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ABSTRACT:

This technical note outlines the treatment of a single-degree-of-freedom (SDOF) system containing

statistically symmetric nonlinearities in both its stiffness characteristics and its excitation. Via equivalent statis-
tical cubicization, the nonlinearities that are not in polynomial form are cast as polynomials containing first-
and third-order terms. This allows the use of a Volterra series approach that yields a system of two differential
equations for the first- and third-order components of the response. Transforming this system into the frequency
domain produces transfer functions from which power spectral density and statistics up to the fourth order may
be obtained for the system response. Finally, using the statistics within the framework of a moment-based
Hermite transformation model yields an estimate of the non-Gaussian probability-density function (PDF) for the

system response.

INTRODUCTION

In previous work by the writers, it has been shown that the
method of equivalent statistical cubicization, in tandem with
the Volterra theory, can be an effective tool for developing the
power spectral densities, response statistics, and probability
density functions (PDFs) for systems containing statistically
symmetric nonlinearities in their excitation or in their system
characteristics (Kareem and Zhao 1993, 1994; Tognarelli et al.
1995, 1997). Here, it will be shown that this method works
well when a statistically symmetric nonlinearity is present both
in the excitation and in the system itself. To the writers’
knowledge, this is the first treatment of such a pair of non-
linearities using the present techniques. Equivalent statistical
linearization and quadratization techniques fail to capture im-
portant response features introduced by statistically symmetric
nonlinearities. Indeed, in such cases the method of equivalent
statistical quadratization reverts to the method of equivalent
statistical linearization, which can reflect neither non-Gaussian
characteristics of the response nor the modified frequency
character of response introduced by the presence of statisti-
cally symmetric nonlinearities. Conversely, equivalent statis-
tical cubicization has been observed to overcome such short-
comings via the statistically symmetric nature of the cubic
approximating polynomial that it introduces. Thus far, how-
ever, the technique has been applied only for the case in which
a single nonlinearity appears in any given system.

ANALYSIS

Consider an offshore system modeled by the following sin-
gle-degree-of-freedom (SDOF) equation of motion

Mi+ Cx+ Kix + ex®) = Ku + KjJu — x{(u— % (1)

where x = system displacement response; # and & = water-
particle velocity and acceleration, respectively; and K, and K,
= Morison inertia and drag force coefficients, respectively.
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Such an equation of motion could be used to model a catenary-
moored platform exposed to viscous hydrodynamic loads. The
water-particle kinematics are modeled as Gaussian processes
based on a Pierson-Moskowitz (P-M) elevation spectrum. This
system contains statistically symmetric nonlinearities (e.g.,
Tognarelli et al., in press, 1997) in the forms of both Morison
drag force without current and Duffing stiffness. The response
process is treated as the sum of the outputs of first- and third-
order Volterra systems
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where h, (1)) and h, (), T2, T3) = first- and third-order Volterra
kernels of the system response. Nonlinear terms in the gov-
erning equations may then be expanded in a Taylor series con-
taining terms that are nonlinear in terms of the Gaussian, first-
order response only, and linear in terms of both the first- and
the third-order response as follows:
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For the particular nonlinearities in (1), this gives
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where E{-} denotes the expectation operator. Expectations are
introduced in (4) and (5) to avoid the presence of higher-order
mixed terms involving both the first- and third-order Volterra
system responses, primarily to simplify the analysis. The sim-
ulation results, presented later, seem to support the use of this
simplifying assumption.

The equivalent statistical cubicization process itself involves
the casting of the nonlinear term (¥ — X;){u — x.| in (4) as a
polynomial containing first- and third-order terms in x, and X%,.
[Note, the nonlinear initial term on the right side of (5) is
already in polynomial form.] Incorporating the relative fluid-
structure velocity to address the drag nonlinearity, this proce-
dure gives
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mean-square error minimization by setting 0E{€’}/da, = 0, i
= 1, 3 yields the coefficient values
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where v = u — %,; and o, = E{v*}. The fact that the random
processes involved in the cubicization procedure are Gaussian
eases the determination of the coefficients significantly. In an
alternative approach to equivalent statistical quadratization,
which was very successful for fatigue analyses of systems con-
taining statistically asymmetric nonlinearities, Spanos and
Donley (1991) used a Gram-Charlier series to model the prob-
ability density of the system response since, in their analysis,
the nonlinearity was not first expanded as a Taylor series. This
added computational complexity to the determination of the
polynomial coefficients and, in some cases, yielded negative
tails in the response PDF.

Finally, substituting the Volterra series representation given
in (2) for x and the polynomial forms (5) and (6) for the non-
linear terms in the original SDOF system, the governing equa-
tion, (1), may be re-expressed as a Volterra system of two
equations
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where B, = o;; B; = o}; and it is observed that E{|u —
xll} = a,. Note that for Gaussian u and «, the first-order re-
sponse is indeed Gaussian, as suggested in the preceding. This
system gives first- and third-order transfer functions [e.g.,
Schetzen (1980)]
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and using the shorthand H{"(w,) = H"(1) and H,(w,) = H,(1)
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where wr = w; + w; + wy; and H(w) = 1 — ioH (). Using
these, the two-sided response power spectral density D, (w) as
well as statistics in the form of response cumulants k, may be
obtained from the transfer functions and the power spectral
density of the input process D(w), via the following frequency
domain integrals:
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where for the sake of brevity we have allowed H{(1) =
Hil)(ml)v H,(ra)(l’ 2’ 3) = H,(rs)(mb W, (.03), and D(l) = D(wl) dwl
in the cumulant expressions. The response of the system is
also statistically symmetric; therefore, the odd-order cumulants
vanish.

Having the higher-order cumulants, the PDF of the response
may be estimated by using an appropriate non-Gaussian
model. In this study, the moment-based Hermite transforma-
tion model (Grigoriu 1984; Winterstein 1985) has been cho-
sen. This model does not yield negative tails for the range of
response and response statistics considered herein. In the mo-
ment-based Hermite framework for the softening system that
we will consider, the non-Gaussian response, x(¢) is cast as a
nonlinear function of u(#), which is Gaussian, as follows (the
argument ¢ is omitted for brevity):

X~ Py

O
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where p, = mean displacement; o, = its standard deviation;
and a = (1 + 2k + 62372 A form of this transformation
is also available for hardening systems (Winterstein 1985).
Winterstein’s approximate expressions relating the response
cumulants to the model coefficients for a softening system are

By = /(4 + 2V/T + 1.5v,) amn
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where v, = ky/k3* and vy, = kJki. Using these as initial
guesses, a pair of coupled nonlinear equations are iteratively
solved to improve the representation such that it reflects, ex-
actly, the third- and fourth-order cumulants of the process that
have been predicted via the equivalent statistical cubicization
technique. These equations are

v; = a’(8h3 + 108hsh2 + 36hh, + 6h3) 19
Yo = a*(60h% + 3,348h% + 2,232h2h2 + 6ORZ + 252k
+ 1,296h3 + 576h3h, + 24h, + 3) — 3 20)
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NUMERICAL EXAMPLE

Consider the SDOF system in (1) for which M = 7.1286 X
10" kg, C = 44791 X 10° N-s/m (5%), K = 2.8143 X 10° N/
m, wy = 0.06283 rad/s, € = 0.2 m™?% K,, = 4.0 X 10 kg, and
K; = 1.5 X 10° N:s*m?* The P-M wave-clevation spectrum
considered is characterized by significant wave height H, = 12
m and peak wave frequency w, = 0.3628 rad/s. For this system
Fig. 1 indicates a comparison of the power spectral densities
and higher-order statistics obtained from both equivalent sta-
tistical cubicization and Monte Carlo simulation. The simula-
tion involves first creating realizations of the Gaussian water-
particle velocity and acceleration processes based on the
aforementioned P-M spectrum using random-amplitude/ran-
dom-phase techniques, then numerically integrating the equa-
tion of motion via a fourth/fifth-order Runge-Kutta scheme
with a time step of 0.33 s. The statistics of the present simu-
lation are based on an ensemble of 100 realizations of the
response. Each realization contains 16,384 points, where the
first several periods have been truncated to eliminate tran-
sients. Larger numbers of realizations do not change the sta-
tistical character of the simulated response. By definition, the
odd-order statistics of the response for purely statistically sym-
metric nonlinearities vanish and are not indicated in the figure.
Notably, a spectral peak in the low-frequency range is captured
via this technique, and the response statistics closely match
those from Monte Carlo simulation. The higher-frequency
spectral peak reflects the linear dependence that both the in-
ertia and drag force inputs have on the wave elevation. The
lower-frequency peak arises from spreading of the energy
bands in the input wave-elevation process introduced by the
cubic dependency of both the Morison drag force and the Duff-
ing stiffness term. This spreading leads to excitation of the
system at its natural frequency, which is slightly higher than
wy because of the additional Duffing stiffness.

A comparison of the moment-based Hermite PDF versus
that obtained via Monte Carlo simulation is given in Fig. 2.
The moment information for the Hermite transformation
model is that which has been obtained via the cubicization
technique. A Gaussian distribution characterized by the stan-
dard deviation obtained from the cubicization technique is also
shown. Note that while the moment-based Hermite transfor-
mation model slightly overestimates the response PDF in the
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FIG. 1. Comparison of Techniques for Prediction of Power

Spectral Density and Higher-Order Statistics of Response
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FIG. 2. Comparison of Moment-Based Hermite PDF versus
that Obtained by Monte Carlo Simulation: (a) Response PDFs
Obtained from Cubicization and Simulation; (b) Details of Tail
Reglons of Distributions

area of the mean, it accurately reflects the departure of the
PDF from Gaussianity in the tail regions. This is very impor-
tant for analyses in which the extremes of the response are the
primary focus.

It has been observed that the present technique is more ef-
fective when the Duffing stiffness parameter is relatively small
and the system damping is relatively large. Some terms con-
taining higher powers of x;, the magnitude of which is damp-
ing dependent, have been neglected in the preceding devel-
opment of the fourth cumulant for computational convenience.
In a numerical parameter study, it was observed that the rel-
ative importance of the third-order response with respect to
the first-order response is diminished by increased damping.
Since the overall damping depends not only on the system
characteristics themselves but also on an additional contribu-
tion from the Morison drag term, it is important to consider
both of these when making analyses. Essentially, the additional
damping increases as the significance of the Morison drag term
increases. This can be seen by examining the additional damp-
ing terms in the denominators of (11) and (12). As such, often
more favorable results are observed for larger nonlinear con-
tributions due to Morison drag force. This is in contrast to the
effects resulting from increased Duffing stiffness.

CONCLUSION

It has been shown that an equivalent statistical cubicization
technique can be effective for analyses of systems containing
nonlinearities not only in their excitation, but also in their in-
herent characteristics. Within the context of a framework de-
veloped previously by the writers, an SDOF example contain-
ing statistically symmetric nonlinearities exemplified by
Duffing stiffness and Morison drag force without current has
been presented. Results in the form of response power spectral
densities, higher-order statistics, and PDFs have been com-
pared favorably with those from Monte Carlo simulation.
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