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ABSTRACT: In current design practice, the dynamic wind loads are described in terms of the equivalent static
wind loads based on the gust response factor. This approach results in a distribution of the equivalent static
loading similar to the mean static wind load distribution, which may not always be a physically meaningful and
realistic load description. In this paper, the equivalent static load representation for multimode buffeting response
of bridges is formulated in terms of either a weighted combination of modal inertial load components, or the
background and resonant load components. The focus of the present study is on the determination of weighting
factors of equivalent static load components in which the correlation among modal response components due
to structural and aerodynamic coupling effects is taken into consideration. It is noteworthy that the equivalent
static load distributions vary for each response component. The proposed approach particularly helps in extracting
design loads from full aeroelastic model test results by expressing the dynamic loads in terms of the equivalent
static loads. This facilitates in drawing useful design input from full aeroelastic tests, which have been employed
mostly for monitoring the response of bridge models at selected locations. A simplified formulation is also
presented in a closed form when wind loading information is available and coupling in modal response com-
ponents is negligible, which can be very attractive for the preliminary design application. Examples are presented
to illustrate modeling of the equivalent static loading and to demonstrate its effectiveness in bridge design.
INTRODUCTION

In current wind resistant design practice, the dynamic wind
loads are generally represented in terms of equivalent static
wind loads expressed as the mean static wind loads multiplied
by the gust response factor (GRF). The gust response factor,
or gust loading factor, was originally introduced by Davenport
(1967) and is defined as the ratio of the maximum expected
wind load or response to its corresponding mean value. The
GRFs are generally different for different response compo-
nents and may vary in a wide range, depending on the struc-
ture system, the wind load characteristics, and the influence
functions related to the response components. This GRF ap-
proach does not provide useful information in cases with zero
mean load or response.

In contrast to the GRF approach, an equivalent static load
representation in terms of background and resonant load dis-
tributions leads to a physically meaningful and realistic load
description (Davenport 1985; Holmes 1992; Kasperski 1992;
Holmes and Kasperski 1996; Irwin 1998; Zhou et al. 2000).
The background component of the wind load can be treated
as a quasi-static load, and its static load distribution for a spe-
cific dynamic response depends on the influence function and
the distribution of the external wind load. It can be determined
based on the load-response-correlation (LRC) approach (Kas-
perski 1992; Kasperski and Niemann 1992). The resonant load
component follows the distribution of the inertial load and can
be expressed in terms of modal inertial loads (Davenport 1985;
Irwin 1998; Holmes 1999; King 1999).

For design use, the equivalent static load can be expressed
in a separated form in terms of the background component
and the resonant components of structural modes. The total
response is then calculated by combining the background and
resonant responses utilizing the square root of the sum of
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squares (SRSS) combination approach or the complete qua-
dratic combination (CQC) approach. The application of this
approach in combining the section model tests for the equiv-
alent wind loads on bridges has been presented by Davenport
and King (1984). Alternatively, the equivalent static load can
be provided as a linear combination of its background and
resonant components using a set of load weighting factors
(Irwin 1998; Holmes 1999; King 1999). The resulting struc-
tural response can be estimated by means of a static analysis.
Such a format facilitates the combination of wind load with
other loads and is more appropriate for current design proce-
dures. Instead of using arbitrarily selected load weighting fac-
tors (Irwin 1998), a numerical iteration scheme for calculating
these weighting factors has been used in King (1999). A meth-
odology based on the LRC approach has been given by
Holmes (1999) for the resonant equivalent static load associ-
ated with multimode response of bridges without modal re-
sponse correlations. Representing dynamic load in terms of
equivalent static load is particularly suitable for providing the
design loads based on wind tunnel tests. Most wind loading
information has been derived from section model tests instead
of using full bridge aeroelastic model tests, which are tradi-
tionally used as a final confirmation of the performance of
important bridges. Using the equivalent static load approach,
full bridge aeroelastic model tests can be used to gain useful
insight into the description of the wind loads (King 1999). This
equivalent static load approach can also be used to aid the
wind tunnel tests in predicting the response components not
directly measured during the test.

Modal response coupling due to closely spaced frequencies
and coupled self-excited wind loads may result in significant
modal response correlation. For long span suspension bridges,
significant aerodynamic coupling between vertical bending
and torsional modes exists at higher wind velocities. Neglect-
ing the contribution of these correlations will result in predic-
tions that underestimate the responses (Chen et al. 2000a).

In this paper, the equivalent static load distribution for the
multimode buffeting response of bridges is formulated in terms
of either a weighted combination of modal inertial load com-
ponents or the background and resonant load components. The
focus of the present study is on the determination of load
weighting factors of equivalent static load components, in
which the correlation among modal response components due
to structural and aerodynamic coupling effects is taken into
consideration. The background load component has been ex-
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pressed based on inertial loads and based on external wind
load distribution. A simplified formulation is presented in a
closed form when wind loading information is available and
coupling in modal response components is negligible. Exam-
ples are presented to illustrate the modeling of the equivalent
static loading and to demonstrate its effectiveness in bridge
design.

METHODOLOGY

The dynamic response of a bridge to turbulent wind exci-
tation can be expressed in terms of the matrix equations below:

¨ ˙MY 1 CY 1 KY = F (1)

where M, C, and K = mass, damping, and stiffness matrices,
respectively; Y = dynamic displacement vector; and F = ex-
ternal stochastic wind load vector, including turbulence in-
duced buffeting and motion induced self-excited components.

Using the modal coordinates, the dynamic displacement and
elastic force vectors can be represented as

Y = F q (2)j jO
j

2KY = K F q = M F v q = P q (3)j j j j j ej0 jO O O
j j j

where vj = 2p fj, Fj, and qj = frequency, mode shape, and
modal coordinate of the jth mode; = is the unit2P MF vej0 j j

jth modal inertial load; and KFj = is the orthogonality2v MFj j

relationship.
It can be seen from (3) that the dynamic response can be

regarded as the quasi-static response under the inertial load
excitation. Thus, once the dynamic displacement response is
available, any arbitrary dynamic response of interest z(x0, t)
(e.g., bending moment, shear force, and other member forces)
can be calculated through a subsequent static analysis and ex-
pressed using its influence function vector A as

z(x , t) = A P q = r q = z (4)0 ej0 j j j jO O O
j j j

where rj = is the response under ; and zj = rjqj is theAP Pej0 ej0

jth mode component of response z(x0, t).
The absolute peak value of z(x0, t) is then given by the CQC

approach as
1/2

z = gs = g s s r (5)max z z z jkSOO Dj k
j k

or by the SRSS approach, as follows, when the modal response
correlations are negligible:

1/2

2z = gs = g s (6)max z zSO Dj
j

where

s = r s = AP ; P = P s (7a,b)z j q ej ej ej0 qj j j

2r = r = s /(s s ) (7c)jk kj q q qjk j k

where g = peak factor, generally in the range of 3–4; andsqj

= root-mean-square (RMS) values of qj and jth modalszj

component of z(x0, t), i.e., zj(x0, t); rjk and = correlation2sqjk

coefficient and covariance between jth and kth modal re-
sponses; and Pej = equivalent static load in the jth mode.

The preceding equations indicate that the prediction of other
dynamic response components can be conducted based on the
available displacement using subsequent static analysis under
the equivalent static load, which can be expressed in terms of
modal inertial load in each mode. The response component
associated with each mode needs to be combined with the
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CQC or SRSS approach for the prediction of the total re-
sponse.

Alternatively, (5) can be rewritten as follows based on the
LRC approach:

z = gs = g s r s s = gA P W (8)max z z jk z z ej jO SO DY Oj k
j k j

where Wj = weighting factor of Pej, given by

W = r s /s = r r s /s (9)j jk z z jk k q zO Ok k
k k

Accordingly, the equivalent static peak load distribution for
z(x0, t) is given in terms of the following linear combination
of Pej as

F = g P W (10)e ej jO
j

Consider the three-dimensional multimode coupled buffet-
ing response. The dynamic displacement in the vertical, lateral,
and torsional directions—h(x, t), p(x, t), and a(x, t), respec-
tively—are expressed as

h(x, t) = h (x)q (t); p(x, t) = p (x)q (t) (11a,b)j j j jO O
j j

a(x, t) = a (x)q (t) (11c)j jO
j

where hj(x), pj(x), and aj(x) = jth mode shapes in the vertical,
lateral, and torsional directions, respectively; and x = spanwise
position.

The lift, drag, and pitching moment components of the
equivalent static modal load in the jth mode are

2 2L (x) = m(x)h (x)v s ; D (x) = m(x)p (x)v s (12a,b)ej j j q ej j j qj j

2M (x) = I(x)a (x)v s (12c)ej j j qj

where m(x) and I(x) = mass and rotational inertia per unit
length, respectively.

The RMS value of jth modal response of z(x0, t) can be
calculated through a static analysis and expressed as

l

s = (b (x)L (x) 1 b (x)D (x) 1 b (x)M (x)) dx = r sz L ej D ej M ej j qEj j

0

(13)

where bL(x), bD(x) and bM(x) = influence functions; and l =
span length.

The total peak response zmax(x0, t) can also be directly cal-
culated through a static analysis under the following equiva-
lent static load distribution:

L (x) = g L (x)W ; D (x) = g D (x)W (14a,b)e ej j e ej jO O
j j

M (x) = g M (x)W (14c)e ej jO
j

It can be illustrated that the weighting factor Wj is the cor-
relation coefficient between jth modal inertial load component
Pej0 qj(t) or its effect zj(t) and response z(x0, t). The covariance
of zj and z is

2s = s = r r s s r = s s r (15)zz z j k q q jk z z jkO O Oj jk j k j k
k k k

and the correlation coefficient is given by

2r = s /(s s ) = r s /s = W (16)j zz z z jk z z jOj j k
k

Assuming z and zj are jointly Gaussian with zero mean, the
joint probability density function is expressed as



1
f (z, z ) =j 22ps s 1 2 rÏz z jj

22 zz z1 z j j
?exp 2 2 2r 1jF S DG2 2 22(1 2 r ) s s s sj z z z zj j

(17)

The conditional distribution of zj when z = gsz is given as

f (z = gs , z ) 1z j
f (z uz = gs ) = =j z 2f (gs ) 2p 1 2 r sz z Ï Ï j zj

2(z 2 gr s )j j zj

?exp 2S D2 22(1 2 r )sj zj
(18)

where

21 g
f (gs ) = exp 2 (19)z z S D22psÏ z

It is clear that zj = = gAPejWj is the most probablegr sj zj

value of zj when z = gsz. Therefore, the equivalent load
gPejWj provides the most probable peak load distribution of
the jth modal inertial load for peak response z = gsz. The
weighting factors, and hence the equivalent static load distri-
bution, depend on the influence function of the specific re-
sponse. Therefore, the equivalent static load distributions are
unique for each response consisting of multimode contribu-
tions. It is also worth noting that only the relative value of the
influence function is needed for determining these weighting
factors. It is emphasized that, when the response consists of
only one mode, the equivalent static load will not depend on
the influence function (Holmes 1999). It is same for all re-
sponse components.

The modal response components and their correlation can
be directly quantified through a full aeroelastic model test
based on the experimental records of the dynamic displace-
ment, acceleration, bending moment, or other member forces
at different locations of the bridge model. When the load in-
formation, such as the mean static wind load coefficients, flut-
ter derivatives, admittance function, and the spanwise corre-
lations, are available from section model tests or taut strip
model tests, analytical approaches can be utilized for the cal-
culation of dynamic response and associated equivalent static
wind load distribution. For long span bridges, multimode cou-
pled analytical approaches can be utilized for the accurate es-
timate of response including structural and aerodynamic cou-
pling effects (e.g., Katsuchi 1999; Chen et al. 2000a,b).

It is noted that separating the response and corresponding
wind load into background and resonant components is not a
necessary step for the evaluation of the equivalent static load
distribution. However, it is computationally more efficient to
calculate the background response by quasi-static analysis di-
rectly based on the external wind load distribution rather than
by the modal synthesis approach, in which a relatively larger
number of modes are required than that for the resonant re-
sponse analysis. By assuming that the self-excited forces in-
duced by the background response are negligible, the back-
ground response, the absolute peak value, and the
corresponding equivalent static load distribution are given
(Kasperski 1992) by

z (x , t) = AF (20)b 0 b

Tz = gs = gAR A /s (21)bmax z b zb b

TP = R A /s (22)eb b zb

where Fb = background component of F. It is noted that Peb

can be further expressed in terms of the contributions of the
loading modes (Holmes 1992; Chen and Kareem 2000).
The resonant response and modal inertial loads can be given
using modal analysis, as mentioned earlier. The total absolute
peak value of response is then given by

2 2z = gs = g s 1 s = g s W 1 s WÏmax z z z z b z jrS O Db r b jr
j

= gA P W 1 P Web b ejr jrS O D
j (23)

where = RMS value of the resonant response zr; ands sz zr jr

Pejr = RMS value of jth modal resonant response and corre-
sponding inertial load; and Wb and Wjr = weighting factors
given by

W = s /s ; W = r s /s (24a,b)b z z jr jk z zOb kr
k

Accordingly, the equivalent static peak load distribution is then
given as

F = g P W 1 P W (25)e eb j ejr jrS O D
j

It can be illustrated that these weighting factors are the cor-
relation coefficients of corresponding loads or effects with re-
sponse z(x0, t).

Using the inertial load distribution corresponding to total
modal response including background and resonant compo-
nents results in a different load distribution for background
response compared to that derived from external loads. The
former follows the inertial load distribution associated with
background response and is more convenient to be applied
when structural response can be directly observed, whereas the
latter [(22)] depends on the distribution of the external wind
load and the influence function, and is more conveniently ap-
plied when wind loading information is available. As men-
tioned earlier, the equivalent static load distribution is not
unique; the two representations given here have more physical
meaning than that based on the GRF approach.

SIMPLIFIED EXPRESSIONS FOR UNCORRELATED
MULTIMODE RESPONSES

Consider the multimode buffeting response of bridges in
which the correlations of modal response components are neg-
ligible. The mean static, self-excited, and buffeting loads per
unit length—i.e., lift (downward), drag (downwind), and
pitching moment (nose-up)—are given (Scanlan 1978a,b,
1994; Katsuchi et al. 1999; Chen et al. 2000a) as

1 12 2L (x) = 2 rU BC ; D (x) = rU BC (26a,b)s L s D2 2

1 2 2L (x) = rU B C (26c)s M2

˙1 h bȧ2 2L (x, t) = rU (2b) kH*(k) 1 kH*(k) 1 k H*(k)ase 1 2 3S2 U U

h ṗ p2 21 k H*(k) 1 kH*(k) 1 k H*(k)4 5 6 Db U b (27)

1 ṗ bȧ2 2D (x, t) = rU (2b) kP*(k) 1 kP*(k) 1 k P*(k)ase 1 2 3S2 U U

˙p h h2 21 k P*(k) 1 kP*(k) 1 k P*(k)4 5 6 Db U b (28)
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˙1 h bȧ2 2 2M (x, t) = rU (2b ) kA*(k) 1 kA*(k) 1 k A*(k)ase 1 2 3S2 U U

h ṗ p2 21 k A*(k) 1 kA*(k) 1 k A*(k)4 5 6 Db U b (29)

1 u(t) w(t)2L (x, t) = 2 rU B 2C x (k) 1 (C9 1 C )x (k)b L L L D LS Dbu bw2 U U
(30)

1 u(t) w(t)2D (x, t) = rU B 2C x (k) 1 (C9 2 C )x (k)b D D D L DS Dbu bw2 U U
(31)

1 u(t) w(t)2 2M (x, t) = rU B 2C x (k) 1 C9 x (k) (32)b M M M MS Dbu bw2 U U

where r = air density; U = mean wind velocity; B = 2b is the
bridge deck width; k = vb/U is the reduced frequency; v =
frequency of motion; CL, CD, and CM = static force coefficients,

= dCL /da, = dCD /da, = dCM /da; , , andC9 C9 C9 H* P* A*L D M j j j

( j = 1, 2, . . . , 6) = flutter derivatives; , , , ,x x x xL L D Dbu bw bu bw

, and = aerodynamic admittance functions; u and wx xM Mbu bw

= longitudinal and vertical wind fluctuations; and subscripts s,
se, and b designate the static, self-excited, and buffeting com-
ponents, respectively.

Neglecting the cross-spectral density between the wind fluc-
tuations in the u and w directions, the background modal re-
sponse is expressed as

`2(0.5rUBl)2 2 2s = ( uJ ( f ) u S ( f ) 1 uJ ( f ) u S ( f )) df (33)q ju u jw wE2 4jb m (2p f )j j 0

where
l l

12uJ ( f ) u = p (x , k)p* (x , k)coh (x , x , f ) dx dxju, jw ju, jw 1 ju, jw 2 u,w 1 2 1 2E E2l 0 0 (34)

p (x, k) = 2C x (k)h (x) 1 2C x (k)p (x) 1 2BC x (k)a (x)ju L L j D D j M M jbu bu bu

(35)

p (x, k) = (C9 1 C )x (k)h (x) 1 (C9 2 C )x (k)p (x)jw L D L j D L D jbw bw

1 BC9 x (k)a (x)M M jbw
(36)

coh (x , x , f ) = S (x , x , f )/S ( f ) (37a)u 1 2 u 1 2 u
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coh (x , x , f ) = S (x , x , f )/S ( f ) (37b)w 1 2 w 1 2 w

where l = bridge length; and an asterisk denotes the complex
conjugate operator.

The resonant modal response can be expressed as follows
by replacing buffeting load as white noise with a constant
spectral density at the effective modal frequency:

2¯p f (0.5rUBl)j2 2 2¯ ¯ ¯ ¯s = ( uJ ( f ) u S ( f ) 1 uJ ( f ) u S ( f )) (38)q ju j u j jw j w j4jr ¯ ¯4m (2p f ) jj j j

where the effective frequency and damping ratio are¯ ¯f jj j

given by
2 2rb v̄j * * * *2 2 H H H P4 6 3 6¯ ¯ ¯ ¯v̄ = v 2 (G (k ) 1 G (k ) 1 bG (k ) 1 G (k )j j h h j h p j h a j p h jj j j j j j j jmj

* * * * *P P A A 2 A4 3 4 6 3¯ ¯ ¯ ¯ ¯1 G (k ) 1 bG (k) 1 bG (k) 1 bG (k) 1 b G (k))p p j p a a h a p a aj j j j j j j j j j

(39)

2j v rbj j * * * *H H H P1 5 2 5¯ ¯ ¯ ¯ ¯j = 2 (G (k ) 1 G (k ) 1 bG (k ) 1 G (k )j h h j h p j h a j p h jj j i j i j i jv̄ 2mj j

* * * * *P P A A 2 A1 2 1 5 2¯ ¯ ¯ ¯ ¯1 G (k ) 1 bG (k ) 1 bG (k ) 1 bG (k ) 1 b G (k ))p p j p a j a h j a p j a a ji j i j i j i j i j

(40)

where = = j j = structural damping ratio in¯ ¯k v̄ b/U 2p f b/U;j j j

the jth mode; and the G terms are defined by the following
integral:

l

*Tp ¯ ¯G (k ) = T*(x, k )r (x)s (x) dx (41)r s j p j j jEj j

0

where = , , (p = 1, 2, . . . , 6); and rj, sj = hj, pj, aj.T* H* P* A*p p p p

The background response can also be directly calculated
based on the external wind load as

`

2 2 2 2s (x ) = (0.5rUBl) ( uJ ( f ) u S ( f ) 1 uJ ( f ) u S ( f )) dfz 0 u u w wEb

0
(42)

where
l l

12uJ ( f ) u = p (x , k)p* (x , k)coh (x , x , f ) dx dxu,w u,w 1 u,w 2 u,w 1 2 1 2E E2l 0 0 (43)

p (x, k) = 2C x (k)b (x) 1 2C x (k)b (x) 1 2BC x (k)b (x)u L L L D D D M M Mbu bu bu

(44)
TABLE 2. Modal Damping Ratio and RMS Buffeting Response of Simply Supported Beam (L = 800 m)

Mode number

Damping

j js 1 j jd

Modal Displacement (m)

Background Resonant

Bending Moment (L/2) (kgf ?m)

Background Resonant

Shear Force (L/4) (kgf )

Background Resonant

1 0.0348 0.0428 0.0681 1.3987e107 2.2252e107 3.8839e104 6.1790e104
2 0.0111 0.0019 0.0016 0 0 0 0
3 0.0067 0.0003 0.0002 0.0959e107 0.0488e107 0.7992e104 0.4061e104
4 0.0052 0.0001 0 0 0 0.7089e104 0.2832e104

SRSS 1.4020e107 (1.3851e107) 2.2258e107 4.0282e104 (3.8112e104) 6.1988e104

Note: ( ) indicates result directly calculated based on external load.

TABLE 1. Modal Damping Ratio and RMS Buffeting Response of Simply Supported Beam (L = 200 m)

Mode number

Damping

j js 1 j jd

Modal Displacement (m)

Background Resonant

Bending Moment (L/2) (kgf ?m)

Background Resonant

Shear Force (L/4) (kgf )

Background Resonant

1 0.0251 0.0238 0.0332 1.2564e106 1.7540e106 1.3955e104 1.9482e104
2 0.0087 0.0008 0.0006 0 0 0 0
3 0.0056 0.0001 0.0001 0.0649e106 0.0266e106 0.2164e104 0.0886e104
4 0.0046 0 0 0 0 0.1668e104 0.0528e104

SRSS 1.2581e106 (1.2344e106) 1.7542e106 1.4220e104 (1.2950e104) 1.9510e104

Note: ( ) indicates result directly calculated based on external load.



FIG. 1. Equivalent Static Load Distributions for Simply Supported Beam (L = 200 m): (a) Background and Resonant Component [Bending Moment
(L/2)]; (b) Total [Bending Moment (L/2)]; (c) Background and Resonant Component [Shear Force (L/2)]; (d) Total [Shear Force (L/2)]

FIG. 2. Equivalent Static Load Distributions for Simply Supported Beam (L = 800 m): (a) Background and Resonant Component [Bending Moment
(L/2)]; (b) Total [Bending Moment (L/2)]; (c) Background and Resonant Component [Shear Force (L/2)]; (d) Total [Shear Force (L/2)]
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FIG. 4. RMS Modal Displacements (U = 60 m/s)

FIG. 3. Damping Ratio versus Wind Velocity (— = with Coupling;
–– = without Coupling; Numbers Indicate Modes)

p (x, k) = (C9 1 C )x (k)b (x) 1 (C9 2 C )x (k)b (x)w L D L L D L D Dbw bw

1 BC9 x (k)b (x)M M Mbw
(45)

The lift component of the background equivalent static
loads is then given by

` l2(0.5rUB)
L (x) = ((2C )x ( f )p*(x , f )coh (x, x , f )S ( f )eb L L u 1 u 1 uE E busz 0 0b

1 (C9 1 C )x ( f )p*(x , f )coh (x, x , f )S ( f )) dx dfL D L w 1 w 1 w 1bw
(46)

with analogous formulations for Deb(x) and Meb(x).
The equivalent static peak loads for z(x0, t) are given by

L (x) = g L (x)W 1 L (x)W (47a)e eb b erj jrS O D
j

D (x) = g D (x)W 1 D (x)W (47b)e eb b erj jrS O D
j

M (x) = g M (x)W 1 M (x)W (47c)e eb b erj jrS O D
j

To simplify the notation, we will consider the buffeting re-
sponse in the along-wind direction and only consider the drag
induced by the longitudinal wind fluctuations, which is nor-
mally dominant. In addition, it is assumed that the coupling
among modal response is negligible.
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FIG. 5. Correlation Coefficients between Mode 10 and Other Modes
(U = 60 m/s)

The RMS modal responses and the corresponding equiva-
lent static modal loads are

1 su2s = rU Bl (2C ) s̄ (48)q ,q D q ,qS D S Djb jr jb jr2 U

1 su2 2D (x) = m(x) rU Bl (2C ) v p (x)s̄ (49)ejb,ejr D j j q ,qS D S D jb jbr2 U

where
`

2 2 2 2 4s̄ = uJ ( f ) u ux ( f ) u S ( f )/s df/(m v ) (50)q ju Du u u j jEjb

0

2 2 2 2 2 4s̄ = p f uJ ( f ) u ux ( f ) u S ( f )/s /(4m v (j 1 j )) (51)q j ju j Du j u j u j j js jdjr

l l
12uJ ( f ) u = p (x )p (x )coh (x , x , f ) dx dx (52)ju j 1 j 2 u 1 2 1 2E E2l 0 0

It is assumed the self-excited forces only change the damp-
ing terms by the aerodynamic damping given by the following
quasi-steady formula:

l2 2rB P* C rB U1 D2j = 2 p (x) dx = (53)jd jE S D S D S D8m 4p m f Bj j0 j0

where mj0 = dx.l 2m /* p (x)j 0 j

The background RMS value and corresponding equivalent
static load distribution for z(x0, t) is

1 su2s (x ) = rU Bl (2C ) s̄ (54)z 0 D zS D S Db b2 U

1 su2D (x) = rU B (2C )eb DS D S D2 U

`

2 2? J (x, f ) ux ( f ) u S ( f )/s df /s̄u0 Du u u zE b

0 (55)

where
`

2 2 2 2s̄ (x ) = uJ ( f ) u ux ( f ) u S ( f )/s df (56)z 0 u Du u uEb

0

l l
12uJ ( f ) u = b (x )b (x )coh (x , x , f ) dx dx (57)u D 1 D 2 u 1 2 1 2E E2l 0 0

l
1

J (x, v) = b (x )coh (x, x , f ) dx (58)u0 D 1 u 1 1El 0

Similar expressions for the vertical motion can be written



FIG. 6. RMS Responses of Displacement (U = 60 m/s; — = with
Coupling; –– = without Coupling)

with 1 CD) replacing 2CD and w replacing u. For the(C9L
torsion case, B2 replaces B, replaces 2CD, I(x) replacesC9M
m(x), and w replaces u.

NUMERICAL EXAMPLES

Example A: Simply Supported Beams

To illustrate the proposed methodology, the vertical buffet-
ing response of simply supported beams with span lengths of
200 and 800 m under vertical wind fluctuation were chosen
as examples. The fundamental frequencies and mass per unit
length were 0.45 and 0.25 Hz, and 16 and 20 tonne/m, re-
spectively. Other parameters were the same for both examples.
The von Karman spectrum with a length scale = 50 m,yLw

intensity sw /U = 5%, and exponential coherence function with
a decay factor 8 were used. The admittance function was cal-
culated using Sears’ function and the aerodynamic damping
was evaluated using quasi-steady theory. Other parameters
were U = 60 m/s, = 1.5, CD = 0.3, B = 20 m and g = 3.5.C9L

The bending moment at the midspan and shear force at the
quarter span were considered for the determination of the
equivalent static load distributions. The first four modes were
considered in the calculation when using the modal synthesis
technique and the modal response correlations were assumed
to be negligible. The modal logarithmic decrement for each
mode was assumed to be 0.02. The background response and
corresponding equivalent static load were also calculated
based on the external wind load distribution. In the evaluation
of the background component, the upper limit of the integrals
was chosen as the first natural frequency.

Tables 1 and 2 summarize the results of the modal damping
ratios, the generalized modal responses, and the modal com-
ponents of the moment and shear force for the 200 and 800
m spans, respectively. The equivalent static wind load distri-
butions are shown in Figs. 1 and 2.

The background load distributions were calculated from
both inertial load and external load. These result in different
distributions, but both gave almost the same response. While
the load distributions based on the inertial load result in a zero
loading at the ends of the beam by the mode shapes, the load
distributions based on the external wind load do not necessar-
ily follow this constraint at these boundary locations. The
background component decreased with the increase in span
length. The ratios between the background and resonant com-
ponents depend on the external wind load and dynamic char-
acteristics of the beam. For very long span bridges the resonant
component is generally dominant, but the background com-
ponent should be carefully taken into account for bridges with
medium and shorter spans. In both examples, the fundamental
modal response is dominant; thus, the equivalent load distri-
butions for moment and shear force have similar distributions.

Example B: Long Span Suspension Bridge

A long span suspension bridge with a main span of approx-
imately 2,000 m was considered as an example to illustrate
the methodology proposed in this paper. In this example, the
buffeting response of displacement to turbulent wind excita-
tion was calculated based on a three-dimensional multimode
coupled buffeting analysis approach conducted in the fre-
quency domain. Fifteen lower natural modes with frequencies
ranging between 0.03 and 0.2 Hz are included in the analysis.
Detailed discussions and descriptions of the analytical ap-
TABLE 3. Weighting Factors for Equivalent Static Modal Loads (with Coupling)

Response Mode 1 Mode 2 Mode 3 Mode 4 Mode 6 Mode 8 Mode 9 Mode 10

V-D (L/2) — 0.892 — — — 0.549 — —
V-BM (L/2) — 0.256 — — — 0.926 — —
V-D (L/4) — 0.441 0.798 — 0.328 0.296 — —
V-BM (L/4) — 0.125 0.713 — 0.299 0.605 — —
L-D (L/2) 0.993 — — — — — 0.122 —
L-BM (L/2) 0.641 — — — — — 0.763 20.179
L-D (L/4) 0.845 — — 0.506 — — 0.179 20.120
L-BM (L/4) 0.302 — — 0.799 — — 0.509 20.128
T-D (L/2) 0.192 — — — — — 20.065 0.931
T-D (L/4) — — — 0.440 — — 20.134 0.876

Note: L, V, and T = lateral, vertical, and torsional; D and BM = displacement and bending moment.
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TABLE 4. Weighting Factors for Equivalent Static Modal Loads (without Coupling)

Response Mode 1 Mode 2 Mode 3 Mode 4 Mode 6 Mode 8 Mode 9 Mode 10

V-D (L/2) — 0.865 — — — 0.484 — —
V-BM (L/2) — 0.205 — — — 0.902 — —
V-D (L/4) — 0.490 0.644 — 0.474 0.280 — —
V-BM (L/4) — 0.116 0.546 — 0.404 0.663 — —
L-D (L/2) 0.991 — — — — — 0.135 —
L-BM (L/2) 0.593 — — — — — 0.881 0.229
L-D (L/4) 0.846 — — 0.499 — — 0.183 —
L-BM (L/4) 0.292 — — 0.771 — — 0.556 0.153
T-D (L/2) 0.434 — — — — — 0.600 0.775
T-D (L/4) 0.160 — — 0.686 — — 0.395 0.649

Note: L, V, and T = lateral, vertical, and torsional; D and BM = displacement and bending moment.

FIG. 7. Equivalent Static Load Distribution for Different Wind Effects (U = 60 m/s; — = with Coupling; –– = without Coupling)
proach and the parameters used can be found in Chen et al.
(2000a).

Fig. 3 shows the changes in damping ratio with the mean
wind velocity, which includes both the structural and aerody-
namic damping. The solid lines and dashed lines represent the
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results with and without aerodynamic coupling effects, cal-
culated using a multimode coupled approach and (40), respec-
tively. Significant changes in the aerodynamic damping can be
identified due to the aerodynamic coupling at higher wind ve-
locities. It is noted that the self-excited forces not only influ-



ence the damping ratios but also result in modal coupling par-
ticularly between the vertical bending and torsional directions.

Fig. 4 shows the modal displacements in different modes at
60 m/s. Fig. 5 shows the correlation coefficients between mo-
dal response components associated with mode 10 and others.
Fig. 6 shows the RMS lateral, vertical, and torsional displace-
ments along the bridge axis at 60 m/s. The solid lines and the
dashed lines represent, respectively, the result with and without
the aerodynamic coupling. This displacement information is
the basis for the estimation of the equivalent static load.

Displacements and bending moments in the lateral and ver-
tical directions and the displacement in the torsional direction
at the midspan and quarter span of the main span were selected
for consideration of the equivalent static loads. Tables 3 and
4 show the weighting factors concerning modal inertial loads,
which only include the combination of the important modes.
Fig. 7 shows the corresponding absolute equivalent static peak
load distributions excluding the mean wind load components.
The peak factor was assumed to be 3.5. It is clear that, for
different response components, the equivalent static load dis-
tributions are different. The accuracy of the calculated static
load distributions depends on the accuracy of the relative value
of the influence function.

CONCLUSIONS

The methodology for calculating the equivalent static load
distribution associated with a given dynamic response com-
ponent of interest has been presented, which includes the cor-
relation among modal response components. The equivalent
static load has been expressed in terms of a weighted combi-
nation of modal inertial load components, or the background
and resonant components. Using the proposed methodology,
the weighting factors can be easily determined instead of re-
lying on an arbitrary selection or a complex estimation pro-
cedure. The key advantage of the procedure is in its prediction
of design loads for other dynamic response components based
on generally available displacement response. It is particularly
useful for the representation of design loads based on full
aeroelastic model test results, and it meets the current wind
design practice. Simplified formulations presented here can be
used for preliminary design of bridges.

Applications to simply supported beams and a long span
suspension bridge were presented to illustrate the effectiveness
of the methodology. The aerodynamic coupling was shown to
have significant influence on the equivalent static load distri-
bution for long span bridges. For potential application in de-
sign practice, it is necessary to limit the number of distribu-
tions to only critical response components and to simplify the
mode shapes for a convenient representation of the load dis-
tributions.
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