ANALYSIS OF CLASS OF NONLINEAR SYSTEM UNDER DETERMINISTIC
AND STOCHASTIC EXCITATIONS

By Michael A. Tognarelli' and Ahsan Kareem®

ABSTRACT: In this paper, some analysis techniques of nonlinear dynamics are applied to physical systems
which may be modeled by the Duffing nonlinear differential equation. The response of the Duffing oscillator to
both deterministic sinusoidal and stochastic loadings is investigated and distinct regimes of the response motion
are discerned and discussed. The stochastic input to the system is low-pass Gaussian white noise. The efficacy
of studying the variation in time of the probability density of one or more of the system output states to determine
the type of motion of the system is examined. Attractors in phase space are defined via Poincaré mapping and
bounds on motion which serve as signatures for particular types of motion (e.g., chaotic, periodic) are identified
by a hypervolume measurement technique. An accepted method for adapting one measured output state into a
higher dimensional space by using time-delayed coordinates is used in conjunction with correlation dimension
calculation to supply a lower-bound estimate of the fractal dimension and insight into the character of the motion

of a nonlinear dynamic system.

INTRODUCTION

Many mechanical systems involving fluid-structure inter-
action may be modeled by the nonautonomous Duffing oscil-
lator

y+bytoeyt+dy=fo) n

For example, the rolling motion of ships (e.g., Ding et al.
1994) or the motion of bluff bodies in an aerodynamic flow
(e.g., Sekar and Narayanan 1994). In addition, nonlinear dy-
namical equations, such as the Mathieu equation have been
used to model the heave (vertical) motion of a floating offshore
platform (Jeffreys 1988). It has been observed by several au-
thors (e.g., Kapitaniak 1988) that the response of (1) to both
purely deterministic loading and deterministic loading super-
imposed by Gaussian white noise may be periodic or chaotic
in nature. In this study, it is desired to propose a framework
within which to investigate models for practical problems such
as those just mentioned. Through such a framework, it may
also be possible to enhance modeled systems by identifying
deterministic mechanisms underlying experimental data which
may appear random, at first glance.

The autonomous system of (1) can be cast in the following
form:

dx
7l QQa)
dy
= by — cx — di® @b

which has the sole equilibrium point (0, 0) when ¢ and d have
the same sign, but has two additional equilibrium points,
(£V —(c/d), 0), when the two parameters have opposite signs.
The Jacobian matrix of the first derivatives of this system is

0 1
A=[c-—3dx’ -—b] 3
Linear stability analysis indicates that the eigenvalues of (3)
for x = 0 are
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(—=b £ Vb — 4dr) 4)
where r; = c¢/d. When x = V —r,,, the eigenvalues of (3) are

ANa= % (—b = Vb + 8dr,) S)

|
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Clearly, the linear stability of the equilibrium points, assuming
that the damping coefficient, b, is positive, depends directly
upon the signs and ratio of the coefficients of the linear and
cubic stiffness terms as shown in Fig. 1. Fig. 2 illustrates state
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FiG. 1. Bifurcation Diagrams in Plane y = 0 for Linear Stability
Analysis of Autonomous Duffing Oscillator, Eq. (2): (a) Hlus-
trates Case for d > 0; (b) lliustrates Case for d < 0 (Hatched Ar-
eas Are Unstable)
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FIG. 2. State Space Trajectories of System, Eq. (2): (a)d>0, ¢
<0;(b)d<0,¢c>0



trajectories of the system (2) with initial conditions x = 0.4,
y = 0, and parameters, b = 0.1, ¢ = 0.2, d = *1.0. The
dependence on the coefficients of the stiffness terms that is
predicted in Fig. 1 is evident in the convergence of the solution
to two distinct stable points in Fig. 2.

In many practical situations, however, the systems which
we model with the Duffing oscillator are driven by outside
excitation which may be both deterministic and stochastic in
nature. For example, an offshore platform is excited by hy-
drodynamic wave forces while a cylindrical power cable os-
cillates under the influence of aerodynamic wind forces, both
of which have deterministic and random components. We must
depart from the preceding linear stability analysis for auton-
omous systems and examine these types of nonautonomous
systems in the context of the techniques outlined in the forth-
coming sections. The application of these analysis methods
requires the time-domain simulation of the Duffing system as
well as deterministic and stochastic processes.

Simulations of the systems described in this paper were ac-
complished using the SIMULINK Toolbox (SIMULINK 1992)
in conjunction with MATLAB 4.2c (MATLAB 1992). Within
the SIMULINK framework, the dynamic system was cast in
the form of a block diagram which receives input from an
independent code, integrates the system using a fifth-order
Runge-Kutta scheme with a maximum time-step of m/20 (1/
40 times the natural period of the deterministic input), and
outputs the response states. The deterministic harmonic inputs
to this system were developed by straightforward applications
of intrinsic functions of the software. The additive Gaussian
white noise used as the random input in the following discus-
sion is actually low-pass white noise having a constant power
spectral density over 0 < w =< w.. Thus, it has a finite variance
and a cutoff frequency of w, = /At, where At is the simulation
time step.

DISCUSSION
Probability Density Function as Function of Time

The probability density function (PDF) of the response of a
nonlinear system perturbed by random noise can exhibit mul-
timaxima (Kapitaniak 1988). The appearance of multiple max-
ima can correspond to a bifurcation in the solution of the de-
terministic system. This phenomenon can also arise when no
bifurcation is present in the linear stability analysis of the de-
terministic system. As such, although chaotic behavior of a
system influenced by stochastic noise is characterized by a
response PDF possessing multimaxima, this characteristic
alone is not sufficient to indicate the onset of chaos. This is
shown in Fig. 3 for the case of a deterministic Duffing oscil-
lator where multimaxima behavior is clear in the system PDF,
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FIG. 3. Multimaxima PDF and Trajectorles for Dutfing Oscilla-
tor with Periodic Response (Circular Symbols Indicate Poincaré
Mapping)

but the system trajectories indicate that the motion is, in fact,
periodic.

The distinction between the PDF of a chaotic response of a
perturbed Duffing system and a regular periodic response may
be made by noting that for chaos, the probability density not
only exhibits multimaxima, but also experiences change over
time. Thus, a plot of the probability density of a given state
value at one time, fi{x, ), versus its value at some time later,
Jfi(x, t + 1), for a given realization would provide the additional
insight necessary to delineate chaotic response from regular
response. That is, if the value of the probability density for a
given state remains constant over the range of time, the motion
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FIG. 4. (a) Realization of Poincaré Map for Dutffing System De-
scribed in Text with Additional Gaussian White Noise of Stan-
dard Deviation 0.01; (b) Realization of Poincaré Map for Same
System when Standard Deviation of White Noise Is 0.1
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is periodic. Otherwise, it is chaotic. For the oscillator (1) ex-
cited by

S =03 cost+ WO 6)

where W(r) = low-pass Gaussian white noise with standard
deviation of 0.0032 (for comparison’s sake the standard de-
viation of the sinusoidal excitation is 0.387), it is possible to
discern chaotic from periodic motions in this way. However,
the level of noise allowable before the two types of system
behavior become indistinguishable is too small for practical
applications in which random excitation plays a more signifi-
cant role. A further difficulty arises when the trajectories of a
given system are drawn into multiple basins of attraction dur-
ing the course of a realization of the response due to the per-
turbation introducted by additive noise. For such cases, even
though the neighboring attractors may be periodic, changes in
the PDF can be significant, and in the context of the present
discussion, misleading.

Averaged Poincaré Map

For a nonautonomous system driven by harmonic input, the
Poincaré mapping is defined as the transformation (e.g.,
Thompson and Stewart 1986)

X1 = Fxy) a

where x;,; = states of the system exactly one time period of
the excitation after the states, x;, have occurred. A more rig-
orous mathematical definition of this mapping may be found
in Kapitaniak (1988). By iterated application of this mapping
to a nonlinear system with given initial conditions, we can
graphically characterize the regularity of motion of the system
and describe its attractors.

When a harmonically driven system is perturbed by the ad-
ditional excitation of a random noise, however, the Poincaré
mapping for each realization is different. In these cases, it is
possible to define an average or mean Poincare map (Kapitan-
iak 1988). This is essentially done by averaging the state val-
ues at corresponding multiples of the natural period of the
deterministic component of the excitation for several realiza-
tions of the system response. Ultimately, then, the mean Poin-
caré map is

Elx;1,] = F(E[x]) ®

where Elx;] = the expected value of the states at the ith integral
multiple of the natural period of the harmonic excitation taken
over all realizations. Examples of realizations of the Poincaré
map for the Duffing system (1) with b =0.14, ¢ = —1.0,d =
1.0, and the same excitation described in the preceding section
are shown in Fig. 4 for cases when the standard deviation of
the Gaussian white noise has values of 0.01 and 0.1. Although
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FIG. 5. Hypervolume Plot for Deterministic System, Eq. (9)
with Regimes of Periodic and Chaotic Motion Indicated by A, B,
C,D,E,FG
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these realizations indicate that some orderly structure is pre-
served for significant values of additive random excitation, the
maps computed by averaging the realization as indicated in
(8), bear no resemblance to the expected results from the de-
terministic system [shown in Fig. 7(a)]. This may be the result
of the phenomenon noted in Fig. 4(b), where for this realiza-
tion two distinct attractors may be observed to govern the sys-
tem motion. The appearance of this type of behavior, wherein
different attractors may appear separately or in tandem for a
given realization of the response process, could feasibly act to
complicate any attempt to arrive at a meaningful overall av-
eraged resuit.

Hypervolume Method

A further means of characterizing the behavior of a nonlin-
ear system involves consideration of the bounds of its motion
in phase space. Vaneck (1994) has illustrated a hypervolume
calculation technique for deterministically excited systems
whereby the bounds of a simulated posttransient response mo-
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FIG. 6. Sample Input Time Histories: (a) Deterministic Cosine;
(b) Deterministic Cosine Plus Low-Pass White Noise, o, =0.01;
(c) Deterministic Cosine Plus Low-Pass White Noise, o, = 0.1
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FIG. 7. Trajectories and Strange Attractors for Three Chaos
Regimes of Eq. (9); Hypervolumes Are as Indicated (Determin-
istic Case)



18 - = \ —
1k
as}
y o oof e = 0.11000 } e = 0.12596
-05
-‘r /_\/ :
- s 9 03 o o8 1 .
y
W . — r
0.8t
o8
ol
02}
5 o 0.12664
-0z}
0.4}
08
-
“\s ot o5 [ 08
)
1 v— v S— v y
0,l}>
o.s}
0.4k
ozrf g = 0.20130 ]
y o
02} ]
-0a} ;
-0} J
.8}
Z\s -1 'y ) 08 1
y
y

BN =1 0.8 o (X 1 s
y

FIG. 8. Trajectories and Poincaré Maps for Periodic Motion of Eq. (9) In Regimes A, B (n= 2), B (n=4), D, E, F, G; Enclosing Hyper-
volume ls Indicated as Well (Deterministic Case)

tion are quantified and employed to define the hypervolume rameters, we may detect transitions of the motion between
in phase space which entirely contains the system motion. The periodic and chaotic behavior (see Fig. 5).

term ‘hypervolume’ implies that the analysis may be extended Starting with the Duffing oscillator example of Vaneck
to any finite-dimensional space. Indeed, in two-dimensional (1994)

phase space we are dealing with a bounding area. By noting

jumps in the value of the hypervolume over a range of pa- ¥+ ey + yy — 1) =y cos ot ©)
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which has already been employed to demonstrate some of the
techniques previously discussed, we seek to extend this study
to systems with additive noise in the forcing term. Examples
of the input to the system are shown in Fig. 6. For y = 0.3,
® = 1, and initial conditions (y,, ¥i5) = (0.1, 0.0), the system
analysis in the deterministic case is first replicated in Fig. 5
for a range of 0.10 = ¢ < 0.23. For this case, the hypervolume
in question is equal to

V= (ymnx - ymln)@mu - ymln) (10)

and several regimes of motion are clear in the figure. Regime
A is characterized by periodic motion. Regime B contains ar-
eas of periodic motion of subharmonic orders four and two.
(For a periodic response, subharmonic order is the number of
natural periods of the excitation which are required to com-
plete a full cycle of the response.) Regimes C are chaotic, and
regime D is periodic motion of subharmonic order seven. Re-
gime E is periodic motion of subharmonic order six. Regime
F is periodic motion of subharmonic order five, and regime G
is periodic motion of subharmonic order five. In this study,
regime B was identified by refining the discretization of € to
values as small as Ae = 1 X 107°, where no jump had been
seen in previous investigations, bringing to light the impor-
tance of clearly defining the modeled system, as well as the
extent to which this method may become painstaking if all
regimes are to be included in a particular analysis. Addition-
ally, for regime B, although two distinct types of periodic mo-
tion were detected, no jump in hypervolume signaled the tran-
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FIG. 9. Trajectories and Poincaré Mapping Typical of Behavior
of Eq. (9) for an Additional Gaussian White Noise having Stan-
dard Deviation 0.01: (a) in Regime A; (b) in Regime C
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sition within the regime. Examples of the trajectories, Poincaré
maps, and hypervolumes for the chaotic regimes are given in
Fig. 7. Examples for the periodic regimes of motion (A, B, D,
E, F, G) are given in Fig. 8.

It is desired, then, to determine whether this method can be
as effective in identifying different regimes of motion for cases
when the deterministic excitation is coupled with a stochastic
process. Observing Fig. 9, it is seen that for the adjacent pe-
riodic and chaotic motions represented by 0.125 (regime A)
and 0.140 (regime C), the two types of motion are still distin-
guishable from one another for an added stochastic excitation
having standard deviation 0.01. The hypervolumes for these
cases are 10.3 for the periodic motion and 7.9 for the chaotic
motion. However, when the noise standard deviation is in-
creased to 0.1 as shown in Fig. 10, the two responses seem to
exhibit similar behavior, a description of which might be
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FIG. 11. Hypervolume as It Varies with Cubic Stiffness for
System Described by Eq. (1): (a) Deterministic Excitation; (b)
Deterministic Plus White Noise Excitation (o, = 0.01); (¢) Deter-
ministic Plus White Noise Excitation (o', = 0.1)
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FIG. 12. Trajectories/Poincaré Maps for Eq. (1) over Range of Duffing Stiffness, d (Deterministic Case)

‘smeared periodic’ motion. Both responses possess bounding
hypervolumes of 12.1 and Poincaré maps which nearly coa-
lesce to a single point (note axis scaling on attractor portraits).

To examine both the utility, as well as the limitations of the
hypervolume technique for systems excited by both determin-
istic and random processes, consider again (1), where a = 1.00,
¢ = —1.00, the damping is fixed as b = 0.14, the initial con-

ditions are (0.1, 0.0), the input to the system, ff), is given in
(6), and the Duffing stiffness parameter is varied over the
range, 0.05 = d = 2.00. Fig. 11 illustrates how the hypervol-
ume varies with the Duffing stiffness parameter for three dif-
ferent excitation scenarios. For the case of purely deterministic
excitation, nine distinct regimes of motion can be detected
using the hypervolume technique. When a low intensity, low-
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FIG. 13. Trajectories/Poincaré Maps for Eq. (1) over Range of Duffing Stiffness, d; For Chaotic Regime, Only Poincaré Map Is Shown
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pass white noise is added to the excitation, many of these
regimes are no longer observed. As the intensity level of the
white noise is increased, three distinct regimes are still notice-
able, but the data appears significantly more scattered than for
the previous cases. While the hypervolume technique succeeds
in signaling overall changes in the character of the largest at-
tractor in the system response, for the cases in which the re-
sponse is continuously perturbed by the presence of white
noise input, it cannot indicate when the trajectories are influ-
enced by different attractors. This issue will be addressed in
a forthcoming discussion.

Fig. 12 illustrates trajectories and Poincaré maps for the
various regimes detected in the case when the input to the
system is purely a deterministic cosine wave. Presently, refer-
ring to Fig. 11 for the alphabetical regime labels, A-I, two
types of periodic motion having the same period as the exci-
tation are noted in regime A. Regime B represents periodic
motion of subharmonic order ten. Regimes C and D both rep-
resent motion of subharmonic order three, but the trajectories
of the motion found in regime D are significantly more com-
pact than those of regime C. Regime E is chaotic motion and
surrounds regimes F and G, both of which represent periodic
motion of order seven. Finally, regime H represents periodic
motion of subharmonic order two and regime I represents pe-
riodic motion of subharmonic order one.

Fig. 13 shows phase space trajectories and Poincaré maps
for the case in which the sinusoidal input is superimposed by
a low-pass white noise having standard deviation, o, = 0.01.
The periodic regimes of motion are similar to some of those
appearing in Fig. 12 with the exception that the noise perturbs
the system motion such that it does not repeat itself exactly
by following a single closed curve in phase space. Rather, for
such cases, the smeared periodic motion occupies bands of
phase space and some scatter is noticeable in the Poincaré
mappings. This is less noticeable in the chaotic regime of mo-
tion. A problem with the hypervolume technique is noted in
Fig. 14 in which a time history of the motion of the system
described by (1) for d = 0.702 is shown. Clearly visible are
three distinct regimes of motion, two periodic and one chaotic,
each lasting up to several minutes. Hypervolume analysis of
this realization captures only that regime of motion which oc-
cupies the largest area of phase space, here, the chaotic mo-
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FIG. 14. Time History, o,, = 0.01, d = 0.702, which Indicate
Presence of Multiple Regimes of Motion for Response to Eq. (1)

tion. Without making a closer examination of the time history
of the motion, it is impossible to tell via the hypervolume
technique that multiple regimes of motion are coexisting. This
phenomenon occurs for many values of the Duffing stiffness
parameter, d.

Fig. 15 contains trajectories and Poincaré maps from three
separate motion regimes of (1) when the white noise level is
increased to o, = 0.10. Here, separate motion types are still
detectable, but the problem discussed in the previous para-
graph becomes more widespread as the level to which the
system is perturbed is increased. This is evident in the case of
the attractor shown in the upper right portion of the figure
where two darker, more heavily populated areas indicate the
scattered Poincaré maps of two smeared periodic regimes of
motion which occur along with the chaotic regimes which is
characterized by the larger strange attractor.

Time-Delay Adaptation of Scalar Signal to
Multidimensional Space

Often in characterizing the motion of nonlinear dynamic
systems, it is desirable to note the dimension of the space
occupied by a response process. As described in a forthcoming
section, however, in order to characterize the dimension of a
particular attractor, a state space must be worked with which
is of equal or greater dimension than that occupied by the
attractor. When the required number of states is not available
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FIG. 17. Chaotic Attractor in Time-Delayed State Space where
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Added to Deterministic Excitation of System

due to the physical model or limitations in the measurement
of experimental data, it has been shown (Takens 1981) that
given a single process, y(z), an m-dimensional phase vector
may be constructed as
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FIG. 18. Chaotic Attractor in Time-Delayed State Space where
Gaussian White Noise of Standard Deviation 0.1 Has Been
Added to Deterministic Excitation of System

Y@) = {y@), yt, + m, ..., ylt; + (m — D]} (11

where 7 = time delay. Some papers (e.g., Froehling et al. 1981;
Liebert and Schuster 1989; Gershenfeld 1992; Poveda-Jar-
amillo and Puente 1993) have discussed systematic approaches
for choosing a proper time delay and the merits thereof. A
trial-and-error approach was taken according to the sugges-
tions of Gershenfeld that in practical situations the delay
should not be so small as to overly localize the analysis, nor
too large that global effects cloud the desired results, but that
over an intermediate range of time delay, the analysis is rel-
atively invariant to the particular delay chosen. Favorable re-
sults have been noted using this approach as seen in Fig. 16,
where the attractor in the previous case has been redrawn using
two-dimensional time delay coordinates [see Fig. 7(a)]. Instead
of using both the displacement and velocity of the process to
produce this attractor, the displacement and its value after time
delays, T = 7/8, T/4, 37/8, T/2, where T is the natural period
of the excitation. For very short time delays, the attractor is
seen to be compressed around the diagonal of the space, how-
ever, for larger delays, the shape may be more clearly recog-
nized as a transformed version of its representation in the orig-
inal state space.
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FIG. 19. Correlation Scaling Curves for Chaotic System: (a) in

Four-Dimensional Reconstructed Phase Space, v = 2.22; (b) in
Five-Dimensional Reconstructed Phase Space, v = 2.50 (1 = 7/8)
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Figs. 17 and 18 show that when Gaussian white noise is
added to the input to the system, even at standard deviation
comparable to that of the deterministic excitation, the attractor
is still discernible from the data using the time-delay approach.
It is still possible to observe underlying deterministic behavior
in these types of cases using this approach.

Correlation Dimension of Attractor

The dimension of an attractor can yield much information
concerning whether the motion of a system settles to a single
point, is periodic, or chaotic. In addition, the dimension can
yield information concerning whether or not a process is sto-
chastic or possesses an underlying deterministic character.
Many authors (e.g., Ben-Mizrachi et al. 1984; Casdagli 1989;
Gershenfeld 1991; Poveda-Jaramillo and Puente 1993) have
opted to use the correlation dimension, v, where at a reference
point, y,

N

1
C) =tim= >, 8¢ —|y — yD 12)

Ny =1, ji

170/ JOURNAL OF AEROSPACE ENGINEERING / OCTOBER 1997

10? 10? 10

W)

FIG. 20. Correlation Scaling Curve for Gaussian White Noise
from which Five-Dimensional Phase Space Has Been Recon-
structed, v = 4.92 (v = 778)

where N = total number of points in the time series; 8(x) =
Heaviside step function; and the correlation scales as

o~ 13)

rather than the actual fractal dimension as an indicator of the
system nature. The choice of the correlation dimension, rather
than the fractal, is made due to the inefficiences in ‘box-count-
ing’ methods for determining the former, as well as the tan-
gible geometric pair-correlation, which is quantified by the lat-
ter. Although the two are, in general, not equal, it will be
shown in the following discussion that the correlation dimen-
sion helps to make an adequate distinction between types of
behavior in both deterministically and stochastically driven
systems.

The correlation dimension, v, may be determined by plot-
ting, log C(!) versus log [ for one or more reference points in
an attractor, and finding the slope. (The curve should be linear
over a range of [ characteristic of the attractor. This range may
be determined by taking a numerical derivative. It is important
to note that we are not talking about the slope of the curve
across the entire range of ) If the system state space has been
properly reconstructed in d dimensions, then v will properly
characterize the dynamics of the system (i.e., v = 0 for a point,
1 for a line, 2 for a plane, etc., and has noninteger values for
strange attractors). For a deterministic system, if we continue
to increase the dimension, d, of the reconstructed state space
using the techniques described in the preceding section, ulti-
mately, v will remain at a constant value no matter how large
d becomes. Fig. 19 verifies this assertion. In this figure, once
again, the deterministic chaotic example from the previous
sections is utilized to illustrate that when the system state-
space is reconstructed in four and five dimensions, respec-
tively, the slope of the log-log plot remains at a lower value,
v ~ 2.21-2.50. In this and all subsequent figures, the corre-
lations shown will represent the average correlations over ten
reference points. For a purely stochastic noise, the correlation
will scale as

c ~ 14 14)

Such a process is termed ‘space filling.” This is illustated in
Fig. 20 where a realization of Gaussian white noise has been
used to reconstruct a five-dimensional state space and the slope
of the log-log plot of correlation versus distance is 4.92. We
cannot only tell different regimes of deterministic motion
apart, but if the noise in our system is of a smaller length scale
than that characterized by its deterministic component, we
should be able to distinguish the presence of both in terms of
a changing slope. That is, on a log-log plot, we should see a
slope of v until we reach length scales which are characteristic
of the noise level in the system, where the slope should have
a value of d (Ben-Mizrachi et al. 1984). Fig. 21 illustrates that
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FIG. 21. Correlation Scaling Curve for Chaotic Attractor Using
Five-Dimensional Reconstructed Phase Space: (a) Gaussian

White Noise with Standard Deviation 0.01 Added, v=2.25.(t= T/
8)

for the case of the chaotic attractor of previous examples with
different levels of Gaussian white noise added to the deter-
ministic excitation of the system, the underlying deterministic
nature of the system is detectable via the correlation dimension
which remains around 2.30 for a five-dimensional embedding
space. While the slope transition to a dimension characteristic
of the noise is not discernible in this figure, it is hoped that
when more extensive data sets are used, and the scaling curves
are averaged over many more reference points, such a transi-
tion will be visible. This is a topic of future study.

The algorithm used in this study for calculating v is based
on that proposed by Gershenfeld (1991). First, a time series
of a single state is used to reconstruct a higher dimensional
state space using time-delay techniques. Next, one or more
reference points are chosen at random and their distances (us-
ing a Euclidean norm) to all of the other points in the series
is calculated. These distances are sorted in ascending order to
yield I as a function of C(l). The slope of this is v™', the

inverse of the correlation dimension. An average of the cor-
relation values for each ! at all of the reference points can
yield a better approximation to the dimension.

One application of this technique could involve the analysis
of random data to characterize the behavior of a practical non-
linear system by providing insight into the proper number of
degrees of freedom necessary to model its governing equa-
tions, rather than immediately approximating it with a model
whose physical basis may be questionable (Poveda-Jaramillo
and Puente 1993),

CONCLUSIONS

The results presented in this paper indicate that several
available techniques may be useful in analyses of physical
systems modeled by nonlinear differential equations which are
forced by both random and deterministic excitation. While the
use of the variation of the PDF of the system response with
time and averaged Poincaré mapping have been observed in
the context of this study to be unreliable, as the random com-
ponent of excitation becomes more important and perturbs the
solution into different basins of attraction, many other tech-
niques have proven satisfactory for the extraction of underly-
ing determinism in the response. The most effective among
the tools described are hypervolume analysis, attractor char-
acterization using time-delay techniques, and correlation di-
mension analysis, all of which have been shown to indicate
the presence of a deterministic structure in response motion,
even when the strength of the random component of excitation
becomes of an order comparable to the harmonic component.
This study has been presented to demonstrate some of these
techniques, their strengths, and their limitations. Clearly, more
investigation is required in terms of developing a more thor-
ough understanding, and a more systematic approach to ap-
plying them to physical systems. For example, correlation di-
mension analysis could be used to supplement hypervolume
analysis when it is suspected that more than one regime of
motion is exhibited by a system. In such a case, while the
hypervolume only captures the attractor which occupies the
largest hypervolume in phase space, the correlation dimension
might take on different values at length scales, corresponding
to the different regimes of motion. A Melnikov function-based
approach (e.g., Frey and Simiu 1993) may also give insight
into the transitions between regimes which are introduced by
noise. These topic, however, are beyond the scope of the pres-
ent work.
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