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ABSTRACT: A time domain approach for predicting the coupled flutter and buffeting response of long span
bridges is presented. The frequency dependent unsteady aerodynamic forces are represented by the convolution
integrals involving the aerodynamic impulse function and structural motions or wind fluctuations. The aerody-
namic impulse functions are derived from experimentally measured flutter derivatives, aerodynamic admittance
functions, and spanwise coherence of aerodynamic forces using rational function approximations. A significant
feature of the approach presented here is that the frequency dependent characteristics of unsteady aerodynamic
forces and the nonlinearities of both aerodynamic and structural origins can be modeled in the response analysis.
The flutter and buffeting response of a long span suspension bridge is analyzed using the proposed time domain
approach. The results show good agreement with those from the frequency domain analysis. The example used
to demonstrate the proposed scheme focuses on the treatment of frequency dependent self-excited and buffeting
force effects. Application to nonlinear effects will be addressed in a future publication.
INTRODUCTION

The prediction of wind induced buffeting response and flut-
ter instability is of major concern in the design of long span
bridges. The analytical approach has predominantly been con-
ducted in the frequency domain (Davenport 1962; Scanlan
1978). This is primarily due to the computational efficiency
offered by the frequency domain, particularly when handling
the unsteady aerodynamic forces that are functions of fre-
quency. The flutter analysis is generally conducted by complex
eigenvalue analysis, whereas the buffeting response is typi-
cally estimated using a mode-by-mode approach that ignores
the aerodynamic coupling among modes. More recently, an
efficient scheme for coupled multimode flutter analysis has
been proposed by introducing the unsteady self-excited aero-
dynamic forces in terms of rational function approximations
(Matsumoto et al. 1994; Chen et al. 2000). This has led to a
convenient transformation of the equations into a frequency
independent state-space format. A significant feature of this
approach is that an iterative solution for determining flutter
conditions is unnecessary because the equations of motion are
independent of frequency. The effects of aerodynamic cou-
pling on the buffeting response have been addressed by the
studies (Matsumoto et al. 1994; Jain et al. 1996; Katsuchi et
al. 1999; Chen et al. 2000). In general, the frequency domain
approach is restricted to linear structures excited by the sta-
tionary wind loads without aerodynamic nonlinearities.

To include nonlinearities of structural and aerodynamic or-
igins, the time domain approach is more appropriate. In the
following studies, among others, the time domain approach
has been utilized for the analysis of flutter and buffeting re-
sponse [e.g., Agar (1988), Kovacs et al. (1992), Santos et al.
(1993), Matsumoto et al. (1994), Xiang et al. (1995), and Di-
ana et al. (1998)]. Most of the previous studies concerning the
buffeting response have used the quasi-steady theory for mod-
eling the aerodynamic forces, thus ignoring the frequency de-
pendent characteristics of unsteady aerodynamic forces in the
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 FIG. 1. Aerodynamic Forces on Bridge Section

numerical scheme. Time domain approaches also require input
time histories of multidimensional multivariant wind fields.
They can be simulated using a spectral or time series approach
[e.g., Sinozuka and Jan (1972) and Li and Kareem (1993)].

In this paper, a time domain approach for predicting the
flutter and buffeting response utilizing frequency dependent
unsteady aerodynamic forces is presented. A significant feature
of this approach is that the frequency dependent characteristics
of unsteady aerodynamic forces and nonlinearities of both aer-
odynamic and structural origins can be taken into account
when estimating the response. The flutter and buffeting re-
sponse of a suspension bridge with a main span of approxi-
mately 2,000 m is used to demonstrate the effectiveness of the
proposed scheme. The results are compared with the frequency
domain approach. The effects of aerodynamic coupling in-
duced by the coupled self-excited forces and unsteady char-
acteristics of buffeting forces are also investigated.

THEORETICAL BACKGROUND

Analysis of Full-Order System

The governing equations of motion with respect to the static
equilibrium position of a bridge excited by aerodynamic forces
are given in a matrix form by

¨ ˙MZ 1 CZ 1 KZ = F 1 F (1)se b

where M, C, and K = mass, damping, and stiffness matrices,
respectively; Z = nodal displacement vector; F indicates the
nodal force vector; each dot denotes the partial differentiation
with respect to time t; and the subscripts se and b represent
the self-excited and turbulence-induced buffeting force com-
ponents, respectively.

For the harmonic motion, the self-excited forces per unit
span (Fig. 1) [i.e., lift Lse(t), drag Dse(t), and pitching moment
Mse(t)] are commonly described utilizing flutter derivatives as
follows (Scanlan 1978):
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˙1 h bȧ h2 2 2* * * *L (t) = rU (2b) kH 1 kH 1 k H a 1 k Hse 1 2 3 4S2 U U b

ṗ p2* *1 kH 1 k H5 6 DU b (2a)

1 ṗ bȧ p2 2 2* * * *D (t) = rU (2b) kP 1 kP 1 k P a 1 k Pse 1 2 3 4S2 U U b

ḣ h2* *1 kP 1 k P5 6 DU b (2b)

˙1 h bȧ h2 2 2 2* * * *M (t) = rU (2b ) kA 1 kA 1 k A a 1 k Ase 1 2 3 4S2 U U b

ṗ p2* *1 kA 1 k A5 6 DU b (2c)

where r = air density; U = mean wind velocity; k = vb/U =
reduced frequency; B = 2b = bridge deck width; v = circular
frequency of vibration; and (i = 1–6) = frequency* * *H , P , Ai i i

dependent flutter derivatives; h, p, and a = vertical, lateral,
and torsional displacement, respectively.

The self-excited forces per unit span induced by arbitrary
structural motion can be expressed in terms of convolution
integrals as follows (Lin and Yang 1983):

t
1 2L (t) = rU (I (t 2 t)h(t) 1 I (t 2 t)p(t)se L LE seh sep2 2`

1 I (t 2 t)a(t)) dtLsea
(3a)

t
1 2D (t) = rU (I (t 2 t)h(t) 1 I (t 2 t)p(t)se D DE seh sep2 2`

1 I (t 2 t)a(t)) dtDsea
(3b)

t
1 2M (t) = rU (I (t 2 t)h(t) 1 I (t 2 t)p(t)se M ME seh sep2 2`

1 I (t 2 t)a(t)) dtMsea
(3c)

where I indicates the impulse function of the self-excited
forces, which are associated with indicial aerodynamic func-
tions (Scanlan et al. 1974; Scanlan 1984), and the subscripts
represent the corresponding force components.

The relationship between the aerodynamic impulse func-
tions and flutter derivatives can be obtained by taking the Fou-
rier transform of (3) and comparing to the corresponding terms
in (2)

2 2¯ ¯* * * *I = 2k (H 1 iH ); I = 2k (H 1 iH );L 4 1 L 6 5seh sep

2¯ * *I = 2k b(H 1 iH )L 3 2sea
(4a)

2 2¯ ¯* * * *I = 2k (P 1 iP ); I = 2k (P 1 iP );D 6 5 D 4 1seh sep

2¯ * *I = 2k b(P 1 iP )D 3 2sea
(4b)

2 2¯ ¯* * * *I = 2k b(A 1 iA ); I = 2k b(A 1 iA );M 4 1 M 6 5seh sep

2 2¯ * *I = 2k b (A 1 iA )M 3 2sea
(4c)

where the overbar denotes the Fourier transform operator; and
terms containing i represent imaginary parts.

In light of (3), the self-excited forces can be described in
the frequency domain as a product of the bridge displacement
and the corresponding transfer function, which has been ex-
pressed in terms of flutter derivatives [(4)]. Because the flutter
derivatives are normally known only at discrete values of the
reduced frequency k, approximate expressions are used to de-
velop these as continuous functions of the reduced frequency
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for future analysis. The rational function approximation ap-
proach known as Roger’s approximation can be utilized for
this purpose (Roger 1977). With regard to the term corre-
sponding to the lift induced by the vertical motion Lseh(t), the
aerodynamic transfer function can be expressed as

2
ivb ivb2¯ * *I (iv) = 2k (H 1 iH ) = A 1 A 1 AL 4 1 1 2 3S D S Dseh U U

m
A ivl13

1 O d Ull=1 iv 1
b (5)

where A1, A2, A3, and dl (dl $ 0; l = 1 to m) are frequencyA ,l13

independent coefficients; the first and second terms repre-
sent noncirculatory static-aerodynamics and the aerodynamic
damping, respectively; the third term denotes the additional
aerodynamic mass that is normally negligible; and the rational
terms represent the unsteady components that lag the velocity
term and permit an approximation of the time delays through
positive values of the parameter dl. The value of m determines
the level of accuracy of this approximation and the size of
additional equations [given in (8)]. All of the coefficients in
(5) can be determined by the linear and nonlinear least-squares
methods using the experimentally obtained flutter derivatives
at different reduced frequencies.

The preceding rational function representation of the aero-
dynamic transfer functions can be extended into the Laplace
domain with s [where s = (2j 1 i)v, j is the damping ratio
of the motion] in (5) substituted for iv. The inverse Laplace
transform yields the aerodynamic impulse function

2b b˙ ¨I (t) = A d(t) 1 A d(t) 1 A d(t)L 1 2 3 2seh U U
tm

d Ul ˙1 A exp 2 (t 2 t) d(t) dtl13O E S Dbl=1 2` (6)

where d(t) = Dirac delta function.
Thus, the self-excited lift induced by arbitrary vertical mo-

tion can be expressed as
m21 b b2 ˙ ¨L (t) = rU A h(t) 1 A h(t) 1 A h(t) 1 f (t)seh 1 2 3 lS O D22 U U l=1

(7)

where fl(t) (l = 1 to m) are new variables that are introduced
to express the aerodynamic phase lag and satisfy the following
equations:

d Ul˙ ˙f (t) = 2 f (t) 1 A h(t), (l = 1 to m) (8)l l l13
b

Similar formulations for other self-excited force components
can be given with analogous definitions and are omitted here
for the sake of brevity.

The buffeting forces per unit span corresponding to arbitrary
wind fluctuations are expressed in terms of convolution inte-
grals involving the aerodynamic impulse functions and fluc-
tuating wind velocities

t
1 u(t) w(t)2L (t) = 2 rU I (t 2 t) 1 I (t 2 t) dt (9a)b L LE S Dbu bw2 U U2`

t
1 u(t) w(t)2D (t) = rU I (t 2 t) 1 I (t 2 t) dt (9b)b D DE S Dbu bw2 U U2`

t
1 u(t) w(t)2M (t) = rU I (t 2 t) 1 I (t 2 t) dt (9c)b M ME S Dbu bw2 U U2`

where I indicates the aerodynamic impulse functions of buf-
feting forces; the subscript represents the corresponding com-



ponent; and u and w = longitudinal and vertical components
of the fluctuating wind velocity, respectively.

The buffeting forces per unit span are commonly expressed
as follows:

1 u(t) w(t)2L (t) = 2 rU (2b) 2C x 1 (C9 1 C )x (10a)b L L L D LS Dbu bw2 U U

1 u(t) w(t)2D (t) = rU (2b) 2C x 1 C9x (10b)b D D D DS Dbu bw2 U U

1 u(t) w(t)2 2M (t) = rU (2b) 2C x 1 C9 x (10c)b M M M MS Dbu bw2 U U

where CL, CD, and CM = mean lift, drag, and moment coeffi-
cients, respectively; = dCL /da, = dCD /da and = dCM/C9 C9 C9L D M

da; and and = aerodynamicx , x , x , x , x , xL L D D M Mbu bw bu bw bu bw

transfer functions between fluctuating wind velocities and buf-
feting forces. These are functions of frequency and are depen-
dent on the deck configuration. The absolute magnitudes of
these functions are also referred to as aerodynamic admittance
functions.

Following the approach used for the self-excited forces, the
frequency dependent buffeting forces can be included in a time
domain analysis. The Fourier transform of aerodynamic im-
pulse functions of buffeting forces can be related to the aero-
dynamic transfer functions as follows:

¯ ¯I = 4bC x ; I = 2b(C9 1 C )x (11a,b)L L L L L D Lbu bu bw bw

¯ ¯I = 4bC x ; I = 2bC9x (11c,d )D D D D D Dbu bu bw bw

2 2¯ ¯I = 8b C x ; I = 4b C9 x (11e, f )M M M M M Mbu bu bw bw

Accordingly, these can be expressed in terms of rational func-
tions. For example, for the term corresponding to the lift in-
duced by the vertical wind fluctuation Lbw(t)

mw A ivw,l11
Ī (iv) = A 1 (12)L w,1 Obw d Uw, ll=1 iv 1

b

The buffeting lift induced by arbitrary vertical wind fluc-
tuation can then be given as

mw1 w(t) d Uw,l2L (t) = 2 rU (A 1 A ) 2 f (t) (13)bw w,1 w,l11 w, lS O D2 U bl=1

d U w(t)w,l
ḟ (t) = 2 f (t) 1 A , (l = 1 to m ) (14)w,l w,l w, l11 w

b U

where (l = 1 to mw) = frequency indepen-A , A , and dw,1 w,l11 w,l

dent coefficients; and (l = 1 to mw) = additional variables.fw,l

Similar formulations for other buffeting force components are
omitted here for the sake of brevity.

The lift component of the self-excited and buffeting forces
acting on the entire beam element with length L can be ex-
pressed as

L L

e eL (t) = L (t) dx; L (t) = L (t) dx (15a,b)se se b bE E
0 0

The associated drag and moment can be expressed accord-
ingly.

Since at this time there is not enough data for quantifying
the spanwise correlation of the self-excited forces, without loss
of generality, these are assumed to be fully correlated for the
present study, and only the spanwise correlation of the buf-
feting forces is included. It is assumed that the stochastic prop-
erties of the buffeting force components per unit span at dif-
ferent positions within the same element are identical to those
defined at the center of the element and that the correlation
between the buffeting force components induced by the u- and
w-components are negligible. Thus, the self-excited and buf-
feting forces over the entire element are given

e cL (t) = L (t)L (16a)se se

t

e c cL (t) = L (J (t 2 t)L (t) 1 J (t 2 t)L (t)) dt (16b)b L bu L bwE bu bw

0

where the superscript c indicates the center of the element;
and = impulse functions whose Fourier transformJ (t) J (t)L Lbw bw

counterparts and are referred to as the joint¯ ¯J (v) J (v)L Lbw bw

acceptance functions defined as
L L

12J̄ = coh (x , x ; f ) dx dx (17)L L 1 2 1 2E E2bw bwL 0 0

where

ccoh (x , x ; f ) = S (x , x ; f )/S ( f ) (18)L 1 2 L 1 2 Lbw bw bw

indicates the spanwise coherence of the buffeting lift force
component Lbw(t); x2; f ) indicates the cross-spectra be-S (x ,L 1bw

tween Lbw(t) at two different positions denoted by the coor-
dinates x1 and x2 along the bridge axis; and indicatescS ( f )Lbw

the autospectral density of Other terms have analogouscL (t).bw

definitions but are omitted here for the sake of brevity. Several
wind tunnel tests and full-scale experiments have indicated
that the buffeting forces have a higher spanwise correlation
than the incident wind fluctuations [e.g., Larose and Mann
(1998)]. The joint acceptance functions also need to be ex-
pressed in terms of rational functions as shown before for
other cases.

The solution of the equations of motion was obtained by
the Newmark beta step-by-step integration method. The com-
putational procedure for the aerodynamic forces was as fol-
lows. First, the wind fluctuations at the center of each element
were simulated. The aerodynamic forces acting on each ele-
ment were then calculated using the preceding expressions.
The total nodal force vectors Fse and Fb were assembled from
the element forces. The dependence of the aerodynamic char-
acteristics on the initial static rotation of the bridge section can
be included in the analysis. Because the self-excited forces are
dependent on the unknown motion [(7)], they should be cal-
culated iteratively at each time step until the required conver-
gence criterion is satisfied. Although iterations are required,
the process converges rapidly. The influence of the structural
nonlinearities can also be readily included in the analysis.

Analysis in Modal Coordinates

For linear structures, a mode generalized approach offers
computational efficiency because the analysis can be carried
in the selected modes. The equations of motion in the gener-
alized coordinates q are

M q̈ 1 C q̇ 1 K q = Q 1 Q (19)0 0 0 se b

where M0 = CTMC, C0 = CTCC, and K0 = CTKC = gen-
eralized mass, damping, and stiffness matrices, respectively;
Qse = CTFse and Qb = CTFb = generalized self-excited and
buffeting force vectors, respectively; and C = mode shape
matrix.

The preceding equation is convenient for the analysis when
aerodynamic force nonlinearities are included. However, an
iterative procedure is required for calculating the self-excited
forces at each time step, even for linear self-excited forces.
For the case of linear self-excited forces, this iterative calcu-
lation can be eliminated by moving the self-excited force terms
in (19) on the left-hand side and expressing the generalized
self-excited forces as
JOURNAL OF ENGINEERING MECHANICS / JANUARY 2000 / 9



1 b2Q = rU A q 1 A q̇ (20)se s dS D2 U

where As and Ad = frequency dependent matrices that are func-
tions of flutter derivatives and mode shapes.

The generalized self-excited forces, such as in the preceding
section, can be approximated as a rational function

2 m
sb sb sb A sl13A (s) = A 1 A = A 1 A 1 A 1sd s d 1 2 3S D S D OU U U d Ull=1 s 1

b
(21)

where matrices A1, A2, A3, and dl (dl $ 0; l = 1 to m)A ,l13

are frequency independent coefficients. The preceding rational
function representation can be directly derived from those of
the nodal self-excited forces. However, for bridges with dif-
ferent aerodynamic characteristics along their axes, this would
lead to a large number of additional equations needed to ex-
press the aerodynamic states. Instead of using an element-by-
element description of nodal forces in terms of rational func-
tions, the rational function for the generalized self-excited
forces can be determined by fitting the tabular data of the
generalized forces at different reduced velocities.

By taking the Laplace transform of (19) and (20), substi-
tuting (21), and subsequently introducing additional variable
vectors representing the unsteady aerodynamic states qsel (l =
1 to m), the following is obtained:

m
12 2¯ ¯ ¯s Mq(s) = {2sC 2 K}q(s) 1 rU q (s) 1 Q (s) (22)sel bO2 l=1

A sl13q (s) = q(s), (l = 1 to m) (23a,b)sel
U

s 1 dl
b

where M̄ = M0 2 (1/2)rb2A3, C̄ = C0 2 (1/2)rUbA2, and K̄
= K0 2 (1/2)rU 2A1.

The following set of state-space equations that describe the
system dynamics can be obtained by taking the inverse La-
place transform

Ẏ = AY 1 BQ (24)b

where

q
q̇

Y = q (25a)sel

?H J??
qsem

0 I 0 ? ? ? 0

1 121 21 2 21 2 21¯ ¯ ¯ ¯ ¯ ¯2M K 2M C rU M ? ? ? rU M
2 2

UA = 0 A 2 d I ? ? ? 04 1
b

? ? ? ?? ? ? ?? ? ? ?
U

0 A 0 ? ? ? 2 d I31m m
b

(25b)

0
21M̄

B = 0 (25c)F G???
0
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FIG. 2. Rational Function Approximation of for Rectangular*A2

Sections: ——, Fitting; C, Experimental Data

Both the buffeting response and flutter instability can be
analyzed in the time domain using the preceding frequency
independent state-space equation in a numerical integration
scheme. In the present study, a fourth-order Runge-Kutta
scheme is utilized. The flutter analysis can be conducted by
neglecting the buffeting force components to get the infor-
mation on frequencies, damping ratios, and mode shapes from
the free vibration response. Because the unsteady self-excited
forces are implicitly included in the coefficient matrix, the it-
erative calculation for the self-excited forces at each time step
is unnecessary. In addition, the flutter analysis can also be
performed by the complex eigenvalue analysis (Chen et al.
2000).

SIMULATION OF CORRELATED WIND VELOCITY
TIME HISTORIES

The multidimensional multivariate wind velocity time his-
tories with prescribed spectral characteristics along the bridge
axis were generated using an autoregressive scheme (Li and
Kareem 1990)

m

u(t) u(t 2 kDt)
= C(k) 1 N(t) (26)H J O H Jw(t) w(t 2 kDt)k=1

where u(t) and w(t) = longitudinal and vertical wind fluctua-
tion vectors, respectively; C = coefficient matrix; N(t) = white
noise process vector; Dt = time interval; and m = filter order.

The power spectral density components of the u and w vec-
tors used herein are given by the von Kármán spectra (Chen
et al. 2000). The coherence functions between the u- and w-
components were neglected, and those between different u-
components or w-components are given by

2xl ux 2 x u fLr i j r
coh (x , x ; f ) = exp 2 0.747 1 1 70.78Îr i j S Dx S D2pL Ur

(27)

where r represents u and w; = integral scales of wind fluc-xLr

tuations in the crosswind direction; lr = decay factor; and xi

and xj = coordinates along the bridge axis.

RATIONAL FUNCTION APPROXIMATION

This section details the rational function representation of
the aerodynamic characteristics (i.e., the flutter derivatives, ad-
mittance function, and spanwise coherence). For an airfoil, the
rational function representation of the Theodorsen function/
Wagner function and Sears function/Küssner function are
widely utilized. To validate the accuracy of the rational func-
tion representation in expressing the frequency dependent
characteristics of unsteady aerodynamic forces on bluff bridge



FIG. 4. Rational Function Approximation of Joint Acceptance
Function: ——, Target; –––, Fitting (Real Part); – ?–, Fitting
(Imaginary Part)

FIG. 3. Rational Function Approximation of Admittance Func-
tion: ——, Target; –––, Fitting (Real Part); – ?–, Fitting (Imagi-
nary Part)

sections, rectangular cross sections with aspect ratios of B/D
= 5, 10, and 20 (B = body width; D = body depth) are em-
ployed for which experimental data are available (Matsumoto
et al. 1995). Fig. 2 shows the measured flutter derivative *A2

along with those derived from rational function representation
with two lag terms [(5)]. The results exhibited a good match,
which suggests that the self-excited forces on bluff body sec-
tions can be expressed by the rational function with good ac-
curacy.

The aerodynamic transfer function between the wind fluc-
tuations and buffeting forces are generally complex functions
of the reduced frequency. Because there are not enough ex-
perimental data available for identifying the phase shift be-
tween the wind fluctuations and the buffeting forces, real func-
tions were assumed, without loss of generality, for the rational
function approximation. Nonetheless, the phase shift infor-
mation can be readily incorporated when the experimental data
become available. Fig. 3 shows the results of the rational func-
tion representation for the admittance function given by the
following expression (Davenport 1962):

22 2cx = (c 2 1 1 e ) (28)2c

where c = l fD/U; D = section depth; l = decay factor that is
assumed to be 8. The results suggested a good fit to the target
values.

Fig. 4 shows the result of the rational function approxima-
tion for the joint acceptance function. The coherence of the
buffeting forces was assumed to be the same as those for the
wind fluctuations [(27)]. Accordingly, the joint acceptance
functions for an element of length L are given by
FIG. 5. Examples of Free Vibration of Torsional Displacement
at Center of Main Span: ——, U = 40 m/s; –––, U = 70 m/s

22 2srJ = (s 2 1 1 e ) (29a)r r2sr

2xl L fLr r
s = 0.747 1 1 70.78 (29b)Îr x S D2pL Ur

where lr = decay factor and is assumed to be 8; and r indicates
the symbols u and w. Based on the results presented here, it
was concluded that the frequency dependent unsteady aero-
dynamic characteristics of bluff bridge sections can be de-
scribed accurately in terms of rational functions.

EXAMPLE

An example long span suspension bridge with a main span
of approximately 2,000 m was used to predict the flutter and
buffeting response. The logarithmic damping ratio for each
mode was assumed to be 0.02. Only the aerodynamic forces
acting on the bridge deck were considered, and the variation
of the aerodynamic characteristics with the static rotation were
ignored here for simplicity and without loss of generality. The
aerodynamic parameters are CD = 0.3230, = 0, CL = 0.0942,C9D

= 1.905, and CM = 0.0104, = 0.2717; to and* *C9 C9 H HL M 1 4

to are evaluated using the Theodorsen function; to* * *A A P1 4 1

are based on the quasi-steady theory:* * * * *P , A , A , H , H6 5 6 5 6

= 22CD /k, = (CL 2 = =2* * * *P P C9)/(2k), P C9 /k , P (C91 2 D 3 D 5 D

2 CL)/k, = 2CL /k, = 24CM /k, and = = =* * * * *H A P P H5 5 4 6 6

= 0; and were based on (28); and*A x x x , x , x ,6 D D L L Mbu bw bu bw bu

were given by the Sears function; the spanwise correla-xMbw

tion of buffeting forces was assumed to be the same as the
corresponding wind fluctuations (i.e., = =coh cohL Dbu bu

= cohu, = = = cohw); su/U = 10%;coh coh coh cohM L D Mbu bw bw bw

sw/U = 5%; = = 80 m; = = 40 m; and lu = lw =x y x yL L L Lu u w w

8.

Flutter Analysis

Flutter analysis was conducted in the time domain by cal-
culating the free vibration response using (24) (i.e., time do-
main scheme a) and (19) (i.e., time domain scheme b). With
scheme a, the generalized self-excited forces were calculated
based on the rational function representation. In this scheme,
the iterative calculation for self-excited forces is unnecessary.
With scheme b, the generalized self-excited forces were cal-
culated through the nodal forces that were calculated based on
the rational function presentation with iterative calculations at
each time step. For linear cases, both schemes provide the
same results, with scheme a being more efficient. The first 15
modes were included in the analysis. To calculate the free
vibration response dominated by a certain mode, only the ap-
propriate modal coordinate was given a small initial velocity
or displacement, and all other initial displacements and veloc-
ities were set equal to zero. Examples of the torsional dis-
placement at the center of the main span at wind velocities of
40 and 70 m/s with an initial velocity imparted to mode 10
are shown in Fig. 5. For comparison, the coupled multimode
flutter analysis was also conducted by the solution of the com-
JOURNAL OF ENGINEERING MECHANICS / JANUARY 2000 / 11



TABLE 1. Comparison of Flutter Conditions

Mode number
(1)

Onset velocity
(m/s)
(2)

Frequency
(Hz)
(3)

(a) Frequency domain

Modes 2, 8, 10, and 11
Modes 1–15

68.6
69.3

0.1214
0.1188

(b) Time domain scheme a

Modes 1–15 68.3 0.1190

(c) Time domain scheme b

Modes 1–15 69.5 0.1170

FIG. 7. Damping Ratio versus Wind Velocity: ——, Frequency
Domain; 1, Time Domain Scheme a; C, Time Domain Scheme b

FIG. 6. Frequency versus Wind Velocity: ——, Frequency Do-
main; 1, Time Domain Scheme a; C, Time Domain Scheme b

plex eigenvalues of the system described by (24). Two cases
were considered. First, only the symmetric first, second, and
third vertical modes and symmetric first torsional mode (i.e.,
modes 2, 8, 10, and 11) were included. The second case in-
cluded the first 15 lower natural modes. The variation of fre-
quencies and damping ratios obtained by the time domain and
frequency domain approaches are shown in Figs. 6 and 7, re-
spectively. The comparison of the flutter condition is given in
Table 1. It is noted that the time domain approaches predict
the flutter conditions in good agreement with those from the
frequency domain approach. In this example, the damping of
the mode with the coupled vertical and torsional motions turns
to negative beyond the mean wind velocity of about 69 m/s.
In other words, the coupled flutter occurs and the structure
becomes unstable. For the linear case, the flutter analysis in
the frequency domain is very computationally efficient when
compared with the time domain approaches. However, the
12 / JOURNAL OF ENGINEERING MECHANICS / JANUARY 2000
FIG. 8. Example of Simulated Wind Fluctuations (U = 60 m/s):
(a) Longitudinal Component; (b) Vertical Component

time domain approach permits incorporation of nonlinear aer-
odynamic forces or structural nonlinearities.

Buffeting Response

A number of samples of simulated wind fluctuations at the
center of each element along the bridge axis at each wind
velocity were simulated. The corresponding buffeting re-
sponses were calculated and compared with those from the
frequency domain approach, including the aerodynamic cou-
pling (Chen et al. 2000).

For the sake of brevity, only the results corresponding to
the center of the main span are shown here. An example re-
alization of the longitudinal and vertical wind fluctuations act-
ing on the center of the main span at a wind velocity of 60
m/s is shown in Fig. 8. The autoregressive model coefficients
were determined to generate 120 s of time histories at incre-
ments of 0.1 s. For brevity, comparison of simulated and target
spectral characteristics was not included here. These results
were in excellent agreement.

Figs. 9 and 10 show the corresponding unsteady self-excited
and buffeting forces acting on the element at the center of the
main span, respectively. Comparisons of their spectra calcu-
lated from the simulated time histories and based on the fre-
quency domain formulations are shown in Figs. 11 and 12.
The spectral descriptions of the self-excited and buffeting
forces in the frequency domain approach are given as

2
1 2 2¯ ¯ ¯ ¯ ¯e * * *S = rU L (uI u S 1 I I S 1 I I SM M hh M M hp M M hpS Dse seh seh sep seh sep2

2¯ ¯ ¯ ¯ ¯ ¯ ¯* * * *1 I I S 1 I I S 1 uI u S 1 I I SM M ha M M ha M pp M M paseh sea seh sea sep sep sea

2¯ ¯ ¯* *1 I I S 1 uI u S )M M pa M aasep sea sea
(30)

2
1 2 4 2 2 2 2¯eS = rU L (2b) [4C ux u uJ u S /UM M Mu u uuS Db 2

2 2 2 2¯1 C9 ux u uJ u S /U ]M Mw w ww (31)

where Srs (r, s = h, p, a) = power spectral components of the
response; Suu and Sww = power spectra of the u- and w-com-
ponents; and asterisk (*) denote the complex conjugate oper-
ator. Good agreement was noted, which further validates the
technique that simulates the arbitrary aerodynamic forces us-
ing a rational function approximation.

Fig. 13 shows the vertical, lateral, and torsional responses



FIG. 9. Self-Excited Forces on Element at Center of Main Span
(U = 60 m/s): (a) Lift; (b) Drag; (c) Moment

evaluated in the time domain at a wind velocity of 60 m/s
using schemes a and b. Both results are nearly coincident so
that the distinction cannot be made from these figures. In the
following discussion, unless specifically noted, scheme a is
used for buffeting response analysis. In Fig. 14, the response
at 70 m/s is presented and clearly demonstrates the occurrence
of coupled flutter.

Fig. 15 shows a comparison of the RMS vertical, lateral,
and torsional displacement at the center of the main span. The
results from frequency domain analysis are indicated by the
solid lines, and the time domain results are indicated by the
mean values and the 99% confidence intervals [m 2 2.58s m
1 2.58s] (m and s are the mean value and standard deviation,
respectively). The time domain results show very good agree-
ment with those from the frequency domain approach in the
vertical and torsional directions, although the lateral responses
are slightly smaller than those from the frequency domain ap-
proach. This validates the proposed time domain approach us-
ing frequency dependent aerodynamic parameters. This ap-
proach can be extended to include nonlinearities of both
aerodynamic and structural origins, which are intractable in
the conventional frequency domain approaches.

The effects of the aerodynamic coupling on the buffeting
response are further investigated by neglecting the aerody-
namic coupling, that is, dropping the off-diagonal components
of the aerodynamic self-excited force matrices As and Ad

[(20)]. Fig. 16 shows the torsional displacement at wind ve-
locities of 60 and 70 m/s without aerodynamic coupling ex-
cited by the same wind fluctuations (Fig. 8). The RMS of
torsional displacement at different wind velocities is shown in
Fig. 17, compared with the results from frequency domain
analysis with aerodynamic coupling indicated by the solid line.
Significant underestimation in the higher wind velocities is
noted by comparing the results shown in Figs. 13–15 in which
FIG. 10. Buffeting Forces on Element at Center of Main Span
(U = 60 m/s): (a) Lift; (b) Drag; (c) Moment

FIG. 11. Comparison of Power Spectra of Self-Excited Mo-
ment (U = 60 m/s): ——, Time Domain; –––, Frequency Domain

FIG. 12. Comparison of Power Spectra of Buffeting Moment
(U = 60 m/s): ——, Time Domain; –––, Frequency Domain
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FIG. 13. Buffeting Response at Center of Main Span (U = 60 m/
s): (a) Vertical; (b) Lateral; (c) Torsional Displacements (——,
Time Domain Scheme a; –––, Time Domain Scheme b)

FIG. 14. Buffeting Response at Center of Main Span (U = 70 m/
s): (a) Vertical; (b) Lateral; (c) Torsional Displacements
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FIG. 15. RMS of Displacements at Center of Main Span: (a)
Vertical; (b) Lateral; (c) Torsional Displacements

the aerodynamic coupling effects are included. Coupled flutter
cannot be observed without aerodynamic coupling effects.

To investigate the effects of the unsteady characteristics of
buffeting forces on the buffeting response, the analysis using
the quasi-steady buffeting forces is also conducted by setting
the admittance function and joint acceptance function equal to
unity. Figs. 18 and 19 show, respectively, the quasi-steady buf-
feting moment and the torsional displacement at the center of
the main span at a wind velocity of 60 m/s, which are clearly
higher in the quasi-steady approach. Fig. 20 shows the RMS
of torsional displacement at different wind velocities using the
quasi-steady buffeting forces, compared with the results from
the frequency domain analysis using unsteady forces. It should
be noted that because the buffeting forces are overestimated
by the quasi-steady theory, conservative results are observed.
However, when the self-excited forces are also modeled by the
quasi-steady theory as most of the time domain studies entail,
the aerodynamic damping will be overestimated, which leads
to an underestimation of the response. Nonetheless, it is clear



FIG. 16. Buffeting Torsional Displacement without Aerody-
namic Coupling: (a) U = 60 m/s; (b) U = 70 m/s

FIG. 17. RMS of Torsional Displacement without Aerodynamic
Coupling

FIG. 18. Quasi-Steady Buffeting Moment at Element of Center
of Main Span (U = 60 m/s)

FIG. 19. Buffeting Torsional Displacement Using Quasi-
Steady Buffeting Forces (U = 60 m/s)
FIG. 20. RMS of Torsional Displacement Using Quasi-Steady
Buffeting Forces

that using quasi-steady aerodynamic forces, the buffeting re-
sponse at higher wind velocity and the flutter instability cannot
be evaluated accurately.

CONCLUSIONS

A time domain approach to calculate the flutter and buffet-
ing response of long span bridges is presented. The unsteady
aerodynamic self-excited forces and buffeting forces are used
instead of the quasi-steady force formulation customarily used
in the conventional time domain approaches. Unsteady wind
forces are expressed in terms of the convolution integrals in-
volving the aerodynamic impulse functions and the structural
motions or wind fluctuations. The aerodynamic impulse func-
tions and the associated aerodynamic transfer functions are
approximated in terms of rational functions. These functions
can be determined from experimentally derived flutter deriv-
atives, admittance functions, and the spanwise coherence of
aerodynamic forces. Utilizing an example bridge, the flutter
and buffeting response based on the time domain approach is
compared with a frequency domain analysis that includes the
contribution of coupled aerodynamic self-excited forces. The
response shows very good comparison. The aerodynamic cou-
pling and the unsteady characteristics of the buffeting forces
influence the buffeting response significantly. The time domain
approach offers the benefit of capturing the effects of nonlin-
earities of both structural and aerodynamic origins and also
the influence of nonstationary features in the approaching wind
in the analysis.
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