SIMULATION OF MULTIVARIATE NONSTATIONARY RANDOM
PROCESSES: HYBRID DFT AND DIGITAL FILTERING APPROACH
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ABSTRACT:

A numerical simulation scheme is presented that combines the advantages of the discrete Fourier

transform algorithm and a digital filtering scheme to generate nonstationary multivariate random processes. The
resulting time histories provide piecewise continuous evolutionary spectra and the proposed simulation technique
offers significant computational efficiency. The effectiveness of the proposed technique is demonstrated with
examples. The simulated records are in excellent agreement with the prescribed probabilistic characteristics. The
proposed technique has immediate applications to the simulation of ground motions, evolutionary sea states, and

fast-moving gust fronts.

INTRODUCTION

The nonstationary characteristics are observed in many ran-
dom environmental load effects, that is, their amplitudes and/
or their frequency contents are time dependent. Typical ex-
amples include atmospheric turbulence during the passage of
a weather front, evolutionary sea states, and seismic excitation.
The evolutionary characteristics of such a random process are
described by Priestley’s model (Priestley 1967)

) = f A(t, w)e™ dZ(w) (1)

where A(f, @) = a modulating function; and dZ(w) = an or-
thogonal increment process satisfying

EldZ(0)] =0
E[dZ(w)) dZ(w,)] = P(w)8(w, — w,) dw; dw,

Accordingly, the definition of the evolutionary power spectral
density (PSD) is given by

S(t, w) = |A¢, w)'D(w) 2

Following the preceding definition of the evolutionary PSD,
several models have been proposed for generating nonstation-
ary processes. The numerical integration of (1) by discretizing
the evolutionary spectrum in the frequency domain is an ob-
vious choice. However, this is not a numerically efficient ap-
proach.

The simulation of nonstationary time series can be simpli-
fied by describing a nonstationary time history in terms of
processes modulated by time-varying functions. Following
Grigoriu et al. (1988), Yeh and Wen (1990) expressed earth-
quake-induced ground motion as a frequency-modulated pro-
cess multiplied by a deterministic time-varying function. It is
noted that these models, which describe frequency modula-
tions, do not necessarily have evolutionary PSDs, rather they
are represented by instantaneous spectra. Saragoni and Hart
(1974) partitioned the processes into several segments and pro-
posed a piecewise stationary model. This representation intro-
duced abrupt changes that are difficult to justify in the light
of physical processes. An extension of the Saragoni-Hart
model was proposed by Der Kiureghian and Crempien (1988).
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They described the model as a summation of modulated
banded white noise. Li and Kareem (1991) also used the mod-
ulated stationary time series concept. A nonstationary process
was expressed as a sum of mutually correlated stationary pro-
cesses modulated by a deterministic time function. The spectra
of the stationary processes and the deterministic modulating
function can be obtained by matching a prescribed evolution-
ary spectrum. The time simulation an be performed by using
a numerically efficient fast Fourier transform (FFT) algorithm.
Besides the preceding examples, the concept of a modulated
stationary process centered at narrow-banded frequencies to
model ground motion has been used by others, including Ka-
meda (1975), Scherer et al. (1982), Preumont (1985), and
Scherer (1994). Grigoriu (1993) presented a new probabilistic
model to simulate realizations of general nonstationary Gaus-
sian processes using random trignometric polynomials.

Recently, the popularity of wavelets due to their retention
of both time and frequency information has led to the simu-
lation of nonstationary processes using wavelet transforms
(Kareem et al. 1993; Gurley and Kareem 1994). The method
is again based on the concept of a modulated stationary pro-
cess centered at narrow-banded frequencies to model ground
motion. In this representation, each component process is
modulated by a different modulating function. This approach
is used to simulate ground motion records. The statistical and
spectral features of the parent and simulated records exhibit
good comparisons (Gurley and Kareem 1994).

The application of modulation-based methods may be lim-
ited because the modulating functions may not be easily found,
or a large number of functions may be required to match the
given time records or prescribed evolutionary spectra.

The digital filtering approach offers an efficient alternative
means of simulation. The nonstationary time series can be gen-
erated by a digital impulse or by a filtered white noise (Lin
and Yong 1987; Shinozuka and Deodatis 1989). Autoregres-
sive and moving-averages models offer improved accuracy
and efficiency [e.g., Kozin (1988), Conte et al. (1992), Cak-
mak et al. (1985), Polhemus and Cakmak (1981), Deodatis
and Shinozuka (1989), and Gersch and Kitagawa (1985)].
However, the determination of parameters in the digital filters
may become difficult for accurate representation of the evo-
lutionary spectra. Other models based on the output of a time-
variant linear filter to stationary white noise are available [e.g.,
Safak and Borre (1986)]. Simulation based on these models
involves numerical difficulty, particularly when the target
spectra are characterized by multiple peaks. The simulation of
response-spectrum-consistent ground motion is presented in
Spanos (1983).

The theoretical background of random processes with non-
stationary probabilistic characteristics is omitted here for the
sake of brevity. For additional background, a sample of related
references is provided: Priestley (1967), Mark (1986), Lin and




Yong (1987), Lin (1967), Li and Kareem (1988), Sun and Ka-
reem (1989), Madsen and Krenk (1981), Borino et al. (1988),
Roberts and Spanos (1990), and Soong and Grigoriu (1993).

The present paper concerns the development of a simulation
technique for nonstationary processes based on a recently de-
veloped technique for stationary processes that uses a hybrid
combination of discrete Fourier transform (DFT) and digital
filters (Li and Kareem 1993). This approach is especially
suited for efficient simulation of a large number of sample time
records of nonstationary processes. In the time domain anal-
ysis of structural response to nonstationary excitation, a large
number of input time histories are needed for obtaining statis-
tical averages due to lack of ergodicity. This requires ensemble
averages in contrast with temporal averages used in ergodic
cases. Therefore, an efficient simulation scheme becomes an
essential tool for analysis. The time histories are generated
directly from the evolutionary spectra, that is, the modulating
functions or model parameters are not explicitly evaluated as
noted earlier for the techniques based on modulated processes.

THEORETICAL BACKGROUND

For the sake of illustration, let us consider a univariate sta-
tionary Gaussian process y(f) with a single-sided spectral den-
sity function G(f)

Y0 £ V26(f)sfeie™™ lim 3)
& =0

k=0

where f, = k8, 8f = frequency resolution; and €, = a complex
Gaussian random process that satisfies the following:

E[e.ef] = By (C))]

and d, represents the Dirac delta function.

Similarly, a nonstationary random process with evolutionary
PSD, G(f, 1), can be expressed as [e.g., Shinozuka and Deo-
datis (1988)]

Y0 ¥ 3 (V26U 08)ere”™ lim )

k=0

The preceding expression for the simulation of nonstationary
univariate processes can be conveniently extended to multi-
variate processes following the approach used for multivariate
stationary processes. For example, stationary multivariate (N)
correlated processes can be simulated based on the prescribed
cross-power spectral density matrix G(f) of dimension (N, N)
[e.g., Shinozuka (1963)]

N =

Y® E D D VD (feue™ J,T, (6)

j=1 k=0

where E[€,€f] = 8,8, . In the preceding equation, D,(f) =
the element of the ith row and jth column of the complex
matrix D(f)

G(f) = D(f/H)D*(f) 6]

where the asterisk denotes conjugate and transpose of a matrix.
Accordingly, the evolutionary cross-spectral density matrix
G(f, t) leads to the following expression for a nonstationary
process:

Y0 E DD VDL S, DERE™ lim @)

j=l k=0

where Dy(f, t) = an element of D(f, 9
G(f, 1) = D(f, nD*(£, 1) )]

For numerical implementation (8) is recast by truncating the
summation to a finite number

N N,

MOEDD 2 V25, Dy(for DERe™™ (10)

j=1 k=0

For the nonstationary process given in (8), the cross-corre-
lation between two components is given by

Re(t, 7) = ELy, Oy ¢ + )] an

After some mathematical manipulations the preceding cross-
correlation can be expressed in terms of the evolutionary spec-
tral matrix as

Rt, =SS Do t + DD (o 0”8 (12)

j=l k=0

The computational effort involved in the simulation of a re-
alization of a nonstationary process is quite significant due to
the summation of a large number of complex functions in (8).
The need for a large number of frequency intervals for accu-
rate representation of spectral contents results in additional
computational demand. This computational difficulty is further
compounded by the need to simulate many realizations for
subsequent response analysis due to the lack of ergodicity.
Simulation of vector fields would add to the overall compu-
tational effort.

One of the drawbacks of this approach is that the simulated
process is periodic, with a period of 1/8f (Shinozuka 1972).
The periodicity can be eliminated by using a variable fre-
quency interval. Another shortcoming stems from the major
computational effort needed for a multivariate process. From
spectral considerations, the PSD of the simulated process does
not duplicate the target spectral density. The resulting esti-
mated evolutionary spectral matrix, G(f, ), is given by

G(n= 2 G(f., D3(f —~ f0) (13)

It is obvious that the simulated spectrum has a spiky structure.
A lack of continuity in the spectral description may limit the
use of generated data.

In the case of stationary processes, the preceding simulation
scheme may be realized by the FFT in which 8f = 1/T, where
T is the total duration of the process to be simulated. In the
limiting case, the discrete spikes approach the continuous
spectral description. However, due to the time-variant nature
of the evolutionary process, the application of the straightfor-
ward FFT is not possible. To facilitate the use of the FFT
algorithm, Li and Kareem (1991) proposed to decompose the
evolutionary spectra in terms of a trignometric or polynomial
expansion as given here

N

Dy(fi )= 2, D, i (ODy(f) (14)

Jj=1 =l

In this manner, the evolutionary spectra are decomposed into
products of the deterministic time functions {,(f) and spectra
of stationary random subprocesses, Dy, ( f). Details are omitted
here. For additional information, interested readers may refer
to Li and Kareem (1991). The desired time history of a com-
ponent of a multivariate nonstationary process according to (8)
is given by

N N,
ORI A0, 15)
Jal pml

where Y, (f) = a stationary random process that can be simulated
by an FFT-based algorithm utilizing D;,(f). In this manner, a
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nonstationary process becomes the sum of a stationary sub-
process Y, () modulated by a deterministic time function s,
(2). Theoretically, almost any evolutionary spectral density ma-
trix can be decomposed according to (14). In Li and Kareem
(1991), examples of the El Centro and Nagata earthquakes are
given to illustrate this methodology. Also included in Li and
Kareem (1991) is a numerical scheme that facilitates such a
decomposition in the case where only data points are available
to describe the evolutionary spectral characteristics. In excep-
tional cases where complicated amplitude and frequency mod-
ulation is present, the decomposition order N, may become
large, which may influence the computational efficiency of this
FFT-based approach. However, for such events, even the sim-
ple trignometric summation approach would require extremely
fine discretization, which causes a very high computational
demand.

In this paper, a new approach based on the concept of mod-
ulated discrete Fourier series that uses a hybrid combination
of the FFT algorithm and a digital filtering scheme is pre-
sented. This approach has already been successfully imple-
mented for the simulation of continuous stationary multivariate
random processes of very long duration (Li and Kareem 1993).
The simulation of such long records otherwise imposes a very
heavy demand on the computer memory (Li and Kareem
1993).

MODULATED DISCRETE FOURIER SERIES
APPROACH

The concept of modulated discrete Fourier series is intro-
duced by considering first a univariate nonstationary process.
The target spectrum is expressed in terms of a weighted sum-
mation of triangle-shaped spectra

G(f, B = Y, G(rAf, DGI(S) (16)

where G,(f) = a triangle-shaped spectrum with a unit height
at the frequency rAf. The frequency axis is divided into N,
equal nonoverlapping segments. The spectrum G/(f) is de-
scribed by

G(fy=1- ﬂ&}:—ffor r— DAf = f<rif (17a)
Gi(f) =1 —f_A——;Affor rAf = (f< (r = 1)Af  (17h)
G/(f) = 0 otherwise (17¢)

As noted in Fig. 1, the summation of these triangles according
to (16) form a piecewise continuous spectral density function
G(f, 1). For large N,, the target and the modeled spectra be-
come very close. The task in hand is to simulate processes that
conform to the spectrum described in (16). The simulation
would involve a summation of N, uncorrelated subprocesses.
The rth subprocess is a product of a deterministic time func-
tion VG(rAf, 1) and a stationary process y,(¢), consistent with
the spectrum G,(f). Accordingly, the desired nonstationary
process is given by

N,
YO = X, VGBS, nyi® (18)
ra{)

Direct simulation of y/(#) from G/(f) is not convenient.
Therefore, an alternative approach is proposed. Let us define
stationary complex random processes A(f) with r =0, 1, ...,
N,. The one-sided PSD of their real and imaginary parts is
characterized by a right triangle shape given by
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FIG. 1. Spectrum Represented by Modulated Fourier Series

Guf)=2 (1 - Aif) for 0 < f < rAf

and
G.(f) = 0 otherwise 19)

Both the real and imaginary parts of A,(¢) are statistically in-
dependent stationary Gaussian processes that satisfy

E[A(NAX)] = 2Af3,, (20

A frequency shift can transform A, (f) into y;(?)
YI(E) = Ade’™ for r £ 0 (21)
YO = 0.54,() for r= 0 (22)

In this manner, y;(¢) is a stationary Gaussian process by virtue
of the real and imaginary parts of A,(r) being stationary Gaus-
sian processes and mutually orthogonal as described by (20).
The single-sided spectra of y,;(¢) and A,(¢) are related according
to the following

1
Gi(f) =35 Guf = rAfD
for r£0 and (r — DAf<f< (r + DAf, and
1
Gi(f) = 5 Ga(f)

for r = 0 and f < Af. Outside the preceding frequency range
Gi(f)=0 (23)

The shift in frequency contents of the spectra G,(f) and
GI(f) by €™ is illustrated in Fig. 2. Now, the process y(f)
given by (18) can be simulated by

N,
Y0 2 VGRS, nALe (24)
r=Q

The preceding mathematical manipulations have resulted in
(24), which has a form similar to (5), except that function A,(¢)
modulates both the amplitude and the phase in such a way that
the target spectrum is piecewise continuous rather than spiky
as in (5).

Let the time increment of the desired simulation be 8¢. The
corresponding Af is chosen such that

1
M= 2A 5t

where M = an integer and is used to calculate a complex co-
efficient vector S,,

25




Sp=e™ m=0,12...,2M — 1 (26)
Expressing (22) in discrete time steps and substituting (24)
provides

yndr) £ D \V/G(rAf, ndnA(ndDS,, @7

where m = the remainder of (nr)/(2M). The purpose of manip-
ulating (24) to obtain (27) in which ¢?™¥" is replaced by S,
is to reduce unnecessary repetition in the evalvation of trigo-
nometric functions, since e/”™* = 2"V Therefore, we
need to evaluate certain trigonometric functions once and they
can be subsequently used for different time steps.

The preceding formulation for a univariate process can be
extended to multivariate processes. Let us consider the case of
N multicorrelated random processes with prescribed spectral
characteristics, e.g., G(f, ), the evolutionary cross-spectral
density matrix (N, N). This matrix can be factorized as given
in (9). This concept of decomposition has been used by Li and
Kareem (1991, 1993, 1995) for the modeling of random linear
and quadratic systems. Central to this technique is the decom-
position of a set of correlated random processes into compo-
nent random processes, such that the relationship between any
two subprocesses yy, () and y,(f) is fully coherent for p = A
and noncoherent if p. # \. In the present context, fully coherent
and noncoherent imply coherence equal to unity or zero, re-
spectively. The decomposed processes are related to the parent
process by

N
()= D yulf) (28)

where y,,.(f) represents the pth component process associated
with the ith element. Hence, each random process y,(f) is
viewed as a summation of mutually noncoherent component
subprocesses. In the frequency domain, the component pro-
cesses are expressed in terms of a decomposed spectrum rep-
resented by the elements of matrix D(f, #) in (9).

Once the target process is decomposed into the component
subprocesses, which are either fully coherent or noncoherent,
the simulation of correlated processes can be accomplished by
applying (28). The ith component of the multivariate process
is given by

N N,
yind)) E DD D, (rAf, ndDA, (n80)S,, 29)
j=1 r=0

where Dy( ) is defined in (9), and A, (ndf) = a complex mod-
ulating function whose real and imaginary parts are Gaussian
random processes. Their spectral description is given in (19)
and the processes are statistically independent

E[A(DATAD] = 28, 8,Af (€lY)

DOUBLE-SUBSCRIPTED DISCRETE CONVOLUTION

The efficiency of simulation using (29) depends on the gen-
eration of the stationary processes, A, (ndf) for r=0, 1, ...,
Ny,andj=1,2,...,N,andn=0, 1, 2, ..., . One efficient
way of simulating A, (n8f) is with a double-subscripted dis-
crete convolution to filter a white-noise process to obtain the
desired spectral features. Li and Kareem (1993) developed this
technique for simulating a stationary Gaussian vector process.
A detailed derivation of this approach can be found in Li and
Kareem (1993). In this paper, simulation appropriate in the
context of nonstationary signals is presented.

The basic form of the double-subscripted discrete convo-
lution is given by

AJBM + @)l = D, CulB + K E))

k=—Ng+1

where £ = a complex Gaussian white-noise process with sta-
tistically independent real and imaginary parts E[g;(K)g;(k")] =
8, 0u; Cu = weights of the double-subscripted convolution
with=0,1,2,...,%a=01,2,...,M—1(Ge,n=
BM+ a)andk=—-N,+1,-N.+2,...,0,1,2,..., Ny
M has been defined earlier; and N, = order of the discrete
convolution. The convolution weights C,, are derived based
on the desired target spectrum. For the spectral description
given in (19), the following weights are derived by taking the
DFT of (31)

N1 _
Cu=— %[1 +2 > V1= liN,cos <wM>]
=1

N, NeM
(32)

Detailed derivation of (32) is given in Appendix 1. Like any
discretized operator, an agreement between the target and pre-
scribed spectra is improved as N, increases. Numerical exper-
iments suggest that for N, = 2, a sufficiently good agreement
is obtained that involves only four multiplications in (31).
Generally, the double-subscripted convolution results in a non-
stationary process. However, if the convolution coefficients
satisfy certain conditions, A,(r) results in a stationary, ergodic,
Gaussian process. The coefficients given in (32) satisfy these
conditions. In Li and Kareem (1993), details concerning the
conditions under which a double-subscripted convolution leads
to a stationary random process are presented.

NUMERICAL EXAMPLES

In this section, examples concerning simulation of earth-
quake ground motions are used to demonstrate the effective-
ness of the simulation technique presented. The first example
concerns the north-south (N-S) component of the Dec. 30,
1934, El Centro earthquake. The single-point evolutionary
PSD is given by (Liu 1970; Deodatis and Shinozuka 1988)

exp(—at) — exp(—br)
max[exp(—at) — exp(—b1)]

G f)= { } K(f) (33)

where a = 0.25; b = 0.5; and K(f) = Kanai-Tajimi spectrum
expressed by

fetragff
(f* =1 +4&fes
where the parameters are S, = 0.1 cm® s7°; f, = 15/27 Hz; and
& = 0.25.

R(f)=4wS,

(34)

2

nrAf HE

Spectra

(=7 ]

/ \ | —
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Frequency ( Af=0.1)

FIG. 2. Frequency Shift
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Similarly for the east-west (E-W) component of the same
earthquake (Liu 1970), the single-point evolutionary spectrum
was analytically described by Deodatis and Shinozuka (1989)

VK.(f)

exp(—at) — exp(—bt)
max[exp(—at) — exp(—bt)]

t-m?. =\

e [ 20° ] ot } (%)
where K (f) and K,(f) satisfy the Kanai-Tajimi spectrum in
(32). The parameters in the Kanai-Tajimi spectrum remain the
same with the exception that f, = 30/2m Hz in K,(f); a and b
have the same values as in the preceding example; m = 5.0 s;
and ¢ = 1.0 s.

To introduce multipoint (multivariate) features, the model is
extended based on the empirical relationship for the cross-
spectral density function given by Harichandran and Van-
marcke (1986)

Gi(f, )= {

Gy(f) = Gu(£)p(vy fIexp (—jhf%) (36)
i

where v, denotes the distance between the ith and the jth lo-
cations; Vj, represents the apparent wave propagation velocity
along the direction between the ith and jth locations; and p
(vy», f) = the coherence function, given by

p(vy f)=aexp [— ﬁj—(l —a+ cxa)]

2v;
0(f)
and 8(f) = k[l + (f/£)1" (37a,b)

where the parameters are a = 0.736; ¢ = 2.78; a = 0.147; k =
5,210 m/s; and f, = 1.09. The simulation scheme presented
here is not restricted to the preceding description of multivar-
iate processes. Any other formulation of this feature is equally
applicable.

Both earthquake records are simulated at a time increment
of 0.02 s for 20 s duration. The frequency resolution is 0.5
Hz, and 16 nonoverlapping segments are used to describe the
desired spectrum. The order of the double-subscripted con-
volution used is equal to 2. On the average, at each time step
of each time history, less than 100 multiplications and one
random number are required. Accordingly, less computational
effort is needed than in the summation of the large number of
trigonometric functions used in conventional simulation.

This approach facilitates the efficient simulation of hundreds
of ground motion time records used to estimate ensemble av-
erages of corresponding structural response estimates. The
simulated records are validated by comparing the correlation
structure of the simulated and target processes. The estimated
correlations represent ensemble averages of the correlations at
each time instant involving 100 simulated time histories. The
target correlations are directly obtained from (12).

In Figs. 3 and 4, the N-S and E-W components of the El
Centro earthquake are presented at locations 1 and 2, which
are 150 m apart and v; = 2000 m/s. In Figs. 5 and 6 the auto-
and cross-correlation functions for various time lags are pre-
sented for both the N-S and E-W components, respectively.
Fig. 5 details auto- and cross-correlation for the N-S compo-
nent for time lags of 0.0, 0.04, 0.1, 0.3, and 0.5 s. Also plotted
are the corresponding target functions; the results show very
good agreement. The estimated correlations can be further
smoothed by increasing the number of sample time histories
used for ensemble averaging.

Similar agreement between the correlations of the target and
simulated processes is found for the E-W component and re-
ported in Fig. 6.

+ (1 —a)exp [— (1—a+aa):|
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FIG. 3. Sample Time Histories of Ground Motion of N-S 1934
El Centro Earthquake
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FIG. 4. Sample Time Histories of Ground Motion of E-W 1934
El Centro Earthquake

It has been noted in the case of AR(P) models that the
simulated nonstationary time series have the exact cross-cor-
relation matrices up to the time lag of (P — 1)Ar. At the re-
maining time lags, the cross-correlation matrices may be es-
timated through the maximum entropy approach. Hence only
an AR model with suitably large values of P will provide the
evolutionary auto- and cross-correlation functions close to the
prescribed one. The straightforward application of the AR
models for the evolutionary processes may have limitations.
The approach presented in this paper offers an excellent match
between the simulated and target correlations for large time
lags as noted in Figs. 5 and 6. For nonstationary random pro-
cesses that are characterized by a very narrow peak in the
evolutionary spectral density, the number of segments needed
to accurately describe the spectral description increases, which
may compromise the computational efficiency. Such narrow
spectral peaks are evidenced in seismic activity like the 1964
Nigata earthquake, in which soil liquefaction led to low-fre-
quency oscillations in the signal that resulted in a narrow peak
in the spectrum. It is noted that accurate simulation of such
processes by conventional approaches also requires consider-
able additional computational effort.

COMPARISON BETWEEN SIMULATION SCHEMES

In this section a comparison between simulation of nonsta-
tionary processes by summation of trigonometric functions and
simulation by the hybrid DFT and digital filtering approach is
made. In the time domain analysis of structural response to
nonstationary excitation, a large number of input time histories
is needed for obtaining statistical averages due to the noner-
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FIG. 5. Ground Motion for N-S of 1934 El Centro Earthquake: (a) Autocorrelation; (b) Cross Correlation

godic nature of the processes involved. This requires ensemble
averages in contrast with temporal averages that are used in
ergodic cases. For explanation of computational efficiency, we
compare the average number of multiplications per time step
required by the present method and the conventional summa-
tion of trigonometric functions method. A single-point simu-
lation is considered for simplicity in the discussion.

By the present method, the amplitude \/ G(rAf,nds) and
trigonometric function S,, [see (26)] can be evaluated at the

beginning of the simulation and repeatedly used for all the
sample time records. The time used in computing these two
parameters is negligibly small after averaging per time step.
The number of multiplications at each time step in (29) and
(31) is only (N, + 1)(4N, + 5), and the average number of
random numbers generated is 2(N, + 1)/M. In terms of com-
putational effort, generation of one random number is approx-
imately equivalent to 20 multiplications. For our example, we
use N, = 16, N, = 2, and M = 50. Then, on the average, 221
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FIG. 6. Ground Motion for E-W of 1934 El Centro Earthquake: (1) Autocorrelation; (b) Cross Correlation

multiplications are required for the simulation of each time
step for each record.

In conventional simulation by (10), as has been pointed out,
fi cannot be uniformly distributed. Otherwise, the simulated
time records present N, spectral peaks. For better statistics ob-
tained from ensemble averaging, f, should be altered with dif-
ferent sample records. Hence, at each time step of each sample
record, both D(f,, #) and g,e”*™ for k = 1, ..., N, must be
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recomputed. The former may involve 20 multiplications. The
latter can be computed as a cosine function. Invoking the built-
in cosine function requires a CPU time equivalent to six to 50
multiplications, including address searching. Let N, in (10) be
100. Then at each time step, the equivalent number of multi-
plications is on the order of 5,000. The present method can be
20 times faster than the conventional one. This drastic im-
provement in computational effort becomes more significant




for multivariate simulation used for long-span structures,
where the spatial coherence of random fields is important for
simulation of loads on structures (e.g., earthquakes).

CONCLUDING REMARKS

A computationally efficient FFT-based procedure for the
simulation of evolutionary multivariate random processes is
presented. A modulated Fourier series representation of the
evolutionary characteristics combined with the double-sub-
scripted convolution concept is used in the simulation process.
The resulting simulated process not only provides a piecewise
continuous spectrum as opposed to a spiky spectrum obtained
from conventional simulation based on the summation of trig-
onometric functions, but also offers significant improvement
in computational efficiency. The effectiveness of the proposed
technique is demonstrated by means of two examples using
analytical description of ground-motion-encompassing char-
acteristics of actual earthquakes. The simulated records exhibit
excellent agreement with the prescribed probabilistic charac-
teristics (e.g., correlation structure). The simulation procedure
is computationally efficient, particularly for simulating large
numbers of multiply-correlated nonstationary random pro-
cesses needed for ensemble averaging to evaluate response sta-
tistics. Applications of this procedure are immediate for the
simulation of evolutionary sea states and gusts associated with
a fast-moving gust front and in conditional simulation of non-
stationary processes.
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APPENDIX |. DERIVATION OF EQ. (32)

In this section a derivation of (32) is provided to detail the
background and procedure so that the paper becomes self-ex-
planatory. For the sake of illustration, rewriting (31) for a uni-
variate case

Ny
AIBM + a)drl = D) CutB + k) ¢8)
k= =Np+1
wherea=0,1,2,... M- 1;8=0,1,2,... ,N;— 1;

and € is a complex Gaussian White noise with statistically
independent real and imaginary parts E[e(K)e(K')] =
Transforming both sides of (38) provides

Ap) = C(pe(p) (39)
where
No_, M—1
Ap) i > AIBM + aydrlexp [sz w] (40a)
B0 a=0 NgM
Ny
C(p) = 2 2 Cax EXP []217 (@~ kMp ] (40b)
=—Ny+1 am0 NBM

&p) = 2 E(B) exp [1211 @] 400)
B

B=0

Let us define 8f = 1/(N,M3¢) and the spectrum of A and &

_ E[A(pA*(p)]

Sa(pdf) = TN MRS (41a)
_ E[&(p)E*(p)]

S(pdf) = Ny 41b)

We can express

SA(p¥f) = H(pdF)S(pdf YH*(pdf) (42)

where H(pdf) = C(p)/M as the transfer function of the double-
subscripted convolution. Therefore

MN,
_1 R —j2m(o —kM)p
“= N L H(pdf)exp [ NoM ] 43)
Eq. (43) can be simplified as
MN,
S U B —j2m(a — kM)p
Cu = 2N, ,._;,;,_1 Hrexp [ 2NM ] @4
where 8'f = [N /(2N)18f. Following (19) and G.(f) = 1/Af
and
208 = _lwl
H(I3'f) = 2Af (1 Af) 45)
Recall that Af = 1/(2M8¢) [from (25)], hence
e A
5= (46)

Therefore, the transfer function can be expressed

H(¥f) = 4 [2Af (1 - %I), 0=<|l|=N,=0; otherwise
k

47)
This leads to

C“*EN_I; Af[l +2 E \/—' ('"(kM— a)l)]

(48)

Following the preceding procedure, an extension to a multi-
variate case is immediate.
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