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Abstract

As many physical processes of interest to Civil Engineers manifest nonlinear and

nonstationary features, their complete characterization may not be accomplished via Fourier

transforms, necessitating a new analysis framework in the time-frequency domain. This paper

overviews recent developments in wavelet-based analysis of a number of physical processes of

relevance to the Civil Engineering community. It is shown that the dual nature of wavelet

transforms, being a simultaneous transform in time and frequency, permits adaptation of a

number of traditional system identification and analysis schemes. For example, the extension

of wavelet transforms to the estimation of time-varying energy density permits the tracking of

evolutionary characteristics in the signal using instantaneous wavelet spectra and the

development of measures like wavelet-based coherence to capture intermittent correlated

structures in signals. Similarly, system identification methodologies originally referenced in

either the time or frequency domain can be extended into the realm of wavelets. Though the

application of wavelet transforms in Civil Engineering is in its infancy, as the examples in this

study demonstrate, its future shows great promise as a tool to redefine the probabilistic and

statistical analysis of wind effects.
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1. Introduction

Wind-resistant design and construction of buildings and civil infrastructure is
becoming critically important in light of the continually increasing losses associated
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with windstorms worldwide. Accordingly, the significance of risk analysis and the
need to surpass traditional deterministic design approaches is of mounting
importance for design and construction. Recent developments in probabilistic
methods offer a mathematical framework that promises to enable designers to
accurately encapsulate statistics of large data sets and model physical phenomenon
associated with wind effects on structures. Such models must embrace a probabilistic
format in order to characterize the random nature of wind fluctuations in space and
time and its interactions with structures. Earlier review articles by the senior author
[1–3]: ‘‘Wind Effects on Structures: A Probabilistic Viewpoint’’, ‘‘Analysis and
Modeling of Wind Effects: Numerical Techniques’’, and ‘‘Modeling and Simulation
of Wind Effects: A Reflection on the Past and Outlook for the Future’’, have focused
on the analysis, modeling and simulation of wind-related processes, e.g., pressure
fluctuations and structural response.
This paper addresses a topic that goes beyond the customary approach of viewing

a random process in terms of either time or frequency by focusing on a time-
frequency representation using the wavelet transform. First, a general background of
the wavelet transform is presented, followed by discussion of wavelet-based spectral
estimates and basic time-frequency insights from wavelet scalograms and coherence
and bicoherence estimates in a wavelet framework. This is followed by a discussion
of specific system identification approaches exploiting wavelet information in the
time domain and instantaneous power spectral analyses rooted in the wavelet
frequency domain.

2. Wavelet transform

Commonly used signal processing tools, e.g., Fourier analysis, fail to identify
when certain characteristic features occur in a waveform. As Fourier basis functions
are localized in frequency but not in time, an alternative was introduced by Gabor to
localize the Fourier transform through the short-time Fourier transform (STFT),
which provides time and frequency localization [4]. However, constraints of the
Heisenberg Uncertainty Principal limit the obtainable resolutions considerably. An
alternative approach would be to design basis functions that are also local in both
frequency and in time, but capable of adapting their resolutions dependent on the
frequency being analyzed, a so-called multi-resolution operator known as the
wavelet transform.
The wavelet [5–6] is a linear transform that decomposes an arbitrary signal x(t)

via basis functions that are simply dilations and translations of a parent wavelet g(t)

through the convolution of the signal and the scaled/shifted parent wavelet:

W ða; tÞ ¼
1ffiffiffi

a
p

Z
N

�N

xðtÞg� t � t
a

� �
dt: ð1Þ

Dilation by the scale, a; inversely proportional to frequency, represents the periodic
or harmonic nature of the signal. By this approach, time-frequency localization is
possible, since the parent wavelet serves as a ‘‘window function’’, as opposed to the
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trigonometric bases comprised of the sines and cosines of the Fourier transform. The
wavelet coefficients, W ða; tÞ; represent a measure of the similitude between the
dilated/shifted parent wavelet and the signal at time t and scale (frequency) a:
Though there are countless parent wavelets used in practice, of both discrete and

continuous form, the continuous wavelet transform (CWT) using the Morlet wavelet
[7] has become quite attractive for harmonic analysis, due to its analogs to the
Fourier transform, evidenced by

gðtÞ ¼ e�t2=2ðcosðo0tÞ þ i sinðo0tÞÞ: ð2Þ

Essentially, the Morlet wavelet in Eq. (2) is a Gaussian-windowed Fourier
transform, with sines and cosines oscillating at the central frequency, fo ðo0 ¼
2pf0Þ: Dilations of this temporally localized parent wavelet then allow the ‘‘effective
frequency’’ of this sine–cosine pair to change in order to match harmonic
components within the signal.
The Morlet wavelet is equivalently localized in the frequency domain, as evidenced

by the Fourier transform of the dilated Morlet wavelet in Eq. (2)

Gðaf Þ ¼
ffiffiffi
2

p ffiffiffi
p

p
e�2p

2ðaf�f0Þ
2

ð3Þ

which is utilized in the Fourier-domain implementation of the wavelet transform

W ða; tÞ ¼
ffiffiffi
a

p Z
N

�N

X ðf ÞG�ðaf Þei2pft df : ð4Þ

By exploiting the fast algorithms in the Fourier domain, Eq. (4) is often more
efficient for implementation. For the Morlet wavelet, there is a unique relationship
between the dilation parameter of the transform, a; and the frequency, f , at which
the wavelet is focused, allowing the relation of scales to the Fourier frequencies
familiar to most engineers. This attractive relationship is evident by maximizing
Eq. (3) to yield

a ¼ f0=f : ð5Þ

By virtue of the unique relationship between scale and frequency, this wavelet is
specifically used later in Figs. 3 and 5–10 in the CWT analyses performed.
Alternatively, a discrete formulation of Eq. (1) may be preferred to minimize the

redundant information retained in the continuous transform and provide an
orthogonal representation for signal decomposition and reconstruction. By this
discrete wavelet transform (DWT), the signal is decomposed into a subset of
translated and dilated parent wavelets, evaluated at selected scales and translations
corresponding to powers of two. This permits the use of efficient algorithms for
estimation of the DWT using a series of high and low pass filters to progressively find
the wavelet coefficients from the highest level to the mean value.

2.1. Wavelet analysis potential

Both discrete and continuous wavelets have been applied to a variety of problems
ranging from image and acoustic processing to fractal analysis. The ability of
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wavelets to analyze a wide variety of problems stems from the fact that it provides
insights into both the time and frequency domains simultaneously. Thus, in its recent
extension to the analysis of stochastic processes of interest to Civil Engineering,
wavelets have been adapted to a number of situations where Fourier transforms (for
frequency domain analysis) or Hilbert Transforms (for time domain system
identification) were traditionally used to define quantities of interest. As shown in
Fig. 1, when considering the time and frequency information in tandem, wavelets can
be used to determine the times and frequencies at which signal energy content is
strongest, through examination of scalograms and coscalograms [8]. More specific
insights into the linear and quadratic interplay between two signals in both time and
frequency can be gained utilizing wavelet coherence and bicoherence measures [9].
However, by exploiting the dual potential of wavelets, other analysis based primarily
in either the time or frequency domain, can also be performed. By tracking the
variation of wavelet transform coefficients in the time domain, system identification
can be readily performed [10]. Similarly, the distribution of wavelet coefficients with
frequency at an instant in time provides a familiar spectral representation whose
properties can be monitored with time to provide insights into nonlinear behavior
[11]. The subsequent sections will discuss in further detail how each of these analyses
are conducted.

2.2. Wavelets in spectral and correlation analysis

As discussed in [8], wavelets can be used to estimate the traditional power spectral
density (PSD) of a process by disregarding all temporal information. For example, in
the discrete case, wavelet coefficients Wi;j are used to estimate the PSD by summing
the squared coefficients in each octave as shown schematically in Fig. 2. A cospectral
estimate between two processes is also possible by replacing the squared coefficient
term with the product of the coefficients of each process. The energy captured by this
wavelet-based spectral estimation closely matches the actual signal energy, though
lacking in frequency resolution. This lack of resolution is alleviated in the case of
continuous wavelets, which are not constrained by a dyadic discretization of the
frequency domain. However, to truly assess the merits of wavelet-based analysis, the

Time-Frequency Domain 
• Scalogram and Coscalogram 

Evolutionary Analysis 

• Wavelet Coherence and Bicoherence 
Measures 

Time Domain 
System Identification 

Frequency Domain 
Instantaneous Power 

Spectra/Damping 

Fig. 1. Potential uses of wavelet transforms for nonlinear and nonstationary signal analysis.
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valuable temporal information should be retained, prompting the consideration of
time-frequency analysis.

2.3. Time-frequency signal representation: scalogram

Similar to the Fourier notion of the power spectrum, an indicator of a signal’s
time-varying energy content over a range of frequencies can be generated by plotting
the squared modulus of the wavelet transform as a simultaneous function of time
and frequency to generate a scalogram or mean square map. This representation of
the localized wavelet transform is well-suited for the analysis of nonstationary
phenomena, revealing the frequency content of the signal at each time step to
pinpoint the occurrence of transients, while tracking evolutionary phenomena in
both time and frequency.
Fig. 3 displays the wavelet scalogram of a sinusoid, whose frequency begins at

0.2Hz and then decays subtly according to a quadratic function. When viewed in the
time-frequency plane, the scalogram largest coefficients, enveloped white, concen-
trate about a ridge. As discussed in [5], for a particular class of parent wavelet, the
ridge scales, or frequencies corresponding to the local maxima of the wavelet
transform, provide an estimate of the instantaneous frequency (IF) of the system.
Extracting these ridge coordinates provides a pinpoint estimate of the IF of the
system, shown in the bottom frame of Fig. 3. The comparison between the actual
quadratic IF law of the sinusoid and the extracted wavelet ridge is quite good. Note
that the piecewise fit provided by the wavelet can be made more smooth by choosing
a finer discretization of scales when evaluating Eq. (1).
In some recent studies, the concept of the scalogram has been advanced to identify

correlation between signals in which the squared coefficients are replaced with the
product of the wavelet coefficients of two different processes (e.g. [8]). This produces
a view of the coincident events between the processes, revealing time-varying pockets
of correlation with frequency. Fig. 4 displays such a coscalogram comparison for
full-scale pressure measured on a building and the two upstream wind velocity
records: the first recorded at the same time as the full-scale pressures under

Fig. 2. Summation of discrete wavelet coefficients to estimate power spectrum (after [8]).
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consideration and the second from a different wind event. Fig. 4a–c shows the
scalograms and coscalogram of wind pressure and first wind velocity that are
knowingly correlated. Note the pockets of white beyond 250 s. This may be
compared to a similar analysis for wind pressure and velocity that are known to be

Fig. 3. Wavelet scalogram and extracted ridge for evolutionary signal analysis.
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uncorrelated, for which no marked white pockets, indicative of correlation, are
present.
This coscalogram contains wavelet coefficients determined from segments of the

signal isolated by the sliding window of the scaled parent wavelet. At each time step,
these wavelet coefficients can be imagined to comprise a single raw spectrum across
the range of scales, equivalent to a spectrum obtained from a single block of time
history in the traditional Fourier analysis. These raw spectra ordered sequentially
along the time axis in the scalogram and coscalogram lack the ensemble averaging
necessary in traditional Fourier methods to reduce the variance in the estimate,
resulting in noisy displays where correlated events are difficult to differentiate from
random coincident coefficients. This explains the presence of the subtle light pockets,
indicative of spurious correlation, present in both the correlated and uncorrelated
examples in Fig. 4.

2.4. Wavelet-based coherence and bicoherence

Though this simple measure of correlation has been used to qualitatively identify
first-order wind velocity and pressure relationships [8], it is refined in [9] by the
introduction of a wavelet coherence measure used to produce a time-frequency
display of the coherence between signals intermittently correlated. The traditional

Fig. 4. (a) Scalogram of upstream wind velocity 1; (b) scalogram of rooftop pressure; (c) coscalogram of

these two correlated processes; (d) scalogram of upstream wind velocity 2; (e) scalogram of rooftop

pressure; (f) coscalogram of these two uncorrelated processes (after [8]).
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form of the coherence function can be retained as the ratio of the wavelet cross-
spectrum to the product of the wavelet auto-spectra of the two signals xðtÞ and yðtÞ.
The wavelet coherence map is thus defined as

ðcW ða; tÞÞ2 ¼
jSW

xy ða; tÞj
2

SW
xxða; tÞSW

yy ða; tÞ
; ð6Þ

where the localized power spectra discussed above are given by

SW
ij ða; tÞ ¼

Z
T

W �
i ða; tÞ Wjða; tÞ dt: ð7Þ

The localized time integration window in Eq. (7), T ¼ ½t � DT ; t þ DT 	; is selected
based on the time resolution desired in the resulting coherence map and essentially
performs the same ensemble averaging operation, albeit localized in time, as
traditional Fourier analysis to obtain an auto-spectrum or cross-spectrum of two
signals.
As evident in Fig. 4, an insufficient amount of ensemble averaging can lead to

considerable statistical noise and produce spurious correlations. Thus, a framework
was developed to identify the source of statistical noise in the raw wavelet
coscalograms and propose a variety of remedies [9]. The initial introduction of a
variable integration window, predicated on the multi-resolution character of
wavelets, verified that the lack of ensemble averaging results in much of the
observed spurious coherence, though the application of this remedy is constrained by
the ensuing loss in temporal resolution. The theory of ridges is briefly introduced in
[9] alongside the concept of hard thresholding to generate a coarse ridge extraction
scheme to isolate meaningful coherence. This technique, when coupled with
sufficient ensembles in the aforementioned variable integration scheme, is shown
to enhance performance. However, to preserve evolutionary characteristics while
removing significant noise, more sophisticated approaches are required, which do
not involve extensive averaging. As a result, a ‘‘smart’’ thresholding simulation
scheme is proposed to provide a reference noise map to separate spurious noise
effects from true signal content. In this approach, the noise is filtered from the
wavelet coherence map by comparison with a threshold describing the likely noise
level. This threshold is created by averaging a series of reference correlation maps
between one signal and uncorrelated simulations of the second signal, which match
the second signal’s spectral and probabilistic characteristics. As shown in Fig. 5,
which displays the wavelet coherence for measured wind velocity and pressure on a
full-scale building, by specifying the desired probability of noise exceeding the
threshold level, in essence regulating the extent of filtering, the spurious coherence is
progressively removed from the map. What remains in Fig. 5f is the true coherence
between wind velocity and pressure for this measured data.
The analysis developed for first-order correlation detection is further extended to

higher-order correlation [9], as some of the processes under investigation may not be
linearly related, e.g., wind velocity fluctuations and associated pressure fluctuations.
Furthermore, intermittent bursts of strong second-order correlation cannot be
identified by applying a Fourier-based analysis over short-time intervals without the
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Fig. 5. (a) Measured wind velocity; (b) measured wind pressure; (c) unfiltered wavelet coherence map;

filtered wavelet coherence map for varying levels of noise exceedence: (d) 25% exceedence; (e) 10%

exceedence; (f) 1% exceedence (after [9]).
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benefit of additional variance reduction schemes. In this context, bicoherence, the
ratio of the higher-order cross-bispectrum to the first-order spectra, is utilized as a
metric for assessing the presence of second-order correlation (e.g. [12–13]). The
bicoherence is defined as

BW
xxyða1; a2; tÞ ¼

Z
T

Wxða1; tÞWxða2; tÞWyða; tÞ dt; ð8Þ

where

1

a
¼
1

a1
þ
1

a2
ð9Þ

is used in the evaluation of the wavelet bicoherence:

ðbW
xxyða1; a2; tÞÞ

2 ¼
jBW

xxyða1; a2; tÞj
2

R
T
jWxða1; tÞ Wxða2; tÞj2 dt

R
T
jWyða; tÞj2 dt

: ð10Þ

The extension of the wavelet-based spectral estimation of coherence and the
aforementioned statistical noise remedies permit the development of a filtered
wavelet bicoherence map [9], as shown in Fig. 6, where the wind velocity and
pressure being analyzed are second-order correlated over only selected frequencies
and over selected time intervals. By again defining the desired level of exceedence, the
spurious higher-order coherence is removed in the last two plots of the figure. Note
that specification of a more stringent exceedence criteria would remove any residual
spikes shown in those last two plots.
These two demonstrations and other examples in [9] affirm that this wavelet-based

technique is capable of identifying both first- and second-order correlation and
effectively reducing the presence of noise for both simulated and measured data. Its
robustness is further established as it is shown to alleviate the presence of spurious
coherence, even in cases where variance and leakage are prevalent. Though relatively

Fig. 6. Wavelet bicoherence maps between wind velocity and pressure: (a) unfiltered; (b) filtered. Signals

are correlated over 1025–1280 and 3073–3328 s, uncorrelated over 257–512 and 2561–2816 s (after [9]).
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intensive, this approach facilitates the removal of significant levels of all of the
various contributing noise sources.

2.5. Time domain applications: wavelet transforms for system identification

The time-frequency character of wavelet transforms allows increased flexibility—
as both traditional time and frequency domain system identification approaches can
be exploited to examine nonlinear and nonstationary features that are in essence
obscured by traditional spectral approaches, as they provide an averaged-sense of
the system’s response quantities. From the perspective of Civil Engineering
applications, there is considerable need to escape from the realm of averaged
quantities, since there is direct interest in correlating measured dynamic properties of
natural frequency and damping to specific levels of response amplitude. However, to
establish the nonlinear characteristics of a dynamic parameter such as damping,
whose complex mechanisms and properties have proven difficult to accurately
quantify, engineers must be equipped with sophisticated mathematical tools that will
permit them to accurately track the variations in dynamic properties over the course
of varying ambient loadings. Without reliable estimations of such behavior,
satisfactory performance of structures cannot be insured and the state-of-the-art
in structural design cannot advance.
To address this pressing issue, an analysis framework is proposed, predicated on

the Morlet wavelet introduced previously, which can overcome the limitations of
stationarity and permit tracking of amplitude-dependent dynamic features. Such
tracking of time-varying frequency content is typically accomplished by monitoring
the IF of the signal. Although there have been contributions from a number of
researchers, the common definition of this quantity is traced back to the notion of a
complex analytical signal [4], taking the form of an exponential function given by

zðtÞ ¼ AðtÞeifðtÞ ð11Þ

with time-varying amplitude AðtÞ and phase fðtÞ. Typically, this complex analytic
signal is generated by

zðtÞ ¼ xðtÞ þ iH½xðtÞ	; ð12Þ

where xðtÞ is the real-valued signal being transformed and the operator H½
	
represents the Hilbert Transform. Since the Hilbert Transform essentially performs a
901 phase shift, xðtÞ and H½xðtÞ	 are said to be in quadrature.
From the definition in Eq. (11), Ville [14] proposed the concept of IF as the time-

varying derivative of the phase

fiðtÞ ¼
1

2p
d

dt
fðtÞ ¼

1

2p
d

dt
½+zðtÞ	 ð13Þ

providing a simple means to identify the time-varying frequency of a signal. Though
this is a widely accepted approach, the Hilbert Transform in Eq. (12) can only be
applied to single-degree-of-freedom (SDOF) responses or monocomponent signals.
Thus, a form of bandpass filtering is often required as a precursor to the Hilbert
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Transform operation in Eq. (12). The wavelet provides a convenient way to
overcome this limitation.
As discussed previously in the context of Fig. 3, the ridge is defined by the scales at

which the signal takes on its maximum value. More importantly, the real and
imaginary wavelet coefficient-pairs along the ridge (skeleton) are respectively
proportional to the signal and its quadrature components [15]. As discussed in
[10,15], these complex coefficients can be used directly in a traditional system
identification approach based on the analytic signal theory discussed above. For
multi-degree-of-freedom signals, the wavelet scalogram will manifest multiple ridges.
By examining the phase of the wavelet skeletons for each respective ridge the time-
varying IF can be identified.
Specifically, in the case of free vibration decay curves, in each mode the oscillator

responds at the damped natural frequency oD; and the time-varying amplitude term
takes the form of an exponential, decaying based on the system’s natural frequency
on ¼ 2pfn and damping xðoDBon; for lightly damped systems) in that mode,
according to

zðtÞ ¼ ðA0e
�xontÞeiðoDtþyÞ; ð14Þ

where A0 is an initial amplitude value and y is a phase shift. Thus, the derivative of
the wavelet phase of each skeleton provides a natural frequency estimate for a given
mode, which can then be used to determine the damping from the slope of the
natural log of the amplitude term, according to Eq. (14).
Even in situations where free vibration decays are not directly available, this

wavelet-based system identification approach may still be implemented. As shown in
the example in Fig. 7, the Random Decrement Technique [16–17] is used to
preprocess the response of a structure under random excitation, in this case the
acceleration of a full-scale tower under typhoon winds, yielding a Random
Decrement Signature (RDS) proportional to the free vibration response of the
structure. The signature in its current form contains the contributions of multiple
modes and measurement noise and is not the smooth stable decay one would expect
from an SDOF oscillator. However, processing this through the CWT permits the
dominant mode to be readily identified and isolated. The wavelet skeleton associated
with this mode yields the anticipated decay associated with an SDOF oscillator.
Note that both the wavelet scalogram and skeleton are complex-valued, though only
the real component is shown in Fig. 7 for simplicity. This slope of the skeleton’s
phase and amplitude may be analyzed to determine the natural frequency and
damping, respectively, as discussed previously. As shown in [10], the frequency was
estimated at 0.645Hz and critical damping ratio at 0.0151, though showing some
slight variations. These findings were consistent with those observed in free vibration
testing [18].

2.6. Frequency domain applications: instantaneous power spectra and damping

Though the previous approach was largely rooted in the time domain, frequency
domain perspectives from the wavelet coefficients are also insightful. To
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demonstrate, the scalogram of the sinusoidal chirp discussed previously in Fig. 3, is
shown again in Fig. 8. However, in this case, at a given time, the values of the
wavelet coefficients across the range of frequencies are extracted to produce an
instantaneous power spectrum, focused at the IF of the signal.
To illustrate how this approach can be used in the analysis of measured signals,

consider the output of one experimental measuring station as wind-generated
random sea waves are physically simulated by a JONSAWP random excitation in
Fig. 9a. The scalogram in Fig. 9b reflects several pockets of intense energy bursts,
associated with high amplitude events in the data, and concentrated at around
0.5Hz. The presence of white pockets fading into the high frequency range suggests
the detection of a distribution of energy beyond the fundamental observed
frequency. Ridge extraction from the wavelet modulus revealed up to three local
maxima for any given instantaneous spectrum. The maxima take on the highest
values in the vicinity of 0.5Hz, accompanied by intermittent lower amplitude
components at relatively lower and higher frequencies. Individual analyses of the

Fig. 7. Flow chart explaining wavelet-based system identification in time domain.
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occurrence of the three ridges are provided in Fig. 9c–e. Fig. 9c displays the IF
associated with the simplest harmonic representation observed in the signal—for
which there is only one dominant oscillatory component near 0.5Hz, typified by the
instantaneous spectrum to the right. The frequency content of the signal often shifts
then to a bi-modal characteristic, centered around 0.5Hz, as shown in Fig. 9d, but
alternating its dominant peak between approximately 0.4 and 0.6Hz, as shown by the
two example instantaneous spectra. The occurrence of a third peak in Fig. 9e is
usually an intermittent phenomenon of relatively lower energy and accompanies the
dominant presence of the same two harmonics centered near 0.5Hz. It is important to
reiterate that wavelet IF estimates, when viewed in tandem with the wavelet IF
spectra, serve as a microscope for studying the evolution of multiple harmonic
components within the response. In particular, the alternating characteristic of the
two dominant components centered near 0.5Hz represents a temporal variation of the
fundamental wave frequency that would be obscured in traditional Fourier analysis.
However, the frequency at which the instantaneous spectra concentrate is not the

only useful information. The spectra also have measurable spread about this

Fig. 8. Wavelet scalogram and instantaneous power spectra.
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frequency indicative of the instantaneous bandwidth of the signal. Wavelets
essentially fit small waves or so-called ‘‘wavelets’’ to the signal at each point in
time. In the case of the Morlet wavelet, these localized waves are sinusoidal in
nature. The IF identified by the peak in the spectra of Fig. 8 corresponds to the
frequency of the sinusoid that is a best-fit at that instant in time. However, if the
wave profile subtlety deviates from a simple sinusoid, it is not unreasonable to expect
that additional neighboring frequencies are required to capture these deviations.
Thus, at an instant in time, a wavelet instantaneous spectrum peaks at the IF or the
dominant frequency, but also manifests measurable spread indicating that other
frequency components are present to a lesser extent at that instant in time. The
involvement of such adjacent frequencies is represented by the bandwidth measure.
Thus, in the truest sense, the wavelet IF is the mean frequency and the bandwidth
reflects the deviation of these frequencies from this mean as they evolve in time [19].

Fig. 9. (a) Measured wind-generated random wave data; (b) wavelet scalogram; IF identified from (c)

single mode ridge; (d) bi-modal ridge; (e) multi-mode ridge (dark lines indicate highest energy component

at that time step), with example of each instantaneous spectra class shown at the right.
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While the evolution of IF and bandwidth for a number of nonstationary and
nonlinear systems is studied in more detail in [9], one example is provided here for
illustration. In Fig. 10, the surface elevation of wind-generated waves mechanically
simulated in a wave tank is measured. The measured data is provided in Fig. 10a and
manifests narrowed peaks and widened toughs, highlighting a subtle deviation from
a simple sinusoidal shape. The scalogram in Fig. 10b concentrates near 1Hz shown
by a dark band enveloped in white, but the periodic excursion of energy into the
higher frequency scales indicates the presence of time-varying frequency content.
From the phase-based IF estimate, in Fig. 10c, the minor modulations reveal time-
variance in the local mean frequency. Further fluctuations about this mean
frequency are then identified in the instantaneous bandwidth in Fig. 10d, which
provides a rich display of nonlinear characteristics. The periodic modulations of the
bandwidth indicate a regular variation of frequencies concomitant at each instant in
the signal.

3. Conclusions

Just as the Fourier transform has introduced spectral analysis to the practicing
engineer, current efforts are focused on ushering in a new analysis framework in the
time-frequency domain, bringing innovative mathematical tools such as wavelet

Fig. 10. (a) Thirty seconds of wind-generated wave surface elevation; (b) scalogram of wave data; (c) IF

from wavelet phase; (d) instantaneous bandwidth estimate.
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transforms to practicing engineers, permitting accurate analysis without the
restrictions of stationarity. The extension of wavelet transforms to the estimation
of time-varying energy density permits the tracking of evolutionary characteristics in
the signal and the development of measures like wavelet-based coherence to capture
intermittent correlated structures in signals. Further, the wavelet’s dual nature, being
a simultaneous transform in the time and frequency domains, can be exploited to
permit the adaptation of a number of traditional system identification and analysis
schemes. Despite the merits of these analyses, it should be noted that a number of
processing concerns must be addressed in order to obtain reasonable results,
particularly for the class of signals of relevance to Civil Engineering [9–11]. Though
the application of wavelet transforms in Civil Engineering is in its infancy, its future
shows great promise as a tool to redefine the probabilistic and statistical analysis of
wind effects.
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