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ABSTRACT: The effects of aerodynamic coupling among modes of vibration on the flutter and buffeting re-
sponse of long-span bridges are investigated. By introducing the unsteady, self-excited aerodynamic forces in
terms of rational function approximations, the equations of motion in generalized modal coordinates are
transformed into a frequency-independent state-space format. The frequencies, damping ratios, and complex
mode shapes at a prescribed wind velocity, and the critical flutter conditions, are identified by solving a complex
eigenvalue problem. A significant feature of this approach is that an iterative solution for determining the
flutter conditions is not necessary, because the equations of motion are independent of frequency. The energy
increase in each flutter motion cycle is examined using the work done by the generalized aerodynamic
forces or by the self-excited forces along the bridge axis. Accordingly, their contribution to the aerodynamic
damping can be clearly identified. The multimode flutter generation mechanism and the roles of flutter derivatives
are investigated. Finally, the coupling effects on the buffeting response due to self-excited forces are also
discussed.
INTRODUCTION

Flutter and buffeting responses are extremely important top-
ics in the design of long-span bridges. For the construction of
super long-span bridges with center spans of more than 2,000
m, it is recognized that the simple extrapolation of conven-
tional technology does not satisfy the aerodynamic stability
or economic feasibility requirements. New ideas regarding
the structural modification and aerodynamic stabilization
of the bridge deck section must be developed (Matsumoto
et al. 1995; Diana et al. 1998). When investigating dynamic
and aerodynamic stabilization strategies, it is very im-
portant to have an advanced understanding of the bridge aer-
odynamic behavior and the enhanced response prediction ca-
pability.

Numerous analytical investigations related to flutter and
buffeting problems can be identified (e.g., Bleich 1948; Dav-
enport 1962; Scanlan 1978a,b; Lin and Yang 1983; Xie and
Xiang 1985; Miyata and Yamada 1988; Agar 1989; Matsumoto
et al. 1994; Pfeil and Batista 1995; Matsumoto and Chen 1996;
Jain et al. 1996; Katsuchi et al. 1999). Scanlan (1978a) pro-
posed a basic theory for multimode flutter analysis. He also
suggested a mode-by-mode approach based on the fact that
practical flutter problems of long-span bridges are most likely
damping-driven flutter and are dominated by the action of a
single mode. Agar (1989) presented a modal technique in
which complex eigenvalue problems are solved using an it-
erative procedure. Miyata et al. (1988) directly used the struc-
tural equations of physical coordinates for the complex eigen-
value computation without iterative calculations. However,
this technique requires extensive computational effort. The
state-space method without any iterative calculation was
adopted in flutter analysis, flutter control system design, and
buffeting analysis in the time domain (Xie and Xiang 1985;
Matsumoto et al. 1994; Wilde and Fujino 1998). On the other
hand, for the buffeting response analysis, the conventional
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mode-by-mode approach is widely used. Matsumoto et al.
(1994) pointed out the importance of aerodynamic coupling
among modes of vibration when estimating the buffeting re-
sponse, particularly at higher wind velocities. They also pro-
posed a time domain approach that involves frequency depen-
dent characteristics of unsteady aerodynamic forces and
aerodynamic coupling (Matsumoto and Chen 1996). The cou-
pled flutter and buffeting problem has also been addressed by
Jain et al. (1996) and Katsuchi et al. (1999).

Some analytical results of multimode flutter analyses of
long-span bridges indicate that because of the closely spaced
natural frequencies and the three-dimensional mode
shapes, the aerodynamic coupling among modes becomes
complicated. Furthermore, the coupled multimode flutter is not
always initiated by the fundamental symmetric torsional
mode (Miyata and Yamada 1988; Agar 1989). These results
seem to be sensitive to the dynamic and aerodynamic char-
acteristics of structures. The generation mechanism involved
in multimode flutter behavior seems very complicated and has
not yet been clearly classified. Although the aerodynamic cou-
pling effects are considered in the flutter investigation, they
are generally ignored when predicting the buffeting response.
The contribution of aerodynamic coupling to the buffeting re-
sponse that results from the changes in aerodynamic damping
and modal coupling has also not been fully recognized in prac-
tice.

In this paper, the effects of aerodynamic coupling among
modes of vibration on the flutter and buffeting responses of
long-span bridges are examined. First, a frequency indepen-
dent state-space equation is derived by describing the un-
steady, self-excited aerodynamic forces in terms of rational
functions. The effectiveness of the rational function approxi-
mation is demonstrated using a range of bluff body sections.
The state-space format facilitates the multimode flutter anal-
ysis without iterative calculations. Next, aerodynamic coupling
among modes is discussed in terms of the participation of nat-
ural modes in flutter motion, and more importantly, from the
viewpoint of energy considerations regarding the work done
by the self-excited forces. The multimode flutter generation
mechanism and the roles of flutter derivatives are then inves-
tigated. Finally, the effects on the buffeting response of aero-
dynamic coupling due to the self-excited forces are also dis-
cussed.

EQUATION OF MOTION

The aerodynamic forces as shown in Fig. 1 are separated
into their self-excited and buffeting components. The self-ex-
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FIG. 1. Aerodynamic Forces on Bridge Deck

cited forces per unit span are expressed in the extended Scan-
lan’s format below (Scanlan 1978a, 1993):

˙1 h bȧ h2 2 2* * * *L (t) = rU (2b) kH 1 kH 1 k H a 1 k Hse S 1 2 3 42 U U b

ṗ p2* *1 kH 1 k H5 6 DU b (1a)

1 ṗ bȧ p2 2 2* * * *D (t) = rU (2b) kP 1 kP 1 k P a 1 k Pse S 1 2 3 42 U U b

ḣ h2* *1 kP 1 k P5 6 DU b (1b)

˙1 h bȧ h2 2 2 2* * * *M (t) = rU (2b ) kA 1 kA 1 k A a 1 k Ase S 1 2 3 42 U U b

ṗ p2* *1 kA 1 k A5 6 DU b (1c)

where r = air density; U = mean wind velocity; B = 2b =
bridge deck width; k = vb/U = reduced frequency; v = circular
frequency of vibration; h, p, and a = vertical, lateral, and tor-
sional displacements, respectively; the over-dot denotes the
partial differentiation with respect to time; and and* *H , Pi i

= 1 ; 6) = flutter derivatives, which are functions of the*A (ii

reduced frequency and depend on the geometrical configura-
tion of the bridge section and the approach flow.

For the bluff bridge deck sections, the flutter derivatives
must be determined experimentally. This is done through a
system identification method in the frequency or time domain
using free vibration or forced vibration testing in a wind tun-
nel. The bridge deck section model is generally spring sup-
ported or driven in the vertical and/or torsional directions to
identify the flutter derivatives and = 1 ; 4). The drag* *H A (ii i

component and the components associated with lateral motion
are generally negligible, but may become important for certain
bridge deck configurations (Miyata et al. 1994). They can be
identified through wind tunnel testing or simply by invoking
the quasi-steady theory, as follows:

2 1 1
* * *P = 2 C , P = 2 (C9 2 C ), P = C9 ,D D L D1 2 3 2k 2k k

1 2 4
* * *P = (C9 2 C ), H = C , A = 2 C ,D L L M5 5 5k k k

* * * *P = P = H = A = 04 6 6 6 (2)

where CL, CD, and CM = static lift, drag, and moment coeffi-
cients, respectively, and = dCD /da.C9D

The buffeting forces per unit span due to wind fluctuations
are given by (Davenport 1962; Scanlan 1978b, 1993):

1 u(t) w(t)2L (t) = 2 rU B 2C 1 (C9 1 C ) (3a)b Lx L D xF GLu Lw2 U U

1 u(t) w(t)2D (t) = rU B 2C 1 C9 (3b)b Dx DxF GDu Dw2 U U
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where xLu, xLw, xDu, xDw, xMu, and xMw = aerodynamic
admittance functions, which are functions of reduced fre-
quency and dependent on the geometrical configuration of the
bridge section; = dCL /da and = dCM /da; and u and wC9 C9L M

= longitudinal and vertical wind velocity fluctuations, respec-
tively.

The governing equation of dynamic motion of a bridge sub-
jected to turbulent wind loads is expressed in terms of the
generalized modal coordinates q as follows:

Mq̈ 1 Cq̇ 1 Kq = Q 1 Q (4)se b

where M, C, and K = generalized mass, damping, and stiffness
matrices, respectively; Qse and Qb = generalized self-
excited and buffeting force vectors, respectively, and are ex-
pressed as

1 b2Q = rU A q 1 A q̇ (5)se s dS D2 U

1 u w2Q = rU A 1 A (6)b bu bwS D2 U U

where As and Ad = aerodynamic stiffness and damping ma-
trices, respectively, Abu and Abw = buffeting force matrices;
and u and w = nodal fluctuating wind vectors for the u- and
w- components, respectively. When calculating the buffeting
forces, their spanwise correlations are taken into account
through the joint acceptance functions.

MULTIMODE FLUTTER ANALYSIS

The above equation of motion can be expressed in the fol-
lowing state-space format:

Ẏ = AY 1 BQ (7)b

where

q 0 I 0
Y = , A = , B =21 21 21H J F G F Gq̇ 2M K 2M C M1 1

1 1 2C = C 2 rUbA K = K 2 rU A1 d 1 s2 2

The conventional way to solve this for the flutter problem
is by omitting the buffeting forces and setting q = Fest in the
preceding equation. The solution of the complex eigenvalues
and eigenvectors gives the modal frequencies, damping ratios,
and modal shapes of the structure for a given wind velocity.
These values differ from those of the natural modes because
of the inclusion of the self-excited forces. Since the aerody-
namic matrices As and Ad are functions of an unknown re-
duced frequency, the solution at any given wind velocity
needs an iterative calculation for each eigenvalue until the as-
sumed frequency used to evaluate the self-excited aerody-
namic forces agrees with the imaginary part of the eigenvalue
(Agar 1989).

Because of the closely spaced natural frequencies in the
multimode analysis of long-span bridges, the target mode iden-
tification in the iterative calculation procedure must be done
step-by-step, which may not permit full automation of the nu-
merical procedure to realize the correct solution. This is time
consuming and computationally cumbersome. An alternative
way is to avoid iterative calculations by using a frequency
independent state-space equation. This equation can be derived
by expressing the self-excited forces as rational function ap-
proximations (Karpel 1982).



For the steady harmonic motion with circular frequency v,
i.e., q(t) = the generalized self-excited forces areivtq(iv)e ,

1ivt 2 ivtQ (t) = Q(iv)e = rU (A 1 ikA )q(iv)e (8)se s d2

The matrices Asd(ik) = As 1 ikAd can be expressed in terms
of rational function approximation as

m
A ikl132A (ik) = A 1 A (ik) 1 A (ik) 1 (9)sd 1 2 3 O ik 1 dll=1

where matrix A1, A2, A3, and dl (dl $ 0; l = 1 ; m) areAl13

frequency-independent coefficients. The A1 and A2 terms are
the noncirculatory static-aerodynamics and aerodynamic
damping, respectively; The A3 term is the additional aerody-
namic mass due to the wind loads and is generally negligible.
The rational partial fractions represent unsteady characteristics
of the self-excited forces in terms of transfer functions in
which the aerodynamic forces lag the velocity components and
permit approximations of the time delays by the positive pa-
rameter dl (l = 1 ; m). This approximation can be identified
by linear and nonlinear optimization in a least-squares sense
to approximate the experimentally obtained tabular data of the
aerodynamic matrix Asd, which is defined at specified values
of reduced frequencies kn (n = 1, 2, . . .).

Employing the concept of analytic continuation in the re-
gion near the imaginary axis of the complex plane (i.e., with
small positive or negative damping), the rational function ap-
proximations of the self-excited forces can be extended to ar-
bitrary motion q(t) = q(s)est as

Q (t)se

2 m
1 sb sb A sb/Ul132 st= rU A 1 A 1 A 1 q(s)e1 2 3S S D O D2 U U sb/U 1 dll=1

2 m
1 b b2= rU A q 1 A q̇ 1 A q̈ 1 q1 2 3 selS S D O D2 U U l=1 (10)

where s = (2j 1 i)v; j = critical damping ratio; and qsel(l =
1 ; m) are additional vectors representing the unsteady aer-
odynamic states, and are given by

U
q̇ = 2 d q 1 A q̇ (l = 1 ; m) (11)sel l sel l13

b

It is noted that there is a slight difference between the de-
scriptions of the self-excited forces for arbitrary motion in (5)
and (10), which reflects the influence of the damping ratio.
Matrices As and Ad in (5) are functions only of the reduced
frequency, but the corresponding matrices defined in (10) are
also influenced by the damping ratio. Although the effect of
the damping ratio on the self-excited forces is a question
open for discussion, it will be illustrated in the following
part of this paper that for a general damping level, this differ-
ence is negligible for the analysis of flutter and buffeting re-
sponses.

Substituting (10) and (11) into (4) and expressing it in the
state-space form gives

G ¯ ¯ ¯Y = AY 1 BQ (12)b

where

q
q̇

qse1Ȳ = ,H J???
qsem
0 I 0 ??? 0
1 121 21 2 21 2 21¯ ¯ ¯ ¯ ¯ ¯2M K 2M C rU M ??? rU M
2 2

UĀ = ,0 A 2 d I ??? 04 1
b

? ? ? ?? ? ? ?? ? ? ?
U

0 A 0 ??? 2 d I31m m
b

0
21M̄

B̄ = 0F G???
0

and

1 1 12 2¯ ¯ ¯M = M 2 rb A , C = C 2 rUbA , K = K 2 rU A3 2 12 2 2

Since the preceding equation is linear and frequency inde-
pendent, it has convenient applications to various simulation
and optimization procedures and modern control design tech-
niques. This method is also used for analyzing the dynamic
response of systems with frequency-dependent parameters in
the time domain. Similar applications can be found in the in-
teractions of the structures with such continuous media as soils
and fluids (Spanos and Zeldin 1997). In bridge aerodynamics,
the flutter and buffeting response can be calculated in the time
domain by the same numerical formulation. In addition, the
unsteady self-excited forces and aerodynamic coupling effects
among natural modes can be readily taken into account (Mat-
sumoto et al. 1994; Matsumoto and Chen 1996). The main
advantage of applying this approach in multimode flutter anal-
ysis is that all eigenvalues corresponding to the natural modes
of the structure and all unsteady aerodynamic states at a given
wind velocity can be computed without iterative calculations.

At a given wind velocity, the eigenvalue and the eigenvector
of a prescribed complex mode can be expressed as

s = (2j 1 i)v; F = a 1 ib (13a,b)

Because of aerodynamic coupling, the mode shapes are cou-
pled. For the sake of illustration, the terms ‘‘mode branch’’ is
assigned to identify all the complex modes that emerge from
a natural mode due to aerodynamic effects as the wind velocity
increases. In a prescribed mode branch, the magnitude and
phase of the kth natural mode are given as

2 2 21uFu = a 1 b ; w = tan (b /a ) (14a,b)Ïk k k k k k

The system is stable when all of the eigenvalues lie to the
left of the imaginary axis in the complex plane. The onset of
flutter occurs when one of the eigenvalues has a zero real part,
which indicates that the damping is zero. The mode branch in
which flutter takes place is also referred to here as the flutter
mode branch.

At the critical flutter velocity, the generalized modal coor-
dinate q(t) and the nodal displacement are expressed by the
complex flutter mode as

q(t) = {uFu sin(vt 1 w )} (15)i i

N

r(x, t) = r (x)uFu sin(vt 1 w ) = r (x)sin(vt 1 w (x)) (16)i i i 0 rO
i=1

where r indicates the symbols of h, p, and a; r0(x) and wr(x)
= amplitude and phase of r(x, t); ri(x) represents the natural
mode shape in ith mode; N = mode number; and x = coordi-
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nate of the section along the bridge axis. It is clear that the
coupled flutter motion is three-dimensional and that the phase
shift exists among different response components.

To improve our understanding of the multimode flutter gen-
eration mechanism, it is important to clarify the effects of aer-
odynamic coupling among modes in terms of both the partic-
ipation of the natural modes in the flutter motion and the
contribution to the system damping. Clarification of the work
distribution done by the aerodynamic forces along the bridge
axis will also be useful for the delineating efficient structural
and/or aerodynamic flutter suppression strategies.

The increase in energy per flutter motion cycle, DE, can be
expressed by the work done by the generalized aerodynamic
forces as (excluding the contribution of the structural damping
force)

2p/v
1 b2 T TDE = rU q̇ A q 1 q̇ A q̇ dts dE S D2 U0

N N

= (DE 1 DE )d sOO i j i j
i=1 j=1 (17)

where and indicate the contribution of the aerody-DE DEd sij i j

namic damping coupling and stiffness coupling between the
ith and jth modes, respectively, and are expressed as

1 2DE = DE = rU puFu uFu (A 1 A )k cos(w 2 w ) (18)d d i j d d i ji j ji i j ji4

1 2DE = DE = 2 rU puFu uFu (A 1 A )sin(w 2 w ) (19)s s i j s s i ji j ji i j ji4

The total potential energy of the system can be expressed
as

N N
1 2E = uFu uFu K 2 rU A cos(w 2 w ) (20)i j ij s i jOO S Di j2i j

Accordingly, the logarithmic aerodynamic damping ratio is
given by

N N

d = 2pj = 2DE/(2E ) = (d 1 d ) (21)d sOO i j i j
i=1 j=1

d = d = 2DE /(2E ); d = d = 2DE /(2E ) (22a,b)d d d s s si j ji i j i j ji i j

where = contribution to the aerodynamic damping dued , dd sij i j

to aerodynamic damping coupling and stiffness coupling be-
tween the ith and jth modes.

The increase in energy of the bridge per cycle of flutter
motion can be further expressed in terms of the work done by
the self-excited forces:

DE = W 1 W 1 WLse Dse Mse

2p/v

˙= (L h 1 D ṗ 1 M ȧ) dt dxse se seE E
span 0 (23)

where, for example

W = W 1 W 1 WL L L Lse seh sep sea

2p/v

˙= (L 1 L 1 L )h dt dxseh sep seaE E
span 0 (24)
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˙W = L h dt dxL seaE Esea

span 0

2p/v
1 bȧ2 2 ˙* *= rU (2b) kH 1 k H a h dt dxE E S 2 3 D2 Uspan 0

3 2 *= prb v h (x)a (x)[H cos(w 2 w )0 0 a hE 2
span

*1 H sin(w 2 w )] dxa h3 (25)

where indicates the work done by the lift component dueWLsea

to torsional motion, with analogous definitions for the other
components. The corresponding contribution to the system
damping is

d = 2W /(2E ) (26)L Lsea sea

From the preceding equations, the contribution of aerody-
namic coupling among modes to the system damping, and the
exciting or damping roles of each self-excited force compo-
nent along the bridge axis, can be identified. These effects
depend on the modal characteristics and the flutter derivatives
of the bridge

BUFFETING RESPONSE ANALYSIS

The power spectral density (PSD) matrices of the vectors
of generalized modal response q and nodal displacement Z =
Cq are given by

TS (v) = H*(v)S (v)H(v) (27)q Qb

T TS (v) = CH*(v)S (v)H(v) C (28)Z Qb

where C = mode shape matrix, and H(v) = transfer function
matrix.

21
1 12 2H(v) = 2v M 1 iv C 2 rUbA 1 K 2 rU Ad sS S D D2 2

(29)

and subscripts * and T denote the complex conjugate and
transpose, respectively.

Because of the aerodynamic coupling among modes of vi-
bration, the off-diagonal components of matrix H(v) generally
have nonzero values depending on the dynamic and aerody-
namic characteristics of the bridge. These components may
strongly influence the buffeting response as the wind velocity
increases.

The PSD matrix of the generalized buffeting forces is given
by:

1 2 2 T T T T* * * *S = r U (A S A 1 A S A 1 A S A 1 A S A )Q bu uu bu uw bw wu bu ww bwbu bw bwb 4
(30)

where Suu and Sww = PSD matrices of the u and w components,
respectively, and Suw = = cross-spectral density (CSD) ma-*Swu

trix between the u and w components and is generally negli-
gible.

The PSD components of the u and w vectors used herein
are given by the von Kármán spectra as follows. Other ex-
pressions for their quantities can also be used

yfS ( f ) 4( f L /U )u u ui i = (31a)2 y 2 5/6s (1 1 70.78( f L /U ) )u u

y 2fS ( f ) 1 1 188.8 f L /U )w w wi i y= 2( f L /U ) (31b)w2 y 2 11/6s (1 1 70.78( f L /U ) )w w

The CSD components are given as



hr
S ( f ) = S ( f )S ( f )exp 2l (32a)Ïr r r r r r rS Di j i i j j 2p

2x0.747ux 2 x u f Li j rÎh = 1 1 70.78 (32b)r S DxL Ur

where r indicates the symbols of u and w; and = integralx yL Lr r

scales of the r component in the across-wind and along-wind
directions, respectively; sr and lr = standard deviation and
decay factor of the coherence of the r component; xi and xj =
coordinates of point i and j in across-wind direction; and v =
2p f.

The components of the Sq and SZ matrices can be expressed
as

N N

*S (v) = H (v)S (v)H (v) (33)q Qb jlOO iki j kl
k=1 l=1

N N

S (v) = C S (v)C (34)Z ik q ilOOi kl
k=1 l=1

When the CSD between different generalized buffeting
forces are negligible in comparison with the PSD i.e.,S (v),Qbii

= 0 (i ≠ j), the component of Sq(v) becomesS (v)Qbij

N

*S (v) = H (v)S (v)H (v) (35)q Qb jkO iki j kk
k=1

When the aerodynamic coupling among modes is neglected,
i.e., Hij(v) = 0 (i ≠ j), is then given asS (v)qij

*S (iv) = H (v)S (v)H (v) (36)q Qb jjiii j i j

When both and Hij (v) (i ≠ j) are neglected, it be-S (v)Qbij

comes the following expressions, used in the conventional
mode-by-mode approach:

2S (v) = uH (v)u S (v); S (v) = 0 (i ≠ j) (37a,b)q ii Qb qii ii i j

The standard deviations are given by

` `

2 2s = S (iv) dv; s = S (iv) dv (38a,b)q q Z ZE Eii ii i i

0 0

EXAMPLE

A long-span suspension bridge with a center span of nearly
2,000 m is used to illustrate the multimode flutter and buffet-
ing response analysis. The logarithmic structural damping ratio
for each mode is assumed to be 0.02. Details concerning other
structural parameters are omitted for brevity. To simplify dis-
cussion of the fundamental characteristics of the flutter and
buffeting response, only the aerodynamic forces acting on the
bridge deck are involved. The aerodynamic parameters are as-
sumed to be uniform along the bridge axis, and the variations
due to static rotation are ignored. The bridge deck used in this
study is a typical streamlined section. The static coefficients
of the deck section are CD = 0.3230, dCD /da = 0, CL = 0.0942,
dCL /da = 1.905, and CM = 0.0104, dCM /da = 0.2717. The
flutter derivatives ; and ; are evaluated using* * * *H H A A1 4 1 4

the Theodorsen function. The other flutter derivatives ;*P 1

and are calculated by the quasi-steady* * * * *P , A , A , H , H ,6 5 6 5 6

theory. The terms xDu, xDw are given by Davenport (1962) with
a decay factor of 8, and xLu, xLw, xMu, xMw are given by the
Sears function. The spanwise correlations of buffeting forces
are assumed to be identical to the wind fluctuations. The mean
wind velocity is normal to the bridge axis, and su/U = 10%,
sw/U = 5%, = = 80 m, = = 40 m, and lu = lw =x y x yL L L Lu u w w

8. In addition, a rectangular cross section with an aspect ratio
B/D = 10 (B: body width; D: body depth) is also considered
FIG. 3. Rational Function Approximation of for Rectangu-*A 3

lar Cross Sections

FIG. 2. Rational Function Approximation of for Rectangu-*A 2

lar Cross Sections

in the flutter analysis for comparison. For this section, the
flutter derivatives ; and ; are determined* * * *H H A A1 4 1 4

experimentally (Matsumoto et al. 1995), and other dynamic
and aerodynamic parameters are assumed to be the same as
those used in the earlier example.

Rational Function Approximation

To illustrate the effectiveness of the rational function ap-
proximation of unsteady aerodynamic forces, a two-dimen-
sional section model system with vertical and torsional degrees
of freedom is considered here as an example. It can easily be
extended to multimode flutter calculation.

The self-excited forces are expressed in the following matrix
form:

1L 2b 0se 2= rU 2F G F GM 0 2b2se

2 2* * * *k (H 1 iH ) k (H 1 iH ) h/b4 1 3 2? 2 2F G F G* * * *k (A 1 iA ) k (A 1 iA ) a4 1 3 2 (39)

and the flutter derivative matrix is expressed in terms of the
rational function as

2 2* * * *k (H 1 iH ) k (H 1 iH ) 24 1 3 2 = A 1 A (ik) 1 A (ik)1 2 32 2F G* * * *k (A 1 iA ) k (A 1 iA )4 1 3 2

m
A ikl13

1 O ik 1 dll=1 (40)

Figs. 2 and 3 show the flutter derivatives and for* *A A2 3

rectangular cross sections with aspect ratios of B/D = 5, 10,
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FIG. 5. Frequency versus Wind Velocity (Streamlined Section)

FIG. 4. Comparison for Different Descriptions of Self-Excited
Forces

and 20. The experimental data points (Matsumoto et al. 1995)
are denoted by square, cross, and circle dots for B/D = 5, 10,
and 20, respectively. The rational functions for these sections
that have two lag terms are determined by linear and nonlinear
optimization and are represented by a dashed dotted line, a
dashed line, and a solid line, respectively. The results indicate
that the unsteady, self-excited aerodynamic forces can be rep-
resented by the rational functions with good accuracy.

Flutter Analysis

In order to illustrate the influence of the different descrip-
tions of the self-excited forces for arbitrary motion as ex-
pressed in (5) and (10), the changes in the frequencies and
damping ratios with wind velocity are compared as shown in
Fig. 4 for the bridge with a streamlined section. The circles
and solid lines represent the results using the frequency-de-
pendent state-space equation (7) and the frequency-indepen-
dent state-space equation (12), respectively. In these analyses,
only the fundamental symmetric vertical and torsional modes
(i.e., mode 2 and mode 10), the second and third symmetric
vertical modes (i.e., mode 8 and mode 11) are considered. The
results are in very good agreement and indicate that the dif-
ference in the descriptions of the self-excited forces is negli-
gible for the response analysis.

Various natural-mode combinations are used in the calcu-
lation to investigate the natural-mode participation in the mul-
timode flutter of the bridge with a streamlined deck section.
Figs. 5 and 6 show the variation of frequencies and damping
ratios with wind velocity corresponding to complex mode
shapes. In the cases without the lateral symmetric mode (i.e.,
mode 9), the damping of the branch developed from the fun-
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FIG. 8. Aerodynamic Damping due to Aerodynamic Coupling
among Modes (Streamlined Section)

FIG. 7. Amplitude of Coupled Flutter Motion along Bridge
Axis (Streamlined Section)

FIG. 6. Damping Ratio versus Wind Velocity (Streamlined
Section)

damental symmetric torsional mode becomes negative past the
flutter onset velocity. It is noted that higher vertical modes
(e.g., mode 8 and 11) do not significantly influence the flutter
conditions. Nevertheless, when mode 9 is included in the anal-
ysis, the flutter is initiated from this mode branch, although
the onset velocity is almost the same as that without this mode.
Above approximately 60 m/s, the frequency and damping of
mode 9 branch change with wind velocity along almost the
same path as mode 10 branch followed when mode 9 was not
included. From the magnitude of each natural mode included
in the mode 9 and mode 10 branches (Table 1), it is noted that
the torsional mode 10 dominates the mode 9 branch beyond
the flutter onset velocity (68.9 m/s). Fig. 7 shows the ampli-
tude of the vertical, lateral, and torsional displacements along



FIG. 9. Aerodynamic Damping due to Work Done by Self-Ex-
cited Forces (Streamlined Section)

the bridge axis in flutter motion. Since only the amplitude is
presented here, it should be noted that a phase shift exists
between response components.

Fig. 8 presents aerodynamic damping due to stiffness cou-
pling and damping coupling among modes. The sum of all
components equals the aerodynamic damping of the bridge. It
is obvious that the aerodynamic coupling between mode 2 and
mode 10—in particular, the stiffness-coupling corresponding
to the flutter derivatives —produces negative damping and*H 3

contributes strongly to the occurrence of flutter. Mode 9 has
only marginal influence on flutter. The analysis consisting of
the first fifteen modes was also conducted and gave the flutter
onset velocity as 69.3 m/s, which is very close to the result
given by the two-mode case (mode 2 and mode 10). It can be
concluded in most cases that the fundamental vertical and tor-
sional modes are the dominant modes for the multimode flut-
ter. Their aerodynamic coupling, induced by the coupled self-
excited forces, drives the system with negative damping past
the flutter onset velocity.

Fig. 9 indicates the contribution of the work done by the
aerodynamic forces along the bridge axis to the system damp-
ing. The sum of all components along the bridge axis equals
the aerodynamic damping of the bridge. It can be seen that
the coupled self-excited forces and i.e., the lift in-L M ,sea seh

ducted by the torsional motion and the moment induced by
the vertical motion acting on the center span, are the main
source of introducing negative damping to the bridge. There-
fore, for the purpose of improving the coupled flutter stability,
it is important to reduce the coupled self-excited forces and
the aerodynamic stiffness by modifying the configuration of
the bridge deck section and/or to reduce the structural coupling
by modifying the dynamic characteristics.

Since the changes in deck shape and structural parameters
do not affect the sign of the phase shift between vertical and
torsional motions in the coupled flutter motion, and do not
affect the sign of the flutter derivatives (except for for*A2

relatively bluff sections and that may show very small*H 2

negative values, as in the case of airfoil), the conclusions re-
lated to the effects of aerodynamic coupling on the coupled
flutter are valid for most bridges.

Figs. 10 and 11 show the results of the bridge with a rec-
tangular deck section with an aspect ratio of B/D = 10. In this
case, since the associated with torsional aerodynamic*A2

damping changes from a negative value to a positive one as
the wind velocity increases, the damping driven flutter occurs
at the onset velocity of 48.8 m/s when only the single torsional
mode is considered. However, the coupling between the ver-
tical and torsional modes also introduces negative damping
and thus reduces the onset velocity to 40.7 m/s when the ver-
tical mode is included in the analysis (Fig. 11). However, the
FIG. 12. Amplitude of Coupled Flutter Motion along Bridge
Axis (Rectangular Section)

FIG. 11. Damping Ratio versus Wind Velocity (Rectangular
Section

FIG. 10. Frequency versus Wind Velocity (Rectangular Sec-
tion)

coupled vertical motion is much smaller than that of the
streamlined deck section (Fig. 12).

Figs. 13 and 14 indicate that the coupled forces andLsea

particularly the damping coupling terms correspondingM ,seh

to the flutter derivatives and provide negative aero-* *A H ,1 2

dynamic damping. Because the sign of the phase shift between
the vertical and torsional motions is opposite to that of the
streamlined section, the stiffness coupling shows a stabilizing
effect in this case. Fig. 15 shows the aerodynamic damping
due to the work done by the self-excited forces at a wind
velocity of 50 m/s. Along with and also pro-L M , Msea seh sea

duces negative damping because of the positive value of *A .2

It is obvious that even when a single-mode flutter would occur
at a given wind velocity, the coupling effects may result in a
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FIG. 13. Aerodynamic Damping due to Aerodynamic Cou-
pling among Modes (Rectangular Section)

FIG. 14. Aerodynamic Damping due to Work Done by Self-Ex-
cited Forces (Rectangular Section)

FIG. 15. Aerodynamic Damping due to Work Done by Self-Ex-
cited Forces (Rectangular Section)

lower flutter onset velocity. Similar results have been illus-
trated in wind tunnel testing for two-dimensional H-shaped
sections (Karman and Dann 1949). In such a case, the mode-
by-mode analysis approach would lead to nonconservative re-
sults for the onset wind velocity prediction, as compared to
the multimode method.

Buffeting Analysis

The first 15 natural modes are considered in the buffeting
response analysis. Fig. 16 indicates the influence of aerody-
namic coupling among modes on the modal damping as the
mean wind velocity increases. The solid lines and dashed lines
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FIG. 17. Transfer Functions of Modal Responses

FIG. 16. Damping Ratio versus Wind Velocity (—— with Cou-
pling; – – – – w/o Coupling)

are the results with and without coupling, respectively. There
are some significant differences noted at higher wind veloci-
ties, particularly in the vertical and torsional coupled mode
branch. Fig. 17 shows the transfer functions between the gen-
eralized modal forces and the generalized modal response co-
ordinates such as H2,2 and H2,10 at a range of wind velocities
(e.g., H2,10 represents the transfer function between the gen-
eralized modal force in the tenth mode and the generalized
modal displacement in the second mode). The dashed line also
gives the results without the aerodynamic coupling at a mean
wind velocity of 60 m/s. It can be seen that the term H2,2 also
consists of a component from the torsional mode branch at the
torsional mode frequency due to aerodynamic coupling. The
term H2,10, which is always ignored in the conventional method



FIG. 18. RMS of Responses at Center of Main Span

without the aerodynamic coupling, cannot be neglected at
higher wind velocities.

The RMS values of the displacement at the main span center
are shown in Fig. 18. The solid lines and the dashed lines
indicate the results with (33) and without (36) aerodynamic
coupling, respectively, including the CSD of the generalized
buffeting forces, ≠ j; i, j: mode number). Circles andS (v) (iQbij

crosses represent the results with (35) and without (37) aero-
dynamic coupling, respectively, excluding (i ≠ j; i, j:S (v)Qbij

mode number). It is obvious that the aerodynamic coupling
strongly affects the buffeting response due to self-excited aer-
odynamic forces at higher wind velocities, and that the buf-
feting response will be underestimated using the conventional
mode-by-mode analysis approach. The results also suggest that
omission of the CSD between different generalized buffeting
forces in the analysis does not significantly influence the re-
sponse predictions.
CONCLUDING REMARKS

A frequency-independent state-space equation is derived to
represent the equation of motion by expressing the self-excited
forces in terms of rational function approximations. This for-
mat is used for flutter analysis by solving the complex eigen-
value problem to determine the frequencies, damping ratios,
and mode shapes at different wind velocities. This approach
does not need any iterative calculation. Therefore, the identi-
fication of a target mode at each step for each mode branch
calculation, as needed in the conventional approach, can be
avoided to promote computational efficiency.

The aerodynamic coupling among modes and its damping
or exciting roles are investigated from the viewpoint of system
energy in order to gain insight into the understanding of mul-
timode flutter and its generation mechanism. Through the use
of an example long-span suspension bridge with a streamlined
deck section, it is concluded that the dominant modes for most
coupled flutter are the fundamental symmetric vertical and tor-
sional modes. The coupled self-excited forces acting on the
center span are the main source of negative damping that leads
to flutter. Therefore, for the purpose of improving the flutter
stability, it is important to reduce these destabilizing coupling
effects. It is also emphasized that even in the case of relatively
bluff deck sections, where the damping driven flutter domi-
nated by a single mode would occur, the coupling effects may
result in the occurrence of flutter prior to the onset velocity
predicted by the conventional mode-by-mode approach.

The buffeting response of vertical and torsional motions in-
dicates strong aerodynamic coupling at higher wind velocities.
This coupling affects both the aerodynamic damping and the
mode shapes. The conventional mode-by-mode method ig-
nores the aerodynamic coupling among modes, which can lead
to an underestimation of results. The cross spectra between
different generalized buffeting forces seem to have little influ-
ence on the buffeting response even when the aerodynamic
coupling is strong. Therefore, the cross spectra can be ignored
for computational simplicity.
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