper, a perturbation series solution is presented to !N the following, the case where only two eigenvalues of the

estimate the variations of the complex eigenvalues due to Sma”unperturbed system are adjacent is considered, and the corre-

changes in the system parameters. Based on the perturbation Séponding eigenvalues and eigenvectors of the perturbed system

ries solution, the curve veering of cable-stayed and suspensionanla dlscusseqrt FO;;he szl;\e of |Ilust(;§t|c:n, tr(ljesg adIJEac;n: elgen-
bridge frequency loci is studied to establish the condition under values are written ak, and, accordingly reducing Ed5) to
which frequency loci veer. In order to better understand this phe- Nt+eHy;  eHypp
nomenon, the curve veering of a structure with a tuned mass

s ) ) eH,q Not+eHo,
damper(TMD) is first discussed using a two-degree-of-freedom
(2DOF) model. After illustrating the curve veering phenomenon The solution of the preceding equation leads to the eigenvalues
in the familiar structure—TMD system, this concept is used to \{ (j=1,2):
explore the underlying physics associated with heaving branch _
flutter in the 2DOF coupled flutter of bridges. The discussion of N =3\ N5 F LN N5+ 4e’HpH Y2 (9)
curve veering offers new insights into the dynamics of the with the eigenvectorgnormalized to unit
structure—TMD system, provides a correct explanation of the re-

Dy;
Dy;

Dy;
Dy;

!
J

(8)

sults of the multimode coupled flutter analysis, and helps to im- Dyj= —eH /(N —\[)2+e2HE,
prove understanding of the underlying physics of long span
bridge aeroelastic behavior. Dyj=(\] — )\j')/\/()\’l‘ —\[)2+e?H3, (10)
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veering, the eigenvector associated withchanges from-®; to
®,, passing through{ ®;+®,)/v2. In the same way, the ei-
genvector associated witk, changes from®, to ®,, passing
through @;+®,)/v2.

For a general complex eigenvalue problem, the curve veering
of frequency loci can be explained as follows. From B, it is
obvious that only when

A=[(NF—\3)%+4€?HHp]Y2=0 (13)
0.98 : ; . two adjacent eigenvalues are equal, i.e.,
~-0.05 0 0.05 0.1 0.15
€ M=N=2 (NI +A3) (14)
Fig. 1. General picture of curve veering of eigenvalue loci This means that both the frequency and damping ratio loci of the

two adjacent complex modes intersect. Since, in gen&ra,not
. _ necessarily equal to zero, the frequencies or damping ratios of the
where\} (j=1,2)=the eigenvalues of the unperturbed system two adjacent complex modes will generally be different from

corrected for the influence of the diagonal terms of matiik each other.
N =Ni+eHi; MNy=No+eHy (12) As shown in Egs(9) and(10) .apd Fig. .1 gnd '!'able 1, at the
_ _ region where\} and\3 are sufficiently distinct, i.e J\T — A3 |

It is obvious thatH,,=H=0 leads toA{=\{ and ®; >2¢|(H,H,) Y9, the interaction between adjacent modes is
=®;, indicating that the existence of the diagonal termIdf weak, and the eigenvalues and eigenvectors of the perturbed sys-
only modifies the eigenvalues but does not influence the eigen-tem,)\j' and®/ , are close to.} and®; .
modes of the unperturbed system. On the other hand, at the region whexe and\} are suffi-

The eigenvectors of the perturbed system in the zeroth-ordercienuy adjacent, i.e]\* —\%|~2¢|(H,H,) 4, the mode inter-
expansion are then given by action between adjacent modes is strong, and the eigenvalues are

®/ =Dy ®,+ Dy, (12) significantly influenced by the terme?H,H,)*? The curve

veering exists, and the eigenvectabg and ®; result from a
In the case whereA andA, are real-valued symmetric ma-  significant coupling betwees; and®,. During curve veering,
trices,eH becomes a real-valued symmetric matrix, and the ei- the eigenvector@igenmodebof the perturbed system are appar-
genvalues and eigenvectors of both unperturbed and perturbecently different from those for which* and\3 are sufficiently
systems are real valued. However, note that in the case of bridgesjistinct, and the eigenmodes exhibit dramatic yet continuous
with aeroelastic effects, the system matrix including aerodynamic change with variations of the perturbation parameters. This phe-
stiffness and damping terms are nonsymmetsiee the Appen-  nomenon is referred to as mode shape localization.

dix), thus the eigenvalues and eigenvectors of both the unper-  The following criterion can be utilized to identify the existence
turbed and perturbed systems are generally complex valued andhf curve veering, i.e., when

the matrixeH is generally nonsymmetric. . x o
Detailed discussion on the curve veering of real-valued eigen- d=[N\T = A3 [/[2€[(H1H20)Y9]<0(1) (15)

value loci can be found in Chen and GinsbérQQQ and Morand the frequency loci veer, otherwise, these intersect. It is noted that
and Ohayor(1995 based on Eq(9). A general picture of curve  the mode interaction indexd, represents the distance between
veering of eigenvalue loci is plotted in Fig. 1, and the correspond- g eigenvalues of the unperturbed system which have been cor-
ing eigenmodes are shown in Table 1. The following parametersyected to include the influence of the diagonal terms of perturba-
were used in this numerical exampl®;=1.0, \,=1.02, Hy; tion matrix eH, normalized by the off-diagonal terms eH. A

:*0-21 Hz,=—0.1, andH,=H,;=0.05. It is evident thak 7 and lower value of the mode interaction index corresponds to a stron-

> intersect ate=0.0667. Howeverh; and \; are generally  ger modal interaction.

different, wherex; and\ , denote lower and upper eigenvalues of Expressing the complex eigenvaluas, (j=1,2), in terms of
the perturbed system, respectively. The presence of the off-thejr frequenciesp? , and damping ratios:*

diagonal terms o&H results in separation of the eigenvalues. As . . :

pointed out by Chen and Ginsbefd992 and Morand and Nf=—of tiof J1-(£F)? (16)

Ohayon(1993 and as indicated by Fig. 1 and Table 1, during the the difference in the eigenvalues of the adjacent complex modes

can be approximated as follows when the frequencies are close to

Table 1. Eigenmodes of Example each other
Mode 1 Mode 2 NI —A\3[~o*[E] — &5 (17)

€ Dy D, Dy, Dy where o} ~w3~w*. Consequently, the curve veering of fre-
0.02 —1.00 0.07 007 1.00 quency loci is obviously related to the difference in the damping
0'04 _0'97 0'23 0'23 0'97 ratios of these two adjacent modes comparedettHz ,H ;) *2.
0.06 —0.81 0.58 0.58 0.81
0.0667 —0.71 0.71 0.71 0.71 Curve Veering of Frequency Loci
0.08 —-0.53 0.85 0.85 0.53 of Structure—Tuned Mass Damper System

1 —0. : . : .
812 _8 22 8'25 g'gi 822 Although the thrust of this work is focused on the veering of

bridge frequency loci, a 2DOF structure—TMD system is chosen
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as a simple, first example to illustrate the veering phenomenon of frequency loci. The free vibration of the structure—TMD system can be
described in the following nondimensional state-space equations

, 0 0 1 0

Ys Ys

y - 0 0 0 1 Vi )

ye (It pmid)  pmpf 28 2umEue 2mmEuer | | Vs

Yi i —uf 28 —2& gy | Wt

[
where p,=m,/mg=the mass ratiop.;=w/ws=the tuning fre- , 0 0 1 0
o - . ) Ys Ys

quency ratio;m, & and w =the mass, damping ratio, and fre- ) 0 0 0 1 y
quency, respectivelyy=the displacement; subscripts and t y}, = ! (19)
=the structure and TMD, respectively; and the prime denotes the y,S, -1 0 —2&s 0 y?
derivative with respect to the nondimensional time wt. It is Yi 0 —pufz 0 —2& ¢ Yi

obvious that the dynamics of the structure—TMD system depends
on the mass ratiq.,,, tuning frequency ratiq.; , TMD damping
ratio £,, and structural damping ratig,. The effect of structural M= —EFTiVI=ES A= —&petipgy1-§&  (20)
damping, which is generally small, can be neglected.

The eigenvalues of the structure—TMD system can be calcu-
lated through the complex eigenvalue analysis based on the pro- @®;=[1 0 Ay 0]7; @,=[0 1 0 Ap]" (21)
ceeding state-space equations. These can also be estimated based By expressing the eigenvectors of the structure—TMD system
on a perturbation analysis. The system consisting of the isolatedin terms of those of the unperturbed system, the eigenvalue and
structure and TMD is chosen as the unperturbed system witheigenvectors of the perturbed system can be estimated based on
state-space equations Egs.(9) and(10) with the matrixeH given by

with eigenvalues

and eigenvectors

— bt 28N ) INI— 82 (st 280 0)/ 1 — €2
(gt 26N )/ \1-€] 0

(22)

It is noted that the perturbation series solution results in ex-  The modal properties of the structure—TMD system suggest
actly the same solutions of modal properties as the direct complexthat there are generally two distinct frequencies for a given set of
eigenvalue analysig€q. (18)]. This is due to that fact that the two ~ parameters except whery= () op= 1/(1+ ) and &= (&) opt
equations are strictly equivalent and are related by a transforma-= \.,,, where () oprand €;) ope are the optimal frequency tuning
tion of the modal coordinates of the isolated structure and TMD. ratio and damping ratio of TMD witt§s=0. It is clear from Fig.

In Fig. 2, the frequencies, damping ratios and eigenmodes in 4, which shows the modal frequencies of the structure—TMD sys-
terms of the amplitude ratios between the TMD and the structure tem atp.¢= () op, that the two frequencies coalesce only when
for two complex modes versus frequency raiip varying from &= (E)opr- Obviously, when the frequency loci of structure—
0.8 to 1.2 with,=5%, £=0%, andu,,=1% are presented. ~TMD system are plotted versus the frequency ratiq the two
Fig. 3 shows the results for the same parameters as Fig. 2 with thdoci will veer for &< (&), and intersect forg;=(&;)op at s
exception ofg,= 12%. The modal interaction index for these two = (f)opt- HOWever, it is emphasized that despite the veering or
cases are calculated based on @) and are presented in Figs. intersection of the frequency loci, the physics of the structure—
2(d) and 3d). TMD interaction are exactly the same.

The cure veering of frequency loci for the casetpE5% is
observed. The upper frequency loddashed lingcorresponds to Curve Veering of Eigenvalue Loci of Bridges
the structure dominated mode in the range of a lower-frequency uith Aeroelastic Effects
ratio which changes to the TMD dominated mode at a higher-
frequency ratio locale. On the other hand, the lower-frequency
locus(solid line) changes from the TMD dominated mode to the
structure dominated mode as the frequency ratio increased. Thea wind-excited cable-stayed bridge with a center span of about
cure veering is due to a strong interaction between the TMD and 1000 m was chosen as an example to illustrate the curve veering
the structure as indicated by Fig(d2 In the case of,=12%, of eigenvalue loci in bridge&Chen et al. 2001 The logarithmic
higher TMD damping resulted in a relatively weak interaction decrement for each structural mode was assumed to be 0.02. For
between the TMD and the structureig. 3(d)] such that the fre- the sake of illustrating the fundamental characteristics of bridges
quency loci intersect like those of the isolated TMD and the struc- with aeroelastic effects, only the aerodynamic forces acting on the
ture system(unperturbed system bridge deck were included. The self-excited drag component in-

Long Span Cable-Stayed Bridge
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Fig. 2. Modal properties and interaction index of structure—tuned mass damper syistetd5)

duced by the lateral motion was calculated based on the quasi-modes, along with coupled components of the other structural
steady theory. The coupled self-excited force components be-modes. At the wind velocities of about 100 m/s, the frequencies of
tween the lateral and vertical motions and between the lateral andcomplex mode branches 10 and 13 approach each other without
torsional motions are generally negligible and, therefore, were intersecting. Consequently, the mode shapes of these two mode
neglected. The flutter derivativds® and A* (i=1,2,3,4) were branches exhibit strong coupling. Both modes contain significant
calculated using the Theodorsen function. contributions from structural modes 10 and 13 with an additional
The variations of the bridge frequencies and damping ratios ascoupled component of structural mode 3 and only a small com-
the wind velocity increases are shown in Fig. 5. These were cal- ponent of structural mode 7. As wind velocity increases, the mode
culated utilizing the complex eigenvalue analysis of the linear shapes of complex mode branches 10 and 13 are gradually ex-
invariant state-space formulations with augmented aerodynamicchanged to the complex modes dominated by structural modes 13
states(see the Appendix In the calculation, only several impor-  and 10, respectively. At the wind velocities of about 112 m/s, the
tant structural modes, modes 3, 7, 10, and 13, were consideredfrequencies of complex mode branches 7 and 10 are close to each
where modes 3 and 13 are the fundamental vertical bending andother which results in a significant coupling of these modes. Be-
torsional modes, respectively; mode 7 is the bending mode of thefore this wind velocity range, complex mode 7 is actually struc-
tower in the bridge plane; and mode 10 is the second symmetrictural mode 7, and beyond this range, it becomes a coupled com-
lateral bending mode of the bridge deck. The critical flutter ve- plex mode consisting structural modes 3, 10, and 13. On the other
locity (U,,) was predicted to be 114.1 m/s, which is close to 113.8 hand, beyond this range, complex mode 10 turned to be domi-
m/s based on the first 20 structural modes. The eigenvalue loci ofnated by the structural mode 7. The veering of frequency loci
these four complex mode branches are also very close to thosébetween complex mode branches 10 and 13 was noted around the
based on the first 20 structural modes. The results predicted bywind velocity of 100 m/s, and between complex mode branches 7
only including the two fundamental structural mod8&sand 13 and 10 around the wind velocity of 112 m/s, respectively. The
are also plotted for comparison as the dashed lines in Fig. 5 withmode shapes associated with these two pairs of eigenvalues are
U, of 119.3 m/s. The mode shapes of these four complex modeexchanged during veering in a rapid but continuous way as if the
branches are summarized in Table 2 in terms of the amplitude curves has intersected. In the curve veering range, mode shape
ratios of the structural modal components. The phase lag infor- localization is observed, which is attributed to the interaction of
mation is not present herein for the sake of brevity. The structural these two adjacent complex modes. Taking into account the pres-
mode shapes were normalized in accordance with the maximumence of the veering of frequency loci, the physics of the multi-
translateral displacement or torsional displacement of the bridgemode coupled flutter consisting of more than two structural
deck multiplied by the half width of the bridge deck to be unity. modes is actually the same as the flutter predicted from the analy-
It is noted that at low wind velocities, the complex mode sis based on the two fundamental modes. Both scenarios have
shapes are dominated by their respective real-valued structuradominant contributions of the two fundamental modes to flutter
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Fig. 3. Modal properties and interaction index of structure—tuned mass damper systefy2)

and similar variations of frequency and damping loci with in- 06 : : :
creasing wind velocity.

A perturbation analysis was conducted to describe the eigen-
value loci around the two veering regions and, more importantly,
to discuss the curve veering conditions. For the discussion of the
veering between complex mode branches 10 and 13, the unper-
turbed system was chosen as the system excluding the coupled
aerodynamic terms of structural mode 10 with other structural
modes, i.e., modes 3, 7, and 13. This was realized by eliminating
the corresponding elements in the aerodynamic matceand 0.2
A, (see the Appendix It is worth noting that the eigenvalues of
the unperturbed system corresponding to mode branches 3, 7, and
13 are actually the same as the case considering only structural
modes 3, 7, and 13, and that of mode branch 10 is the same as the
case considering only the single structural mode 10. The per-
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Fig. 4. Frequencies of structure—tuned mass damper systgm at Fig. 5. Eigenvalue loci of cable-stayed bridge- with structural
= (1) opt modes 3,7,10,13; —— with structural modes 3 ang 13
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Table 2. Amplitude Ratios of Structural Modes in Complex Mode Brancfike Cable-Stayed Bridge

Mode Branch 7 Mode Branch 10 Mode Branch 13
U (m/s) 3 7 10 13 3 7 10 13 3 7 10 13
90 0.09 1.00 0.03 0.04 0.57 0.04 1.00 0.50 0.55 0.03 0.48 1.00
95 0.13 1.00 0.04 0.05 0.88 0.07 1.00 0.72 0.63 0.03 0.69 1.00
100 0.20 1.00 0.05 0.08 1.43 0.13 1.00 1.00 0.69 0.04 0.95 1.00
105 0.36 1.00 0.09 0.14 2.27 0.27 1.00 1.25 0.73 0.04 1.22 1.00
110 1.00 1.00 0.25 0.38 3.26 0.90 1.00 1.43 0.76 0.04 1.47 1.00
112 1.95 1.00 0.45 0.72 3.51 1.77 1.00 1.47 0.77 0.04 1.47 1.00
114 3.32 1.00 0.70 1.15 3.65 2.97 1.00 1.49 0.77 0.04 1.66 1.00
120 9.44 1.00 1.60 2.80 3.95 8.06 1.00 1.52 0.80 0.04 1.92 1.00
130 21.44 1.00 2.63 5.11 4.23 16.63 1.00 1.55 0.82 0.05 2.31 1.00

turbed system is the original system accounting for all uncoupled The eigenvalues of the unperturbed system were predicted

terms(diagonal termsand coupled term&ff-diagonal termsin using the complex eigenvalue analy&ese the Appendixand are

A and A, at the same wind velocity as the unperturbed system. plotted as solid lines in Fig. 6. For this example and the following

Therefore, the difference between the unperturbed and perturbecexamples of the perturbation analysis of bridge eigenvalues, the

systems is due to the aerodynamic intermode coupling terms ofperturbation in the system matrix only results in the existence of

structural mode 10 with other structural modes. Only adjacent the off-diagonal terms of the matriH, thus the eigenvalues’

mode branches 10 and 13 of the unperturbed system were in-are the same as the eigenvalues of the unperturbed system, i.e.,

cluded in the zero-order expansion. Ni=\{. Itis evident that the frequency loci of mode branches 10
and 13 of the unperturbed system intersect. The eigenvalues of
the perturbed system were estimated based on the perturbation

0.55 : : : : series solutioEq. (9)] (circles in Fig. 6 and were compared to
: : : : those based on the complex eigenvalue analgsie the Appen-

dix) (dashed lines Excellent agreement of the results demon-

strated the efficacy of the perturbation series solution. It was also

demonstrated that the veering of frequency loci between mode

branches 10 and 13 was due to the aerodynamic intermode cou-

pling terms of structural mode 10 with other structural modes.

Based on the perturbation analysis, the interaction index of these

two complex modes was calculated as shown in Fig. 7. It is ob-

vious that the curve veering corresponds to a low value of this

Frequency (Hz)

0'3585 90 9}, 100 165 110 index, representing a strong mode interaction. This demonstrates
Wind velocity U(mvs) the utility of the criterion for identifying the onset of curve veer-
ing. Similar results for complex modes 7 and 10 at wind veloci-
(a) Frequency vs. wind velocity ties around 112 m/s are presented in Figs. 8 and 9. Results again
reaffirmed the efficacy of the perturbation series solution and
demonstrated that the aerodynamic coupling terms of structural
0.8 ’ . . . mode 7 with other structural modes resulted in veering of the
= : : : : eigenvalue loci.
@ 0ff s P A In Fig. 6, a slight difference can be observed in the predicted
o M damping ratios of the perturbed system between those based on
.§ 04 CARRREERE " -66(2690_0990 ~~~~~~ the perturbation series solution and the direct complex eigenvalue
E ©¢ ’e : RN analysis. It was attributed to the contribution of complex mode
:g 02———00 ...... ...... QOQQOQOQ\\
5 : : : :
§> 0.....1.0..E ........ T ........ Lo 1.2 ; ; ; ;
02 ; H H H x 1
85 9 95 100 105 110 g
Wind velocity U(mvs) 08
g
(b) Damping ratio vs. wind velocity g 06
=4
~o04
Fig. 6. Comparison of eigenvalue loci of complex mode branches 10
and 13(-— and — are calculated by complex eigenvalue analysis 02, 96 9'5 160 165 10
with and without coupled terms of structural mode 10 with other Wind velocity U(m/s)

structural modes; circles are calculated by perturbation angalya)s
frequency versus wind velocity anth) damping ratio versus wind Fig. 7. Interaction index of adjacent complex mode branches 10 and
velocity 13
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Fig. 10. Comparison of damping loci of complex mode branches 10
and 13(—— and — are calculated by complex eigenvalue analysis
with and without coupled terms of structural mode 10 and other
structural modes; circles are calculated by perturbation analysis with
three adjacent modgs

Long-Span Suspension Bridge

A wind-excited long-span suspension bridge with a center span of
nearly 2,000 m was used as another example to illustrate the
veering of eigenvalue loc{Chen et al. 2000 The logarithmic
decrement for each structural mode was assumed to be 0.02. The
modeling of the self-excited forces was the same as the aforemen-

tioned cable-stayed bridge.

Calculations with different mode combinations using a com-

plex eigenvalue analysis were conducted for estimating the eigen-
values with increasing wind velocity. It was found that the analy-

Fig. 8. Comparison of eigenvalue loci of complex mode branches 7 '
and 10(-— and — are calculated by complex eigenvalue analysis :
with and without coupled terms of structural mode 7 and other struc- ’IhT :
tural modes; circles are calculated by perturbation analys fre- - -
quency versus wind velocity ant) damping ratio versus wind ve- g :
locity 2 :
g :
it 008 ............................... SRR
branch 3 of the unperturbed system to the eigenvalues of mode L2 : \
branches 10 and 13 of the perturbed system. This effect can be 0'040 20 20 60 80
included by taking into account this complex mode branch along Wind velocity U (m/s)
with complex mode branches 10 and 13 in the zeroth-order ex-
pansion of the perturbation analysis. Accordingly, a more accurate (a) Frequency vs. wind velocity
perturbation series solution can be obtained by including more
mode components in the zeroth-order expansion as shown in
Fig. 10. 0.4
5 0.3
5 g
15 , ; . g o2
8
% £ o1
E §
g ; ; ;
£05 %7 20 40 60 80
Wind velocity U(m/s)

0 : : : :
108 110 112 114 116 118

(b) Damping ratio vs. wind velocity

Wind velocity U(m/s)
Fig. 11. Eigenvalue loci of the suspension bridge with structural
Fig. 9. Interaction index of adjacent complex mode branches 7 and modes 2,9,10; —— with structural modes 2 and: X8) frequency
10 versus wind velocity angb) damping ratio versus wind velocity
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Table 3. Amplitude Ratios of Structural Modes in Complex Mode the complex eigenvalue analy$i&g. (45)], respectively. Circles

Branchegthe Suspension Bridge represent the results estimated by the perturbation series solution
Mode Branch 9 Mode Branch 10 [Eq. (9)]. These results illustrate that the behavior of eigenvalue
loci can be accurately described by the perturbation series solu-
U (mfy 2 S 10 2 9 10 tion. The correspond)ilng interactior): indeg is shown in Fig. 13,
60 0.44 1.00 0.37 0.73 0.53 1.00 indicating that a strong interaction between complex mode
62 0.60 1.00 0.49 0.79 0.71  1.00 branches 9 and 10 around a wind velocity of 65 m/s resulted in
64 084 1.00 065 085 094 1.00 the veering of frequency loci.
66 1.15 100 0.84 090 122 1.00 For comparison, the flutter analysis considering structural
68 1.55 1.00 105 093 155  1.00 modes 2, 8, and 10 was also conducted, where mode 8 is the
70 2.04 100 127 0.96 191 1.00 secon_d syrr_]metri_c vertical b_end_ing mo_de. The frequency and
75 351 100 1.80 1.02 284 1.00 dar.npl.ng ratio loci are shown in Fig. ;4, in which thg dashed and
80 5.18 1.00 222 1.05 3.68 1.00 solid lines are the results with and without the off-diagonal terms

in aerodynamic matrice&; andA, representing the aerodynamic
coupling between structural modes 8 and 2, and between struc-

sis including structural modes 2,9,10, which are the fundamental tural modes 8 and 10. Fig. 15 shows the interaction index of
vertical symmetric bending, second lateral symmetric bending, COmplex modes 8 and 10. The relatively large values of this pa-
and fundamental torsional symmetric modes, respectively, re-fameter indicate tha_t the el_genvalue loci are only slightly influ-
sulted inU,, of 65.3 m/s, which is close to 66.5 m/s based on the €nced by the weak interaction of complex mode branches 8 and
first 15 natural modes. The eigenvalue loci are also similar to a 10- As a result, the frequency loci of these branches remain inter-
coupled flutter initiated from complex mode branch 9 as indicated Sected. The weak interaction is due to the remarkable difference
by solid lines in Fig. 11. In Table 3, the complex mode shapes of IN the damping ratios of these two mode branches compared to
these complex mode branches, in terms of the amplitude ratios ofthe term 2(HyHpp)™

the structural mode components, are presented. The structural
mode shapes were normalized in accordance with the maximum
translateral displacement or torsional displacement of the bridge
deck multiplied by the half width of the bridge deck to be unity.

0.14

At around 65 m/s, the eigenvalues of complex mode branches
9 and 10 are close to each other without intersection. The mode 0.135
shapes of both complex modes consist of strongly coupled com- ’:g
ponents of structural modes 9 and 10 with an additional coupled < 013
component of the structural mode 2. As wind velocity exceeds 65 50.125
m/s, complex mode 9 gradually transitions to a mode dominated X
by coupled components of structural modes 2 and 10. In the same 2 012
way, complex mode 10 gradually changes to the mode dominated 0.115
by structural mode 9. The veering of frequency loci between com- : .
plex mode branches 9 and 10 occurs around a wind velocity of 65 0.1150 ps 20 80
m/s. Mode shape localization again occurs in branches 9 and 10 Wind velocity U (m/s)
during the veering, indicated by the coupling of structural mode 9
with other structural modes. Away from the veering region, the (a) Frequency vs. wind velocity

coupling of structural mode 9 becomes marginal. As compared to
the eigenvalues based on the two fundamental m¢stesctural
modes 2 and 10as shown in dashed lines in Fig. 11, it is clear
that the underlying physics of the multimode coupled flutter in-
volving more than two modes is essentially the same as the two
mode coupled flutter, despite the fact that the flutter appears to be
initiated from different branches.

A perturbation analysis was conducted for estimating the ei-
genvalue loci of complex modes 9 and 10 around the wind veloc-
ity of 65 m/s. The perturbation series solution was based on ad-
jacent complex modes 9 and 10 at the same wind velocity
predicted by neglecting some of the off-diagonal terms in the

Logarithmic decrement

aerodynamic matriceA; and A4 representing the coupled terms '0‘250 60 70 80
between structural modes 9 and 2, and between structural modes Wind velocity U (m/s)

9 and 10. It is worth noting that the eigenvalues of the unper-

turbed system corresponding to mode branches 2 and 10 are ac- (b) Damping ratio vs. wind velocity

tually the same as the case considering only structural modes 2_ ) ) )

and 10, and that of mode branch 9 is the same as the case config. 12. Comparison of_elgen_value loci of complex mode branches 9
sidering only the single structural mode 9. Therefore, the differ- and 10 for the suspension bridge— and — are calculated by com-
ence between the unperturbed and perturbed systems is due to th@lex eigenvalue analysis with and without coupled terms of structural

aerodynamic intermode coupling terms of structural mode 9 with mer 9 with other structural modes; ci.rcles are calculated b){ pertur-
other modes. Solid and dashed lines in Fig. 12 represent the ei-b""FIon analysﬂ_s @ freql_Jency versus wind velocity arith damping
genvalues of the unperturbed and the perturbed systems based ditio versus wind velocity
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Fig. 13. Interaction index of adjacent complex mode branches 9 and Fig. 15. Interaction index of adjacent complex mode branches 8 and

10 for suspension bridge

10 for suspension bridge

Curve Veering of Frequency Loci
of Two-Degree-of-Freedom Coupled Flutter

Closed-Form Solution of Two-Degree-of-Freedom
Coupled Flutter

The equations of motion of a spring-supported bridge section
model with heave and torsional degrees of freedom are given as

1 b
MG +Ca+Ka=5pU? A+ 7 Aqd (23)
0.16 : : g
~ : :
< ; :
é\ 0.12f————— LD EEIEEREEEE N \
) © 8 :
b} . .
g
e 0.08 ............................................
2 LY
0.04 . i -
0 20 40 60 80
Wind velocity U (m/s)
(a) Frequency vs. wind velocity
5
E
o
2
£
£
§
-0.1 : : :
0 20 40 60 80
Wind velocity U (m/s)

(b) Damping ratio vs. wind velocity

Fig. 14. Eigenvalue loci of the example suspension bridge with
structural modes 2, 8, and 16-— and — are with and without
coupled terms of structural mode 8 with other structural mpdes
frequency versus wind velocity anth) damping ratio versus wind
velocity

where
|:mh O} {thghmh 0
M= ; =
0 I, 0 2l £ o (24)
mhwﬁ 0 h
““l o w2 9l
2k2H7 (k) 2k2bH§(k)}
ST | op2p A% 2h2 A%
2k°bA; (k)  2k*b®Aj (k) (25)
2kHY (k) 2kbH3 (k)
Ag= * 2 A%
2kbAY (k)  2kb=A3 (k)

my, andl,=the mass and mass moment of inertia per unit length
of the bridge deckw,, andw, ; &, and§,=mechanical circular
frequencies and damping ratios in the heaving and torsional di-
rections, respectivelyd ; A" (j=1,2,3,4)=the flutter deriva-
tives, which can be identified through wind tunnel tests; laadd
a=the heaving(downward and torsional(nose-up displace-
ments.

The eigenvalues and eigenvectors of the bridge section system
without the coupled self-excited forces can be expressed in an
explicit form as

who=wh—pwhob?H} (Kno)/my

(26)
Eno=Enon/wno— pb?H7 (kno)/(2mp)
wgo=0q~Pogob*A (keo)/la @)
£a0=Ea0a /040~ pb*A3 (Ku0)/(21,)
Nj=Nnoheos Pj=Ppo, Py (28)
o= —Enooho+i®no1—£2, (29)
Na0= —£a0®a0Fi0a0V1—£2,
h 1 h 0
S| 1= | ®o=| b= 0 | @
a 0 o oo

The equivalent eigenvalue equation of the system without the
coupled self-excited forces is given as
where
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0 0 1 0 duced frequencies corresponding to the frequencies of the unper-

0 0 0 1 turbed system:
A= 32
—0Z 0 —2fgwp O (32) | 2KeHi o) %@@Hﬂqu
0 _(")20 0 _Zgaowao ° 2kﬁaObAZ(khuO) 2ki0b2A§(ka0) (34)

The eigenvalues and eigenvectors of the system with the
coupled self-excited forces can be estimated through a complex Ag=
eigenvalue analysis based on E2@). Here, a perturbation series
solution is presented at the wind velocity range where the fre-
quencies in heaving and torsional branches are closely alignedWhere
The perturbation series solution renders more physical insight
into the influence of coupled self-excited forces on bridge
aeroelastic behavior. Choosing the system without the coupled
self-excited forces as the unperturbed system, the perturbed sys-

tem described in EC(ZS), inVOlVing the contribution of COUpled This approximation |rAS andAd is genera”y acceptab|e based
self-excited forces, can be expressed in terms of the eigenvalugyn the fact that the coupled self-excited forces only slightly influ-
problem defined in Eq(2) with ence the frequencies, and that the aerodynamic matrices are not
0 I sensitive to the changes in the reduced frequency. This approxi-
1 1 mation is particularly valid for the region where the frequencies
_M—l( K— —pUZAS) _M—l(c_ = pbA, in heaving and torsional branches are adjacent, which is exactly
2 2 the region in which the perturbation series solution is being ap-
(33)  plied.
The frequency-dependent aerodynamic matridgsand Aqy Accordingly, the perturbation in the system matrix is approxi-
can be approximated as constant matrices defined at known remated by

2KnoHT (Kno)  2KnaobH3 (Kneo)
2Knaob AT (Knao)  2Keob?A% (Kyo)

khoz(l)hob/U; ku0=wa0b/U; khao=wha0b/U (35)

1
Whe0= 2 ("‘)h0+ "")0(0)

A+ EAoz

0 0 0 0

0 0 0 0

0 ®hooH3 (Knao)/Mp 0 H? (Knao)/Mpy
®haoA% (Knao)/l o 0 AT (Knao)/l o 0

By expressing the eigenvectors of the perturbed system in terms of those of the unperturbed systm; De®, + D,P,=1I'D, the
eigenvalue equations of the perturbed system,Xjes \y,,A;, are given by A+eH)D=\{D in which A=diag Ny \,], and

€Ag=pwpyob® (36)

0 —i(@heoH3 +XooH3 )/ (2Mpw o)
eH= FLEA()F: p(")haobS . * * D (37)
_|((.0hu0A4 +)\hOA1)/(2|o¢(‘oa0) 0
[
where coupled self-excited forces and the coupled flutter derivatives
H3 , H3 , AT, andAj .
[ =[®no Py ]" (38)

At the wind velocity range where the frequencies in heaving
and torsional branches of the unperturbed system are very close,
we havewp,o=~wp~w,o and the matrixH can be further ap-

—i
Pro =55 [~wi/Ae 0 1 0] roximated as
2w p
(39)
s 0 (H5—iH%)/(2my)
—i eH~pwpn,ob .
q)OLOL:_D[O _wiol)\ao 0 1] h0 (AfflAZ)/(ma) O
2040 (41)
and the veering condition of the frequency loci of the heaving and
D _ 2. D _ M2
who=@hoV1—Ehoi @ = @0Vl &G0 (40) torsional branches can thus be approximately expressed in an ex-
and the superscripl denotes the matrix transpose operator. plicit form
By solving Eq.(5) with the aforementioned coefficient matrix,
the eigenvalues and eigenvectors with coupled self-excited forces 4_ |€no— €aol <0(1)
can be readily determined based on E§.and(10), which are pb3/\myl {[(AT)2+ (A)ZI[(H3)2+ (H%)2]1v4
given in terms of the eigenvalues and eigenvectors without the (42)
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Fig. 16. Comparison of eigenvalue loci of heaving and torsional mode brar(eheand — are calculated by complex eigenvalue analysis with
and without coupled self-excited forces; circles are calculated by perturbation ahgpsi®equency versus wind velocifase A; (b) damping
ratio versus wind velocityCase A; (c) frequency versus wind velocityCase B; (d) damping ratio versus wind velocitCase B; (e) frequency
versus wind velocityCase @; and (f) damping ratio versus wind velocifCase G

Heaving Branch Coupled Flutter =0.075m, my,=2kg, |,=5e—-03kgm, f,=4.5Hz, f,

Recent studies of coupled flutter using spring-supported bridge = © HZ, andg,=¢&,=0.32%. The self-excited forces are given in
section models have shown that the heaving branch may also bdhree different ways for comparison purpose: case A: All flutter
the origin of so-called heaving branch coupled fluttdatsumoto derivatives were calculated through the Theodorsen function, case
et al. 1999. The following discussion will highlight the physics B All flutter derivatives were the same as case A except Atjat
of this type of flutter from the viewpoint of curve veering of andAj} were twice those in case A, case C: All flutter derivatives
frequency loci. were the same as case A except thgtandA; were three times
A spring-supported bridge section model with heave and tor- those in case A. The preceding changesAih and A% was to
sional degrees of freedom having the following parameters wassimply simulate cases of different bridge sections with distinct
used to investigate heaving branch flutter. These dye: aerodynamic characteristics leading to different flutter behavior.
Fig. 16 shows the frequency and damping ratio loci versus the
mean wind velocity for these three cases calculated through the

Table 4. Comparison of Flutter Conditions complex eigenvalue analysisee the Appendjx The solid and
Uy f d(h)—db(a) dashed lines in Fig. 16 are the results with and without the con-
Case no. Branch (m/9 (Hz) U,/fB h/Ba (degrees sideration of coupled self-excited forces presentedHiy, Hj ,
) AT, and A} . Without the coupled self-excited forces, the two
A Tors!on 10.57° 514 1371 0.68 11.05 frequency loci intersect in these three cases. The coupled self-
B TorS'Pn 919 476 1287 1.30 23.03 excited forces result in the separation of two frequency loci. In
C Heaving 8.41 4.63 1212  2.07 41.27

cases A and B, a coupled flutter is initiated from the torsional
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of examples. In order to better understand the curve veering of
frequency loci, a 2DOF structure—TMD system was first studied.
The perturbation in system parameters was chosen as the coupled
terms between the structure and the TMD. It was demonstrated
that the frequency loci may veer or intersect depending on the
damping ratio of the TMD, which controlled the interaction level
between the TMD and the structure. For long-span bridges, the
perturbation in system parameters was chosen as the aerodynamic
: : : : coupling terms between the structural modes. It was found that
6 8 10 12 14 16 the curve veering of adjacent bridge frequency loci was due to the
Wind velocity U(m/s) influence of strong aerodynamic coupling. The detailed discus-
sion on the curve veering of frequency loci offered new insights
into the dynamics of a structure—TMD system, provided a correct
explanation of the results of the multimode coupled flutter analy-

mode branch. The curve veering phenomenon is noted in the fre-S€S Of long span bridges, and helped in improved understanding

quency loci in both cases. In case C, the coupled self-excited ©f the underlying physics of their aeroelastic behavior.

forces only slightly change the eigenvalues of this system, and the _H€aving branch coupled flutter observed in spring-supported
frequency loci remain intersected. As a consequence, a coupledridg9e section models was investigated from the viewpoint of

flutter is initiated from the heaving mode branch in case C. Table CUrve veering. Closed-form expressions were developed to de-
4 compares the coupled flutter conditions including the flutter SCTiPe the eigenvalues of the coupled system and a veering con-

mode branch, critical flutter velocity, frequency, reduced velocity, dition of frequency loci. It was revealed that the heaving mode
amplitude ratio, and phase difference between heaving and tor-branch flutter corresponded to the intersection of frequency loci
sional motions,in the coupled flutter mode for each case. It is of heaving and torsional mode branches due to the weak influence
noted that the coupled flutter motion in these three cases is simi-Of the coupled self-excited forces. It was noted that the heaving
lar, i.e., the torsional motion lags the coupled heaving motion. mode branch flutter was physically consistent with the generally

The eigenvalue loci calculated by the perturbation analysis are ©°S€rved torsional mode branch flutter.

also presented in Fig. 16 as indicated by circles. Results illus-

trated the accuracy of the approximation of the self-excited forces ACknowledgments

and the perturbation solution in a closed form. Fig. 17 shows the The support for this work was provided in part by NSF Grant

mode interaction indefEq. (15)] for these three cases indicating Nos. CMS 9402196 and CMS 95-03779. This support is grate-

the influence of the coupled self-excited forces at the wind veloc- fully acknowledged. The writers are thankful to Tracy Kijewski

ity region where two frequency loci are close each other. As al- for her comments on the manuscript.

luded to earlier, a lower value corresponds to a stronger interac-

tion. The mode interaction decreases successively in cases A, BAppendix: Eigenvalue Analysis of Bridges

and C. In both cases A and B, a strong interaction between thewith Aeroelastic Effects

heaving and torsional motions results in curve veering. The result . .
N . For the sake of completeness and clarity, the framework for esti-

of case C indicates that a heaving branch flutter corresponds to

. . : . .“mating the eigenvalues of bridges with aeroelastic effects is
the intersection of frequency loci. Comparing these three cases in,_ . - o .
X . . - . briefly outlined here. The approach employs time-invariant state-
light of the eigenvalue loci, coupled motions in terms of the am-

plitude ratio and phase difference corresponding to the branchSPace formulations with augmented aerodynamic states. A more

where the coupled flutter is initiated, flutter condition at the criti- deta||.ed discussion can be found in literateeg., Chen et al.
. ) 2000; Chen et al. 2001
cal flutter velocity, and the role of the self-excited forces to the The qoverning equations of a bridae motion in modal coordi-
development of aerodynamic damping, it is concluded that the nates a?e ivengl]) q 9
heaving branch coupled flutter is physically consistent with the 9 y ) )
generally observed torsional branch coupled flutter. Similar to the Mg +Cq+Kag =Qset Qp (43)

torsional branch coupled flutter, the heaving branch coupled flut- \where M, C, andK =the generalized mass, damping, and stiff-

ter, resulting from the negative aerodynamic damping introduced pegs matrices, respectively; Q.., and Q,=the modal coordi-

by the coupled self-excited forces, shows coupled heaving andpates, the generalized self-excited, and buffeting force vectors,

torsional motions in which the torsional motion lags the heaving respectively; and the over-dot denotes partial differentiation with

motion. respect to time. The buffeting term has been excluded in the fol-
lowing discussion since it does not influence the bridge modal

] properties in the linear aerodynamic analysis.
Concluding Remarks The self-excited forces corresponding to the steady-state sinu-

. . . _ soidal motiong(t)=ge'“! can be approximated in terms of a
The curve veering phenomenon of frequency loci of bridges with (4tional function as

aeroelastic effects was studied utilizing cable-stayed and suspen-
sion bridges. A perturbation series solution that includes the ad-
jacent complex eigenvectors in the zeroth-order expansion was
presented, and its effectiveness and accuracy in estimating the

N

-
2

Interaction index

nd
o

Fig. 17. Interaction index of heaving and torsional branches

1 .
Qsd 1) = 5 pU(Ast(ik)Ag)ge'

m

variations of the complex eigenvalues of dynamic systems, due to 1, ) L, (ik)Ap 3| __ ot
small changes in the system parameters, was demonstrated. The =5pU% At (ik)Ax+(ik) A3+Z’1 Tik+d, %€
condition for veering of frequency loci was quantified by modal '

interaction parameter, and its efficacy was illustrated by the way (44)
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wherep =the air densityU =the mean wind velocityk=wb/U AD; =\, D, (48)
=the reduced frequencyB=2b=the bridge deck width,o
=the circular frequency of motiori=the imaginary unit/—1,
Al’ A2, A3, A€+3 and d( (d(20,€:1,2, R m)
=frequency-independent matrices and parameters, mndhe
order of the rational terms. This approximation can be determined \j=—&jojtio; \/1—:’;]2 (j=12,...N) (49)
by curve-fitting experimental data of the aerodynamic matrices . o
A4(ik) andA4(ik) defined at a set of discretized reduced frequen- Where; and§;=frequency and damping ratio in thjéh com-
ciesk; (j=1,2,...)using a least-square approaghy(ik) and plex mode branch, which include aeroelastic effects.
Aq4(ik) are functions of the mode shapes and the flutter deriva-
tives (e.g., Chen et al. 2001

After some manipulations, the equations of motions at the

mean wind velocityl are expressed in terms of the following Anderson, P. W(1958. “Absence of diffusion in certain random lat-

where\; and®; =eigenvalue and eigenmode associated with the
jth complex mode branch. The eigenvalues corresponding to
structural modes can be expressed as
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