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Abstract

This paper presents a framework based on a complex modal decomposition technique for predicting coupled buffeting response of bridges
in both time and frequency domains. The coupled equations of motion in structural modal coordinates with frequency dependent aeroelastic
self-excited terms are approximated by frequency independent state-space equations, without augmented aerodynamic states, which retain
the complex modal properties of the original system. These equations are then decomposed into a set of uncoupled equations of motion for
buffeting response analysis. The frequency dependent unsteady buffeting characteristics and their spanwise correlation are considered in both
frequency and time domain analyses instead of invoking the customary quasi-steady assumption. This framework significantly enhances
computational efficiency in the frequency domain analysis by avoiding system matrix inversion at each discretized frequency when
evaluating the transfer function matrix. Furthermore, it also offers simulation of buffeting response in the time domain that includes
frequency dependence of buffeting and self-excited forces. A detailed discussion concerning the complex modal frequencies, damping
ratios, mode shapes, and the significance of structural modes on the multimode coupled buffeting response is provided. This helps to glean
additional insight and to improve our understanding of the underlying physics of wind—structure interactions. Examples of long span
suspension bridges are provided to illustrate the proposed scheme and to demonstrate its effectiveness. © 2002 Elsevier Science Ltd. All

rights reserved.
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1. Introduction

With the increase in span length of bridges, natural
frequencies and the ratio between the fundamental fre-
quencies in the torsional and vertical modes have decreased
significantly. This leads to increased coupling between the
vertical and torsional motions under strong winds. As a
result, analysis of buffeting and flutter response of long
span bridges generally requires consideration of multimodal
response and aerodynamic coupling [1-4].

Aerodynamic forces on bridges are conventionally sepa-
rated into buffeting and self-excited force components.
While the buffeting forces due to wind fluctuations are
forced excitations, the self-excited forces due to bridge
motion alter the stiffness and damping characteristics of
the bridge. These modifications are frequency dependent
since they depend on the aeroelastic parameters, i.e. flutter
derivatives which are functions of reduced frequency or
reduced velocity. As a consequence of the self-excited
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forces, the frequencies, damping ratios and the mode shapes
change with an increase in wind velocity. Particularly, the
coupled self-excited forces modify the mode shapes that
change from real-valued to complex-valued. At a given
wind velocity, this complex modal information can be
calculated using an iterative calculation procedure. Alterna-
tively, frequency independent state-space equations of
motion with augmented aerodynamic states can be utilized
to avoid iterative calculations with enhanced computational
efficiency [3,5]. This integrated state-space formulation can
be realized through the rational function approximation of
self-excited forces [6—9].

Buffeting response prediction has been conventionally
conducted in the frequency domain using spectral analysis
approaches. This is mainly due to the fact that the wind
loading parameters are functions of frequency, and the
frequency domain provides a convenient format for linear
analysis. However, the time domain approach is most appro-
priate if the analysis involves structural and/or aerodynamic
nonlinearities. Chen et al. [4] proposed a time domain
approach that incorporates the frequency dependent
unsteady aerodynamic force features rather than assumes
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frequency independence by invoking the quasi-steady
theory used in most previous time domain studies. Recently,
Chen and Kareem [10] presented a computationally more
efficient framework using a state-space model of the
integrated loading and structural system with a vector-
valued white noise input. This approach integrates the
mathematical representation of multi-correlated wind fluc-
tuations, unsteady buffeting and self-excited forces and the
bridge dynamics. The state-space framework facilitates a
direct evaluation of the response covariance as well as the
time domain simulation of bridge loading and response, and
offers a convenient formulation readily amenable to the
design of motion control devices.

For linear structures with linear self-excited forces, the
buffeting analysis can be conducted based on complex
modal analysis, in which the effects of self-excited forces
are included in terms of the complex mode information
[5,11,15]. Cremona and Solares [11] proposed a simplified
approach that avoids inversion of the system matrix at each
discretized frequency when evaluating the transfer function
matrix. This is based on the assumption that the modal
frequencies are well separated for lightly damped structures.
In Ref. [15], the complex modes were calculated directly
based on a three-dimensional finite element model of the
bridge, and the generalized buffeting forces associated with
the complex modes were used in the frequency domain
spectral analyses. They also conducted a time domain
analysis using quasi-steady buffeting forces. In Ref. [5],
the equations of structural motion were expressed in terms
of frequency independent state-space equations of the
integrated system of bridge and associated aerodynamics.
The modal description of both the structure and the augmen-
ted aerodynamic states were used in the calculation of the
transfer function matrix which avoids inversion of a system
matrix at each discretized frequency.

In this paper, a framework for predicting coupled buffet-
ing response of bridges in both frequency and time domains
is presented based on a complex modal decomposition
technique. The frequency dependent coupled equations of
bridge motion with aeroelastic self-excited terms are
described first in terms of structural modal coordinates.
These are then approximated by frequency independent
state-space equations without augmented aerodynamic
states, which are subsequently decomposed into a set of
uncoupled equations for buffeting analysis. The complex
modal analysis in the reduced structural modal space offers
better physical insight into the aerodynamic coupling
among structural modes due to the self-excited forces.
This scheme is computationally more efficient than that
based on the equations of the bridge motion in physical
coordinates. The frequency dependent buffeting and self-
excited force characteristics, and their spanwise correlation
are considered in both frequency and time domain analyses.
The role of complex modal frequencies, damping ratios,
mode shapes, and the significance of natural modes on the
multimode coupled response is discussed in detail, which

helps to glean additional insight and to improve our under-
standing of the underlying physics of wind—structure inter-
actions. Examples of long span suspension bridges are used
to illustrate the proposed scheme and to demonstrate its
effectiveness.

2. Theoretical background

This section describes the equations of motion and their
state-space representation. Utilizing this formulation, both
time and frequency domain analyses are outlined.

2.1. Equations of motion

The equations of motion of an N degree-of-freedom
bridge in terms of first M (M < N) structural modal coordi-
nates q are expressed as

Mg + Cq + Kq = Q. + Qy ey

where M = diag[m;], C = diag[2{;0,;m;] and K=
diag[2§,;wgm;] are M XM generalized mass, damping
and stiffness matrices, respectively; mj, fsj, and w,; are the
generalized mass, damping coefficient and circular
frequency for jth structural mode; Q.. and Q, are M X 1
generalized self-excited and buffeting force vectors,
respectively.

The generalized self-excited and buffeting forces can be
expressed as

1 b .

Qse = EPUZ(Asq + EAdq) (2)
1 u w

Q, = EPUZ(AbuE + Abwﬁ) 3)

where p is the air density; U is the mean wind velocity; A
and A4 are the aerodynamic stiffness and damping matrices,
respectively, which are functions of flutter derivatives and
structural mode shapes [2,4,12]; A, and A,,, are the buffet-
ing force matrices, which are functions of admittance and
joint acceptance functions and structural mode shapes
[3,13]; and u and w are the fluctuating wind vectors at
element nodes for the longitudinal u and vertical w compo-
nents, respectively. Accordingly, the equations of structural
motion are expressed in the state-space format as

Y, =AY, + ByQ, 4

0 I
-M 'K, -M'c, |

where

q
Yoz{,}; Ay
q
0
B0= .
M

1
C=C- EPUbAd(k);

1
K, =K - 2pUAdb)  (©)
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k= w% is the reduced frequency; B = 2b is the bridge deck
width o is circular frequency of vibration. It should be
noted that the damping and stiffness matrices of the bridge
including aeroelastic effects, i.e. C;, K;, are frequency
dependent and no longer diagonal due to the presence of
the coupled aerodynamic damping and stiffness terms.

At a given wind velocity, the eigenvalue A; and
eigenvector @; with their complex conjugates A;y
and CI)]-+M (j=1,2,...,M) of the bridge with aeroelastic
effects can be evaluated by solving the complex eigenvalue
problem

b, @,
A =4 (7
AP, AP,

where ; and ¢§; are the frequency and damping ratio in jth
complex mode; and i = +/—1. Since the system matrix A, is
frequency dependent, an iterative calculation of each eigen-
value is required until the assumed frequency used to
evaluate the self-excited forces agrees with the imaginary
part of the eigenvalue.

The free vibration associated with the jth complex mode
and its complex conjugate counterpart, i.e. (j + M)th mode
in terms of physical coordinates of the bridge, Z = Wq, is in
the form:

= Aj “PF N
=2\A[|[WD;e” 5" cos(wp,t + ¢; + B;) )

where W is N X M structural mode shape matrix; ¢; and fB;
are the phase angles associated with the vector W®; and the
scalar A;, respectively; and A; depends on the initial con-
ditions. It is important to note that the complex modes retain
phase lags between different components of motion,
whereas the real-valued natural modes by definition have
zero phase lag.

The transfer function matrix between the modal response
q and modal buffeting force Q,, is given as

Hy(0) = (- ™M + i0C (k) + K, (k)" (10)

Conventional coupled buffeting analysis is based on the
evaluation of Hy(w), which requires matrix inversion at
each discrete frequency which places a high demand on
computational effort. Such a time consuming procedure
can be eliminated by using a frequency independent
state-space equations of an integrated system of the
bridge and aerodynamics. This can be derived by utiliz-
ing rational function approximations of the self-excited
forces and introducing augmented aerodynamic states
[3,5-9].

The self-excited forces corresponding to the steady-state
motion q(f) = ¢ e'“ can be approximated in terms of a

rational function:

1 .
Q.(1) = EpU2(AS + (ik)Ag)q e

1 2 . N < (ik)AI+3 ~ it
— A+ A, + A; + E —_— @
2PU< 1+ @A, + (k)7As 2 ik +d, qe

(1)

where A, Ay, A3, Ajy,z and d; (d;=0; [=1,2,...,m) are
frequency independent matrices and a parameter which
can be determined by curve-fitting the experimentally
obtained data of A (k) and A4(k) defined at a set of
discretized reduced velocities k; (j=1,2,...) using a
least-square approach.

After some manipulations, the equations of motion can be
expressed as the following frequency independent state-
space equations:

Y1) = AY () + BQ, (1) (12)
where
-0 I 0 0 .
o 1 ; 1 .
-M 'K -M"'C EPUZM*1 EpUzM*1
0 A3+m 0 - EdmI
L b
S 0 -
q M
Y= |; B=]|0 (13)
| Qe [ 0

where M =M — (1/2)ph*A5, C = C — (1/2)pUbA,, K =
K- (1/2)pU2A1, and q.; (I=1,2,...,m) are augmented
aerodynamic states.

It is noted that if the self-excited forces can be repre-
sented exactly or within an acceptable error by a rational
function of the reduced frequency k (Eq. (11)), Eq. (12)
completely represents the equations of bridge motion (Eq.
(4)) in a frequency independent state space format. Utilizing
these frequency independent integrated state-space equa-
tions, the flutter analysis can be conducted by solving a
linear eigenvalue problem, thus avoiding the iterative pro-
cedure needed in the flutter analysis based on frequency
dependent state-space equations. This format also facilitates
a time domain simulation of the buffeting response and
enhances the computational efficiency of frequency domain
buffeting analysis by again avoiding the inversion of the
system matrix at each discretized frequency [5].
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In the present study, a further simplified framework for
buffeting response analysis in both time and frequency
domains is presented which is based on the complex
modal decomposition technique. Assuming that there are
no appreciable peaks in the flutter derivatives and the trans-
fer function matrix of the frequency dependent bridge
system (Eq. (10)) around the complex modal frequencies
can be expressed in terms of the flutter derivatives at the
complex modal frequencies, the equations of bridge motion
with frequency dependent self-excited forces can then be
expressed in the following frequency independent format:

Y =AY + BQ, (14)

where

q 0 I
Y= ; Aot = -1 -1 ;
q -M Kef -M Cef

iVl

where K., C.; are the effective (equivalent) stiffness and
damping matrices, which are independent of frequency. For
a given wind velocity these can be uniquely determined
based on the complex mode information. It is noteworthy
that the preceding frequency independent system has the
same complex modal properties as the original frequency
dependent system.

The equations of the linear system in Eq. (14) can be used
for the buffeting response analysis instead of using the
frequency dependent state-space formulations (Eq. (4)), or
using the frequency independent state-space formulations
with augmented aerodynamic states (Eq. (12)). By intro-
ducing the following transformation

Y(@® = I'R() (16)

5)

Eq. (14) can be expressed in terms of 2M uncoupled
equations [14]:

R() = AR(®®) + T 'BQ, (1) a7
where

@ .
r=[r, r, FZM]:I:A(I)]’ "
=D, P, .. P,,]
I 'A,T = A = diag[A;] (19)

2.2. Frequency domain analysis

Egs. (16) and (17) can be expressed in the frequency
domain through a Fourier transform

q() = Hy(0)Qp(w) (20)

in which the transfer matrix Hg(w) is

Hy(w) = @Gl — A)"'T'B
Z ®,0 T/m <1> 'O Im;
o iw — )xx
M . .
= ZH]-O(w)((icu)E’ + F) (21)
j=1
where
1 Vleft
r'= : O =V gt (22)
Vright

E=00/ +®/0/"; F=—(@0/\+®0,))

(23)

1
mj((uj2 -+ i2;w;w)

Hjp(w) = (24
and superscripts * and T denote complex conjugate opera-
tion and matrix transpose operation, respectively. It can be
easily illustrated that the rows jand (j + M) of T’ land @7
are complex conjugate pairs.

The contribution of jth and (j + M)th complex modes to
q(w) is given by

q(0) = Hy(o)((i0)E + F)Qy(w) (25)

For the cases in which the complex modes can be approxi-
mated by real-valued structural natural modes, for example,
the aerodynamic coupling among structural modes is negli-
gible and the aeroelastic effect can be treated in terms of
aerodynamic damping, we have

—i

7
O;=0 (j#1)
H,(w) = diag[Hj(w)] (27)

In general, the response quantity of interest, v, is a linear
combination of the components of the displacement vector
7 =Wq(r) as

=B"Z=B"Wq()=D"q0) (28)

where B is a N X 1 constant vector; and D = WB is known
as the effective modal participation factor.
The power spectral density (PSD) of the responses q and
v are given by
Sq(®) = Hy(@)Sqp(@Hy(@)';  S,(@) = D'S(w)D
(29)

The mean square responses are estimated by integrating the
PSDs over the frequency range.
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2.3. Time domain analysis

The modal response in time domain can be given as

M

q() = D (®;R,(1) + ®;R; (1)) (30)

J=1

where R;(?) is the response in the jth complex mode
1 ! (t—T) *_ 7 .7
B = - [ 07 Qune 7 dr= 0] (-A¥ ) + ¥ ()
i

€29

where yj(t) and yj(t) are given using the well-known
Duhamel integrals:

y/(t) = J Qu(Dexp[—&w;(t — T)lsin wp(t — Ddr

m;Wp;
(32)

vy = — J Qp(Dexpl[—&w;(t — T]cos wp(t — TdT

- &y (1) (33)

Accordingly, the buffeting response of interest v(¢) is given
by Eq. (28).

It is noted that an element of yj(t), i.e. y,j(t), is the
displacement of a single degree-of-freedom system with
mass m;, circular frequency ; and damping ratio §
subjected to the excitation Qy;(7), where Qy,(?) is the gener-
alized buffeting force in the /th structural mode. Recalling
the cases in which the complex modes can be approximated
by the real-valued structural modes, we have yﬁ(t) =0(#
J) which helps to simplify these calculations in real-valued
structural mode cases.

Based on the finite element analysis framework, the
modal buffeting forces are calculated based on the forces
acting on each element. The time histories of unsteady
buffeting forces associated with given input wind fluctua-
tions cannot be calculated by directly using the formulations
defined in the frequency domain which involve frequency
dependent admittance and joint acceptance functions [4]
unless the unsteady characteristics are neglected with the
customary practice of invoking the quasi-steady theory
[9]. For arbitrary wind fluctuations, the associated buffeting
forces must be calculated using the convolution integral
with the aerodynamic impulse response function or using
an equivalent state-space model [4,10].

For example, the lift component of the buffeting forces on
an element excited by the w component of the wind excita-
tion is given as

1 t T
Lo = =501 [ |7 = mliytm = )

W(7'1)

dr, dr, (34)

where [ is the element length; J;,, is the inverse Fourier
transform of joint acceptance function J,,,; I, is the
impulse response function, and is related to the admittance
function y;,, as

Ip,, = 2b(Cy + Cp)xpw (35)

C,, Cp, are the mean static force coefficients; C}, = dC;/da
and the over bar represents the inverse Fourier transform.
In the frequency domain, L, is given as

1 -
Ly () = — szz(zb)l(CL T Co)xewl Wl(]) (36)

The aerodynamic admittance and acceptance functions can
be expressed in terms of rational function approximations
[4,10]

2 (ik)AX

) =AY+ 3 S @7
j= J

Tk = A + Z (ih)A; (38)

J
k+dj

where Af, AY, ey and d (j = 1,2,...,mY), and A, A7, and d/
(G=1, 2 ,m’) are the frequency independent coefﬁc1ents
determined by curve-fitting the experimental data of aero-
dynamic admittance and joint acceptance functions. Other
forms of rational functions can also be used to describe the
frequency dependent functions of aerodynamic forces.
Accordingly, Ly, (f) given in Eq. (34) is replaced by

m’ m’ JU
Ly, (1) = (A] + Z Al DLpuo() = 3> == /(0 (39)

j=1

J
. U
¢ ==L =d]0) + AlniLoo® (= 1.2m’
(40)
and
Lyyo(t) = — EPU @2b)(C}, + CD)l((AX + Z )
Jj=1
w(r) & d'U
X —= — : \
i le &) (41)
 x 4u x W . .
(42)
where ¢/ (j = 1,2,...,m") and ¢¥ (j = 1,2, ..., m") are the

augmented variables. Similar expressions for the other
buffeting force components can be presented which have
been omitted here for the sake of brevity.

A multi-variate auto-regressive (AR) scheme can be
utilized for generating the input wind fluctuations with
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prescribed spectral description for the time domain
analysis [4].

3. Illustrative examples

This section presents illustrative examples to discuss the
complex modal properties and the significance of structural
modes on the multimode coupled response, and to demon-
strate the effectiveness of the analysis scheme introduced
here.

3.1. Bridge dynamics and aerodynamic force parameters

A suspension bridge with a main span of nearly 2000 m
was used as an example. For simplicity and without loss of
generality, only the aerodynamic forces acting on the bridge
deck were considered. The von Karman spectra were used to
describe u and w components of wind fluctuations. The
turbulence intensities and integral length scales were
assumed to be 10 and 5%, and 80 and 40 m, for u and w
components, respectively. The admittance functions used
were based on Davenport’s formula for drag with a
decay factor of 8, and the Sears function for lift and
pitching moment. Two different joint acceptance func-
tions were used for the buffeting force components
associated with u and w components, respectively. The
drag component of the self-excited forces was evaluated
based on the quasi-steady theory. The lift and pitching
moment components were calculated based on the flutter
derivatives derived from the Theodorsen function. The
first 15 natural modes with frequencies ranging from 0.03
to 0.2 Hz were considered for describing the dynamic
behavior of the bridge.

3.2. Complex mode properties

Figs. 1 and 2 show the changes in the complex modal
frequencies and damping ratios with the increasing mean
wind velocity. For comparison, results of mode-by-mode
analysis without aerodynamic coupling are also presented.
It is noted that in the high frequency range aerodynamic

15
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Fig. 1. Complex modal frequency vs. wind velocity (— w/ coupling; — — w/o

coupling, mode-by-mode).
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Fig. 2. Complex modal damping vs. wind velocity (— w/ coupling; — — w/o
coupling, mode-by-mode).

coupling significantly influences the modal damping. The
critical flutter velocity is 68.3 m/s. The mode shapes of
some real-valued natural modes (at zero mean velocity)
and complex modes at 65 m/s regarding the bridge deck
motions in vertical, lateral and torsional directions are
presented in Fig. 3. In the case of complex modes, the
amplitude ratios and phase lags for the lateral, vertical and
torsional motions are presented.

The structural mode 1 represents the first lateral
symmetric mode with a slight coupling in the torsional
direction. In contrast, the complex mode 1 comprises of a
predominant lateral component coupled with vertical and
torsional components. Since the coupled aerodynamic
forces between lateral and vertical, and between lateral
and torsional directions are generally negligible, therefore,
these are not included here. Obviously, the presence of
vertical and torsional components in the complex mode 1,
therefore, results from the aerodynamic coupling between
the vertical and torsional directions. Although these coupled
components in complex mode 1 are relatively small
compared to the modes dominated by the vertical and
torsional motions, these may have significant contribution
to the overall vertical and torsional buffeting responses,
because the response in this complex mode is generally
much larger than the higher modes due to its low frequency
and associated higher level of wind loading. This coupled
response will be clearly illustrated in the response PSD to be
discussed later in this paper.

In complex modes 9 and 10, the coupling between the
vertical and torsional motions was significant, and the
vertical motion was dominated by the first vertical
symmetric structural mode (structural mode 2). The second
lateral symmetric mode (structural mode 9) also makes a
significant contribution to these two complex modes due to
its closely spaced frequency at the velocity range of about
65 m/s. Apart from this velocity range, the coupling of
structural mode 9 with others is marginal. As shown in
Fig. 4, at a wind velocity of 75 m/s, the structural mode 9
dominates the complex mode 10, and the complex mode 9
becomes the vertical and torsional coupled mode. The
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Complex mode 1 (U=65 m/s)

1.5 1.5
—O— Vertical h(x) —O— Vertical h(x)
— Lateral p(x) 300 —_ Lateral p(x)
— - Torsional bo(x) s - — . Torsional bo(x)
) o 1 54
g E g
= = ;
-05 —O- Vertical h(x) 05 o
-1 —— Lateral p(x)
— - Torsional bo(x)
-1.5 D
0 1000 2000 3000 4000 2000 4000 0 1000 2000 3000 4000
Bridge axis (m) Bridge axis (m) Bridge axis (m)
Structural mode 9 Complex mode 9 (U=65 m/s)
1.5 2
oo B
8 g | &H d-0 &R
2 E o 4 o 9
: AP 0
< < o / N o
05/ 08, V8o
-1 P/ \(\\> / \ ¢/' N
1.5 0 4 2
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Bridge axis (m) Bridge axis (m) Bridge axis (m)
Structural mode 10 Complex mode 10 (U=65 m/s)
15 1.5
[} o 1 é(
g g g~
g e & [ R &
< <05 Q AP, O/ P.Q
9|y S
-1 j/ \ v/ \b
U
-15 0
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Bridge axis (m) Bridge axis (m) Bridge axis (m)
Fig. 3. Mode shapes of the structural modes at U = 0 and the complex modes at U = 65 m/s (—O— vertical; — lateral; — - — torsional).

modal damping of this coupled complex mode becomes
negative and leads to the system becoming unstable beyond
the critical flutter velocity. It has been illustrated earlier that
the fundamental vertical and torsional modes are the most
important modes for coupled flutter of long span suspension
bridges [3].

3.3. Frequency domain analysis

In this study, two different calculations were performed
for comparison, i.e. (a) fully coupled case in which all
uncoupled and coupled aeroelastic terms were included;
(b) uncoupled case in which all coupled aeroelastic terms
were neglected, i.e. the damping and frequency were eval-
uated using mode-by-mode approach and the mode shapes
were those of real-valued natural structural modes. The
frequencies and damping ratios discussed earlier have

been shown in Figs. 1 and 2. Fig. 5 shows the PSD of the
vertical, lateral and torsional displacements at the quarter
and center points of the main span. Fig. 6 shows the root-
mean-square (RMS) values of the buffeting response along
the bridge axis. From the peak of response PSD at the
frequency of the complex mode 1, it is noteworthy that
the coupled vertical and torsional components in the
complex mode 1 have a significant contribution to the
total vertical and torsional responses. As due to its low
frequency, an accurate evaluation of this coupling effect
requires a reliable estimate of the self-excited forces
at very high reduced velocity range. This indicates
that the wind velocity range of interest for the measure-
ment of the flutter derivatives should not only satisfy
the need of a coupled flutter analysis but it also should
provide data pertinent to a coupled buffeting analysis. In
this example, at a wind velocity of U= 65m/s, the
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Complex mode 9 (U=75 m/s)
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Fig. 6. RMS response (U = 65 m/s, — w/ coupling; — — w/o coupling;
—O—- w/ coupling by conventional analysis).

reduced velocity associated with the first complex mode
is U/(fB) = 47.4.

The contribution of the complex mode 9 with coupled
vertical and torsional motions to the vertical and buffeting
response will significantly increase with the increase in the
wind velocity near the critical flutter velocity due to the
decrease in modal damping. This mode will lead the system
to become unstable due to its negative damping beyond the
critical flutter velocity. While the lateral response is domi-
nated by the first lateral mode and is little influenced by the
aerodynamic coupling, significant differences can be iden-
tified in the vertical and torsional responses when neglecting
the aerodynamic coupling effects.

The buffeting response based on the transfer function

matrix of the frequency dependent bridge system is also
presented in Fig. 6 for comparison. Excellent agreement
demonstrates the accuracy of the proposed framework
based on complex modal decomposition technique.

3.4. Time domain analysis

A time domain analysis was also conducted by simulating
time histories of wind fluctuations, unsteady buffeting
forces and the corresponding bridge responses. Ten realiza-
tions with a total length of 1200 s at a time interval of 0.1 s
for each realization were simulated at each mean wind velo-
city. For each realization the RMS response components
were calculated and their mean p and the standard devia-
tions o were derived based on the 10 simulated realizations.
Fig. 7 shows a set of realizations of the wind fluctuations
and buffeting responses at the mid-point of the main span. A
comparison of the RMS response with the frequency
domain analysis is shown in Fig. 8. For the time domain
results, the RMS response is shown in terms of the mean and
the 99% confidence intervals [ — 2.58¢0, u + 2.580]. An
excellent agreement is noted between the time and
frequency domain results for the vertical and torsional
responses with the exception of some discrepancy in the
lateral response. This discrepancy in the lateral response is
attributed in part to the accuracy of the PSD representation
of the simulated wind fluctuations in the u direction at a very
low frequency range.

3.5. Parameter studies

In order to advance our understanding of the aerodynamic
coupling among structural modes, a parameter study was
conducted by neglecting coupling terms among some of
the natural modes while keeping the total number of
modes to 15 as considered in the earlier example. Two
cases were considered here, first, the aerodynamic coupling
terms among only the structural modes 1, 2 and 10, which
are the fundamental structural modes in lateral, vertical and
torsional directions, respectively, were considered. The
second case further included modes 8 and 9, which are the
second symmetric vertical mode and the second symmetric
lateral mode. The RMS response for these two cases are
compared to the fully coupled case and shown in Fig. 9.
Results indicate that the structural modes 1, 2, 8, 9 and 10
are most important for describing the coupled buffeting
response in strong winds.

To investigate the influence of self-excited forces on the
buffeting response, analysis was also carried out by using
the flutter derivatives of a twin-box section. Some of the
flutter derivatives are shown in Fig. 10 and compared to
those derived based on the Theodorsen function. The critical
flutter velocity for this example bridge is 73.2 m/s. The PSD
and RMS of the buffeting response are presented in Figs. 11
and 12. In this case, the contribution of the first complex
mode to the vertical and torsional responses is less impor-
tant due to the fact that the coupled vertical and torsional
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Fig. 7. Realizations of wind fluctuations and buffeting response (mid-point
of the main span, U = 65 m/s).

motions of this complex mode are comparatively small.
Without the aerodynamic coupling, the buffeting response
components in vertical and torsional directions are under-
estimated similar to the previous example. The lateral
response of the main span is mainly contributed by the
first lateral symmetric mode and is less influenced by aero-
dynamic coupling, but the responses at the side spans are
apparently influenced by the aerodynamic coupling effects.
Excellent agreement with the result based on the conven-
tional transfer function matrix of the frequency dependent
bridge system illustrated the accuracy of the proposed
framework.
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Fig. 8. Comparison of RMS response (U = 65 m/s, — frequency domain;
—O- mean RMS response from time domain; — - w + 2.580 and
©n — 2.580).

4. Concluding remarks

The equations of bridge motion with frequency depen-
dent aeroelastic terms are expressed in terms of simplified
frequency independent state-space equations, without
augmented aerodynamic states, which retain the original
complex modal properties. The simplification is based on
the assumptions that there are no appreciable peaks in the
flutter derivatives, and the transfer function matrix of the
frequency dependent bridge system around the complex
modal frequencies can be expressed in terms of the flutter
derivatives at the complex modal frequencies. These
assumptions are generally satisfied for most bridges. This
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Fig. 9. RMS response (U = 65 m/s, — w/ coupling; — — w/ coupling among
mode 1, 2, 8—10; — - — w/ coupling among 1, 2, 10).

format enhances computational efficiency in frequency
domain analysis by avoiding inversion of the system matrix
at each discretized frequency when evaluating the transfer
function matrix. This framework also facilitates simulation
of the buffeting response in the time domain while still
including the frequency dependent characteristics of buffet-
ing and self-excited forces. The complex modal properties
of long span bridges due to aeroelastic effects were
discussed in detail. This not only provided an enhanced
physical insight but also improved our understanding of
the aeroelastic behavior of long span bridges under strong
winds.

The lateral motion is often coupled with torsional motion
due to the structural coupling experienced by most long
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Fig. 10. Flutter derivatives (— given by Theodorsen function; — — for

twin-box section).

span suspension bridges. The torsional motion involved in
the fundamental lateral natural mode may result in a certain
level of coupled vertical motion due to aerodynamic
coupling between the vertical and torsional directions. The
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Fig. 11. Power spectra of the buffeting response at mid-point of the main
span (twin-box section, U = 65 m/s, — w/ coupling; — — w/o coupling).
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structural and aerodynamic coupling of motions may make a
significant contribution to the total buffeting response in the
vertical and torsional directions because of the larger buffet-
ing response of this complex mode which is attributed to its
lower frequency and higher wind loading. An accurate
evaluation of these coupled motions requires a reliable esti-
mate of the self-excited forces at comparatively higher
reduced frequency range than that customarily needed for
a coupled multimode flutter analysis.

Aerodynamic coupling results in significantly larger
buffeting response in the vertical and torsional directions.
It is attributed to the changes in the modal frequencies, and
more critically, in the damping ratios and modal shapes. A
parameter study indicated that only a few important modes

dominate the bridge aeroelastic behavior. A discussion on
the significance of the structural natural modes in character-
izing the flutter and buffeting responses of long span bridges
not only improves our understanding of the physics of
wind—bridge interactions, but also provide guidance for
the full aeroelastic modeling of bridges in wind tunnel
tests, in which the important natural modes must be very
accurately modeled.

The time domain simulations that incorporate the simula-
tion of frequency dependent unsteady buffeting and self-
excited forces provide a more accurate prediction of
response in comparison with customary techniques relying
on the quasi-steady formulation. The aerodynamic admit-
tance function and spatial correlation of aerodynamic forces
can be accurately considered in the proposed scheme. The
time domain analysis presented here also facilitates the
consideration of nonlinear buffeting forces and response
under non-stationary wind excitations.
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