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This paper examines state-of-the-art analysis and simulation tools for applica-
tions to wind engineering, introduces improvements recently developed by the
authors, and directions for future work. While the scope of application extends to
a variety of environmental loads (e.g. ocean waves and earthquake motions),
particular reference is made to the analysis and simulation of non-Gaussian
features as they appear in wind pressure fluctuations under separated flow regions
and non-stationary characteristics of wind velocity fluctuations during a gust
front, a thunderstorm or a hurricane. A particular measured non-Gaussian
pressure trace is used as a focal point to connect the various related topics herein.
Various methods of non-linear system modeling are first considered. Techniques
are then presented for modeling the probability density function of non-Gaussian
processes. These include maximizing the entropy functional subject to constraints
derived from moment information, Hermite transformation models, and the use
of the Kac—Siegert approach based on Volterra kernels. The implications of non-
Gaussian local wind loads on the prediction of fatigue damage are examined, as
well as new developments concerning gust factor representation of non-Gaussian
wind loads. The simulation of non-Gaussian processes is addressed in terms of
correlation-distortion methods and application of higher-order spectral analysis.
Also included is a discussion of preferred phasing, and concepts for conditional
simulation in a non-Gaussian context. The wavelet transform is used to
decompose random processes into localized orthogonal basis functions,
providing a convenient format for the modeling, analysis, and simulation of
non-stationary processes. The work in these areas continues to improve our
understanding and modeling of complex phenomena in wind related problems.
The presentation here is for introductory purposes and many topics require
additional research. It is hoped that introduction of these powerful tools will aid
in improving the general understanding of wind effects on structures and will lead
to subsequent application in design practice. Copyright © 1996 Elsevier Science
Ltd.

BACKGROUND non-Gaussian effects in the pressure distribution

characterized by high skewness and kurtosis. The non-

Over the last few decades, our understanding of wind—
structure interactions and resulting load effects has
significantly improved, yet a need remains for further
examination of a host of issues. Many of the studies
encompassing analysis and modeling of wind effects on
structures have tacitly assumed that the involved
random processes are Gaussian. This assumption has
been invoked primarily for the convenience in analysis,
since information concerning statistics of Gaussian
processes is abundant. This assumption is quite valid
for loads that involve integral effects of the random
pressure field over large areas. Nonetheless, regions
of structures under separated flows experience strong

Gaussian effects in pressure result in non-Gaussian local
loads, and give way to increased expected damage in
glass panels and higher fatigue effects on other
components of cladding.

The probabilistic analysis of pressure fields has been
of interest to those involved in wind tunnel studies.
Peterka and Cermak' and Kareem® demonstrated that
in pressure regions where the mean pressure was below
—0.25, the pressure probability density functions (pdf)
are skewed such that the probabilities for large negative
fluctuations are much higher than those for Gaussian
processes. Similar observations have also been reported
by others. It was also noted that due to non-linear
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relationships between wind and pressure fluctuations the
pdf of pressure under high turbulence may be non-
Gaussian. Low-rise structures immersed in the highly
turbulent lower part of the boundary layer, whose
structure is further invigorated by the presence of
. roughness elements in the surroundings, may experi-
ence non-Gaussian pressure fluctuations even on their
windward faces. These non-Gaussian effects may be
amplified further as the approaching wind fluctuations
may depart from a Gaussian process. Similar effects are
observed in wave effects on structures.’ Holmes* and
Kuwai® utilizing quasi-steady and strip theories evalu-
ated the derived pdf of pressure. The resulting
distribution showed good agreement with measured
data on the surfaces with attached flows. However, as
expected, the derived pdf of pressures in the separated
regions is not predicted by the quasi-steady theory as the
wind-structure interactions at several scales of turbu-
lence may introduce additional components. This
observation is again corroborated by Letchford e al.®
utilizing full-scale data. In an attempt to identify
admittance functions for wind pressures, Thomas et
al! have noted that the quasi-steady theory fails to
model spectral descriptions of pressures under separated
regions despite the inclusion of the square of the
fluctuating velocity term. Similar comments are offered
by Tieleman and Hajj® based on their analysis of full-
scale data. In summary, the quasi-steady theory offers
reliable estimates of load effects when the dominant
mode of loading is attributed to buffeting, e.g. surface
pressures responding to large-scale low frequency turbu-
lence. However, the pressures resulting from wind—
structure interaction effects cannot be predicted from
the quasi-steady theory. A departure from the quasi-
steady theory is reflected in the non-Gaussian field.

In light of the established inability of quasi-steady
theory to predict the dynamics and probabilistic
structure of pressure fluctuations in the separated
regions, some thoughts on the modeling of non-
Gaussian processes are presented. This approach holds
promise for providing answers and perhaps models for
situations in which the quasi-steady theory has failed to
do so because pressure fluctuations are a result of a non-
linear dynamic interaction.

The analysis of a non-stationary processes such as
transient wind gusts in short, measured wind records
have been limited due to shortcomings in the Fourier
analysis. Here, we apply a set of basis functions local in
both time and frequency to decompose the signal into
octave-banded constitutive parts. The wavelet transform
is useful in the location of energy transfer in time, and in
the simulation of non-stationary processes.

MODELING OF NON-GAUSSIAN PROCESSES

In the study of physical systems, the relationship

between the input and the system output is often
sought to model the system response. For linear
systems, e.g. in the formulation of gust loading factors
such a relationship is used for the prediction of extreme
response.’” In many instances in wind engineering,
however, the input and output are not related by a
linear transfer function due to non-linear characteristics,
e.g. the turbulent fluctuations in a hurricane, negative
pressure fluctuations on building envelopes and asso-
ciated fatigue of cladding and, in particular, its fastening
system. Many approaches are available for modeling
non-linearly related processes. Here we present a brief
look at Volterra series systems, as well as several other
alternatives.

Volterra systems

In the Volterra series formulation, the input—output
relationship may be expressed in terms of a hierarchy of
linear, quadratic and higher-order transfer functions or
impulse response functions (e.g. Refs 10-13). These
transfer functions can be determined from experimental
data or from theoretical considerations. For example, a
non-linear system modeled by Volterra’s stochastic
series expansion is described by

y(1) = Jhl("')x(t —7)dr + thz(ﬂﬁz)x(t -7)

XX([*Tz)dTlde"i—... (1)

where A;(7) and hy(r(, 73} are the first and second-order
impulse response functions.

The Fourier transform of the Volterra series expan-
sion up to second order (retaining two terms on the right
hand side) in eqn (1) gives the response in the frequency
domain as

Y(f) = Hi(fX(f)+ Y, H(f.L)X([)X(f)
fivha=f;
(2)

For linear systems, the first term on the right hand
side of eqn (2) is all that is needed to describe the
relationship between input and output. This linear
model assumes that the Fourier components at
different frequencies are uncoupled. In the first (linear)
term on the right hand side of eqn (2) the response Y(f;)
at frequency f; is dependent only on input and the
transfer function at frequency f;.

In the case where the system is non-linear, the Fourier
components are coupled, and additional terms are
needed to capture this interaction. The second term on
the right hand side of eqn (2) couples the response Y (f;)
at frequency f; with pairs of input components at
frequencies whose sum or difference is f; through the
quadratic transfer function (QTF) H,(/},/>). Equation
(2) describes a system whose non-linear component
is non-symmetric with respect to the probability density
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function (e.g. an even powered polynomial non-
linearity). A third-order system captures the behavior
of systems with both symmetric and non-symmetric
non-linearities (e.g. polynomial non-linearities with odd
and even powers).

In the case when input x(n) and output y(n) of a
system is available, the information can be used to
estimate the Volterra kernels in eqn (2) directly. The
linear transfer function is given by

m(f) = LT 3)
(X (/%)

where ( ) is the expected value operator. Here, the
numerator is the cross-power spectrum of the input x(n)
and output y(n) in terms of their Fourier transforms
Y(f) and X(f), and the denominator is the auto-power
spectrum of the input.

Just as H;(f;) is derived from the cross-power
spectrum, the QTF is derived from a higher-order
cross-spectrum. The higher-order cross-spectrum
between the input x(n) and the output y(n) needed to
estimate the QTF is called the cross-bispectrum, denoted
B,xy(f1,/2). Analogous to the cross-power spectrum in
the numerator of eqn (3), the cross-bispectrum can be
expressed in terms of the expected value of input and
output Fourier components as

By (f1,12) = (X" ()X (L)Y (fi +12)) (4)
The QTF is given by
1 Byuy(/1,/2)
Hy(fi,fp) = z—— 2
U =3 X P ®)

If no phase coupling exists between Y(f; +f;) and
X(f,) and X(f3), then their phases will be random

and independent, thus the net expected value of the
cross-bispectrum will be zero. The formulation for the
QTF given in eqn (5) is valid for a Gaussian input
process X(f). The linear and quadratic transfer
functions can also be estimated for a general random
input, i.e. without assuming particular statistics of the
input (e.g. Ref. 14).

Equation (2) addresses a second-order Volterra
system, which assumes the non-linearity is asymmetric.
More generally, higher-order spectral analysis may be
applied to non-linear system identification via the
higher-order transfer function, which may then be
used with a Volterra series similar to eqn (2) with
additional higher-order terms to model the non-linear
system.

The analogies between the power spectrum and
higher-order spectra may be extended to glean some
insight into their physical meaning. The significance of
the power spectrum S, (f}) is well understood to be the
decomposition of the signal variance (x*(1)) as a
function of frequency. Similarly, the bispectrum
B.(fi1,f,) may be viewed as the decomposition of
skewness ((x*(7)) as a function of two frequencies, and
the trispectrum Ty, (f1,/2,/3) as the decomposition of
kurtosis (x*(¢)) as a function of three frequencies. The
volumes under the bispectrum and trispectrum yield the
third and fourth central moments, respectively. When
viewed in this light, it is apparent that the existence
of higher-order spectra indicates a deviation from
Gaussian.

An estimated bispectrum for an experimentally
measured wind pressure record is shown in Fig. 1.
This non-zero bispectrum indicates a deviation from
Gaussian due to interaction between low frequency
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Fig. 1. Estimated bispectrum of a measured wind pressure record.
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components. For a quadratic non-linear process that is a
square of a narrow-banded linear process, the bispec-
trum contains peaks where components of the linear
process interact at their sum and difference frequencies,
imparting energy at those frequencies to the resulting
non-linear process. In this case, the bispectrum does not
consist only of sharp peaks, indicating that the pressure
record is not the result of the square of a narrow-banded
process, but more likely the output of an at least
partially quadratic system with a wide-banded input.
The input process in this case is in fact a wide-banded
wind velocity process. Were it the case that pressure was
the result of a cubic non-linearity acting on the wind
velocity, the bispectrum would not exist, and the
trispectrum would reveal the symmetrically non-linear
relation of the pressure to velocity.

Alternatives to Volterra systems

Several researchers have addressed the modeling of non-
linear systems by means other than a Volterra series
expansion and application of higher-order spectra. For
example, Bendat! replaced the higher-order frequency
domain contribution in eqn (5) by a zero-memory
squared term in series with a linear term. Non-linear
pressure on a building from Gaussian wind velocity
input is modeled in this fashion to improve upon the
modified quasi-steady theory by using a multiple
admittance function.’ Here, the pressure autospectrum
is expressed in terms of the spectra of the horizontal and
vertical fluctuating wind components, the spectra of
these components squared, and transfer functions in
terms of the cross-spectra of the inputs with measured
pressure output. Bendat’s model replaces the second-
order Volterra kernel by a linear kernel based on the
assumption that the QTF is constant along lines normal
to the diagonal as in

Hy(1.o) = A(fi +12) (6)

This is equivalent to all frequency pairs for a particular
sum or difference frequency containing the same level of
phase coupling. This assumption conveniently reduces,
for example, a single input/single output second-order
Volterra model to a two input/single output linear
model. The efficiency of the analysis is advantageous,
and retains limited memory. The error associated with
this representation is lumped into a noise or residual
spectrum which is minimized with respect to the transfer
functions describing the linear systems in parallel. The
non-linearity is represented, but the assumption of its
form may be restrictive for some systems. The model
may be modified to facilitate the input of non-Gaussian
wind velocity.'

Neural networks

Another recently developed approach to non-linear
system modeling is the application of neural networks.

A multi-layered set of processing elements receives input
information and uses the desired final output informa-
tion to adjust a weighting factor between each of the
elements. Figure 2 shows such a network with three
weighting  layers Wyim), m=1,...,3,  where
i=1...Ny,j=1,...,N,_;, and N,, and N,,_; are the
number of elements in the mth and the m — 1th layers,
respectively. The network in Fig. 2 has two hidden
element layers 4;(1) and a;(2) between the input and
output layers a;(0) and «;(3). In this example, the input
layer consists of the input occurring at the same time as
the current output from a,(3), and two delayed inputs.
W,i(m) then represents the weighting of the output from
the element a;(m — 1) before its input to element a;(m).
The output of each element b;(m) is a non-linear
function of the weighted linear sum of the output from
each of the elements in the previous layer as in'®

Ny
bi(m) = Z Wii(m)a,(m — 1) + 0;(m)
=1

a;(m) = f(bi(m))
™)

where 6;(m) is a threshold value fixed for each a;(m).
Various non-linear functions may be applied at the
elements. One commonly applied function is the sigmoid
function

1

f(bi)zm

where o is a parameter to control the shape of f(5;).
The element weights in the neural network are
adjusted iteratively to minimize the error between the
resulting and desired final output. This is the training
phase, in which the optimum model parameters Wii(m),
m=1,..., M are identified, where M is the number of
network layers, and M = 3 for the example in Fig. 2.
An example application is shown in Figs 3 and 4. In
Fig. 3, the input is a simulated Gaussian wind velocity
(U + u(t)) sampled at 100 Hz for 10s, and the output is
the resulting force on a unit area using
F = pCyA(U + u(t))?/2. The neural network has two

(8)

W,(3) output layer

hidden layer
W,(2)

hidden layer

W)

input layer

Fig. 2. Multilayer neural network with three weighting layers
and two hidden layers (adapted from Kung'®).
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Fig. 3. Noiseless force output and neural network model
prediction.

hidden layers of 25 and 30 elements, respectively, with a
two delay input. The network is given the first second of
input/output data to train itself with, and the figures
present the model prediction of later unknown output
given wind velocity input. In Fig. 4, a Gaussian white
noise is added to the force output to represent
measurement noise. The neural network does not
exactly model the input/output with noise, but closely
approximates the uncorrupted output. These results will
vary as the neural network architecture is altered, such
as varying the number of elements in the layers,
changing the number of delays, etc.'”!®
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Fig. 4. Noise corrupted force output, neural network model
prediction of corrupt output, and uncorrupt force output.

MODELING OF PROBABILITY DENSITY
FUNCTION

The modeling of the probabilistic structure of non-
Gaussian pressure fluctuations is essential for a wide
range of applications in wind engineering, e.g. accurate
determination of design wind pressure for glass panels.
Large skewness results in probabilities for negative
pressure fluctuations much higher than those for
Gaussian processes. Series distribution methods, includ-
ing Gram—Charlier, Edgeworth, and Longuet—Higgins,
based on Hermite polynomials, have been commonly
used (e.g. Ref. 19), but tend to exhibit oscillating and
negative tail behavior. For extreme response, alternative
means are considered.

The non-Gaussian distribution derived based on the
non-linear relationship between wind and pressure
fluctuations with the assumption of Gaussian velocity is
valid mostly for windward and leeward faces. This has
been shown to fail in separated regions over surfaces
parallel to wind flow, where quasi-steady theory breaks
down. The lognormal distribution has been used in the
literature to model pressure data as the tail of the
distribution is higher than for the normal distribution.
This often provides values close to the observations, but
still fails to predict the occurrence of values far from the
mean. Calderone et al.?® recently noted that the lognormal
distribution does not fit the pressure data perfectly.

In view of the preceding shortcomings, three alter-
native approaches to modeling the pdf of non-Gaussian
pressure fluctuations in separated regions are considered
here. The maximum entropy method (MEM), Hermite
transformation-based models and Kac—Siegert expan-
sion-based models are applied to the pressure records
through their statistical moments or quadratic transfer
function to determine the parameters of the respective
estimation models. Applications of these methods are
illustrated by way of two examples.

Maximum entropy method

An approach to approximate the pdf of non-linear
systems is the maximum entropy method (MEM), in
which the Shannon entropy functional is maximized
subject to constraints in the form of moment informa-
tion. In the limiting case of infinite moment information,
a unique pdf is defined. In reality, we will always have a
finite amount of moment information for which an
infinite number of probability density functions are
admissible. The pdf which maximizes the entropy
functional is the least biased estimate for the given
moment information. The Lagrange multiplier method
is applied to solve this variational problem, and provides
the joint pdf of higher-order systems directly. A brief
outline of MEM is presented here. Complete details can
be found in Sobczyk and Trebicki?!, Kareem and
Zhao'® and Kapur.?
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The available information for a process y() can be
expressed as the process joint moments

E[yly?...ynl= J .. Jy?y? ymp(y)dy=m,
9)

where n is the order of the system. r;,=0.1,2,..., M,
where M is the maximum order or correlation moment,
p(y) is the joint pdf, and m, _, is the value of the joint
moment. The integral is multifold to n. One possible pdf
of the process y(¢) is that which maximizes the entropy
functional

H=- jp(y) Inp(y) dy (10)

subject to constraints from the moment information.

After application of the Lagrange multiplier method,
the resulting description of p(y) for an n-dimensional
case is

M
p(y) =exp(—Xg — 1) exp (— Z D W 2 ...y,',">

rtotr,
(11)

Substitution of eqn (11) into the moment constraints
and an additional normalization constraint [ p(y)dy = 1
gives the following system of equations:

M
Jy? .. Yi eXp (— Yo A

r+..+r,

y;")dy =m,
(12)
M

Jexp (— Z ’\rl..‘r,,y;l te

n+t..+r,

.yf,")dy =exp(A + 1)

(13)

This system of non-linear integral equations is solved
numerically and the results yield the least biased
estimate of the system joint pdf under the given
moment constraints using eqn (11).'>*! The moment
information which constrains the maximum entropy
functional may be in the form of moment equations
rather than moment values as presented above. Details
are omitted here, interested readers may refer to
Sobczyk and Trebicki.?!

Moment-based Hermite transformation model

This approach is based on a functional transformation
of a standardized non-Gaussian process, x(¢), to a
standard Gaussian process, u(?), (e.g. Ref. 23)

x(1) = (X(1) — X)/ox = glu(t)] (14)

Several choices of g(u) are possible to preserve only the
first four moments. A cubic model of g(u) offers a

convenient and fairly accurate re?resentation.24 Accord-
ingly, the pdf of x(¢) is given by*>?*

2
) = Z=exp [— ‘ f;”] dutz) (15)

) = [ €@+ e+ 6] *

13
-[Vew+e-ew] -a (16)
where £(x) = 1.56(a + %) — &’
a=h—§, b=Lh, c=(b-1-a*?
3h, 3h,
P = Iy };VI‘*‘I-S%—I
YT 42Ty, 18
1

a=—m—
\/ 1+ 203 + 61

and 7; and -y, are the skewness and kurtosis of the
fluctuating process, which reduce to zero for Gaussian.
An improvement to this model is suggested here by
using the expressions for #; and k4 given previously
(which are approximations) as initial conditions for
solving the following pair of non-linear algebraic
equations:

Y3 = & (843 + 1084342 + 36h3h4 + 653) (17)
Y4 + 3 = a* (6043 + 3348h% + 22324343 + 604
+ 252h3 + 12963 + 576h%hy + 24k, + 3)
(18)

These equations have been derived for use in this study
by setting the third- and fourth-order central moments
of g[u(7)] equal to the known central moments of x(¢).
This yields new coefficient values which exactly match
the statistics up to the fourth order of the modeled non-
Gaussian process. This is referred to herein as the
modified Hermite method.

The transformation above is for the case when x(¢) is
a softening process, for example, the response of a linear
system subgfcted to non-linear viscous drag force.
Winterstein™ also outlines a transformation for the
case in which x(r) is a hardening process. This
development is not repeated here, but such a situation
could arise, for example, if the structural system is
characterized by a non-linear stiffness.

Kac~-Siegert approach

Once a system has been modeled in terms of a Volterra
series (eqn (1)), different approaches are available to
estimate the pdf of the process. One such approach is
that of Kac and Siegert.*’ In this approach, the system
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output is expressed in terms of the sum of standardized
normal random variates X; and their squares as
described below (e.g. Refs 13, 26, 27)

2N
WO =3 (BX; + N X}) (19)
j=1
The parameter B; is related to the eigenvectors v;, and A
are the eigenvalues of the Fredholm integral equation of
the second kind given by

-[K(wlaw2)'¢j(w2)dw2 = \j(wr)

K(wy,w) = H(wy,w2)V/ S(wi)S(ws) (20)

where H(w,w,) is the QTF discussed earlier, and the

frequency domain counterpart of h,(r, 73), and S(w) is a

two-sided spectrum of the underlying linear process.
The characteristic equation of x is now expressed as

2N
M) =[] M0
j=1

B
(0) = (1 —2i)\)"1/2 -7 1 (2
where M;(0) = (1 — 2i)) exp[ 20— 2%0) (21)
The pdf of the process x is the Fourier transform of the
characteristic function

p(x) = % J: ¢ M (6)d0 (22)

In general, eqn (22) cannot be solved in closed form, and
must be numerically estimated. This representation of a
non-Gaussian pdf is most appropriate for non-Gaussian
systems resulting from a quadratic transformation. Any

other transformation must be recast in a quadratic form
to obtain the best results.

The nth cumulant k,, of a random process y is defined
in terms of the characteristic function and after
appropriate substitutions is given by

2N

ky=>"1 /2(2)\j)"{(n -1+ (2%’—) 2n!énl} (23)

j=1

where §,; is zero for n = 1, and unity otherwise. These
cumulants may be used as coefficients in a series of
expansion of the pdf, or as constraints in the maximum
entropy method.

Examples

An application of the MEM, Hermite moment, Kac—
Siegert, and Gram—Charlier polynomial series methods of
pdf estimation are shown along with a Gaussian model in
Fig. 5, where the process is the non-linear response of an
offshore platform to random wind loads."® The inset is a
view of the tail of the pdf on a logarithmic scale, in which
the higher probability of extreme response in a softening
non-linear system can be observed. In applying the Kac—
Siegert technique, 128 discrete frequencies are used
resulting in 256 and 128 values of A and B, respectively,
to form the characteristic function in eqn (21). Discretiza-
tion finer than this does not noticeably improve results in
this example. Equation (23) is used to produce the
cumulant values used in the MEM, Hermite moment,
and Gram~Charlier Hermite polynomial methods. In this
example, the skewness and kurtosis are 0.3829 and 0.2066,
respectively. Deviation from Gaussian is not large in this
case. All methods give approximately the same prediction

TLP response PDF

0-9 T T T T T T Al T T
0.8 18 ‘:1 R
0.7+ N
0.6 . -
0.5 “w -
skewness=.3829
0.41 kurtosis= .2006 .
0.3F 4
—— Kac-Siegert
0.2+ -— - Hermite Series b
----- Gaussian
0.1 - - MEM -
G-C
o) 1 + Ty
-2 -0.5 0 0.5 1.5 2

Fig. 5. Kac-Siegert, Hermite moment, MEM, Gram-Charlier and Gaussian pdf estimates of nonlinear response.
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Fig. 6. Measured non-Gaussian pressure trace.

in the mean region, while the Kac—Siegert and Hermite
moment tend to provide more conservative estimates in
the tail region (inset).

The second example concerns the measured pressure
fluctuations on a full-scale low-rise building.” The
pressure data, histogram, a fitted Hermite moment
model, and a lognormal fit are given in Figs 6 and 7.
The skewness and kurtosis are reported in Table 1
along with the parameters used in the Hermite
transformation of eqn (16). In this case, the deviation
from Gaussian is large, and the modified Hermite
moment model fits the histogram well. The negative
tail region is shown in the inset, where the close fit of
the extremes of the data by the Hermite moment model
contrasts that of the Gaussian tail. A lognormal fit
utilized by Calderone et al?® is also shown on this
figure and while it predicts the tail region more
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Fig. 7. Histogram, Gaussian fit, lognormal fit, and modified
hermite moment based pdf estimate of data shown in Fig. 6.

accurately than the Gaussian distribution, it falls well
short of equalling the effectiveness of the moment-
based Hermite transformation in quantifying the
extremes of the distribution. A Kolmogorov—Smirnov
goodness-of-fit test also confirms the superior fit of the
Hermite moment model.

APPLICATIONS OF PDF MODELS
Fatigue/glass damage

Typically, the fatigue damage caused by wind-induced
fluctuations due to non-Gaussian gusts or pressures
under separated flow regions is assessed based on the
assumption that the underlying process is Gaussian.
These results may considerably underestimate fatigue
damage for some regions on a building envelope. Based
on the models involving Volterra series, or information
on the skewness and kurtosis of a process, a systematic
correction factor can be added to the Gaussian fatigue
damage estimate that reflects the effects of non-
Gaussianity. A simple measure of the influence of non-
Gaussian effects on fatigue damage accumulation is the
ratio of fatigue damage under non-Gaussian loading to
that under Gaussian loading

_ E[D,g]
E[D

A (24)

]

Table 1. Coefficients used in eqn (16) for Hermite moment fit of
pressure data

Skewness Kurtosis ) .
” Y4 a b ¢ hy hy a

—0.9869  2.3278 —1.358 9.660 317.4 —0.1403 0.0345 0.9775
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This ratio, based on Hermite moment transformation
models for the non-Gaussian narrow-banded processes,
is given by Winterstein® as

e () () eteenrion

(25)

where hy = v4/24, k= (1 + 21 + 6R3)712, and h; and
hs have been defined in eqn (16). Utilizing the non-
Gaussian pressure fluctuation data in Fig. 6, A is equal
to 1.6. This could potentially enhance fatigue of
cladding components by 60 percent. The assumption
of normality may lead to unconservative fatigue life
prediction when the actual response is non-Gaussian
with a kurtosis value greater than zero. However,
conservative estimates are expected for non-Gaussian
cases with a kurtosis value less than zero.

The importance of non-Gaussian local pressures on
cladding glass has been addressed by, among others,
Holmes,”® Reed,” and Calderone and Melbourne.*
Holmes?® and Reed® utilized a non-Gaussian distribu-
tion of pressure fluctuations based on the relationship
between Gaussian wind velocity and non-Gaussian
pressure variations. This relationship is based on
quasi-steady theory which has its limits but works well
for stagnation face pressure. Numerical simulations
involving wind tunnel data have revealed that non-
Gaussian fluctuations result in greater glass damage.
The cumulative damage criterion is used to determine
the effect of fluctuating pressure through an equivalent
constant pressure. Beside the non-linear relationship
between the pressure and resulting stress in glass, the
glass size, and its geometry, the non-Gaussian features
of pressure fluctuations play an important role in
determining the cumulative damage. The equivalent
constant pressure is given by*

Pe = (—T!;gp?”t.') #= (:Ts (7{; j:p“"fp(p)dp)r
(26)

where Tg is the duration of the equivalent pressure (60 s
in the U.S.), p; is the pressure at a particular instant, / is
the total number of instants being accumulated, ¢; is the
time duration of pressure p;, s is the slope of the straight
line on a log-log scale of the plot between pressure and
surface tensile strength of glass, and n is dependent
on the type of glass.’’ In the second expression for pg, T,
is the length of the sample considered and f,(p) is the
pdf of the pressure process. Using a histogram of a
sample of data (7 = 900s) to represent the pdf of the
data, the ratio of Pg for the non-Gaussian model to
Gaussian is equal to 1.84. Using the Hermite moment
model, this ratio is 1.76 and using a lognormal model*
the ratio is 1.18. For comparison’s sake, the limits of
the integration have been taken to be the end points of

the range for which pressure data is available in the
realization of data considered. This illustrates the
significance of non-Gaussian effects in the evaluation
of pg and more importantly the effectiveness of the
moment-based Hermite transformation in capturing this
significance.

Gust factors

The use of gust factors to account for the dynamics of
wind fluctuations is accepted worldwide. The concept,
based on the original formulation by Davenport,’ relies
on the assumption of a Gaussian process. For dynamic
pressures resulting from the square of wind velocity the
Gaussian assumption may break down. Soize’' and
Kareem and Zhao'® have extended Davenport’s Gaus-
sian model to include non-Gaussian effects, which are
more pronounced for relatively stiffer structures. The
non-Gaussian contribution also increases for high levels
of turbulence. The gust factor, G, relates the mean of the
extremes of a process to the mean of the parent process
as follows:

Xo=X+eo=X(1+5) =6X (27)

where g is the peak factor. When X = 0, we simply have
X.. =go and we need merely to compute the peak
factor. The peak factor used in the non-Gaussian gust
factor formulation'® employs the moment-based Her-
mite transformation which has been shown to be more
accurate in representing the tail regions of the pdf of a
non-Gaussian process than the Edgeworth series
employed by Soize.3! Treating the standardized non-
Gaussian random variable as a non-linear function of a
Gaussian random variable as in eqn (14), the probability
density function of the process X may be readily derived
(e.g. Ref. 32).

According to Cartwright and Longuet-Higgins,*® the
distribution of all maxima (positive and negative) of the
standardized Gaussian process are given as

1 u?
PU, (w) = E I:E €xp (— ?>

2 u
+ V1 —cfuexp (- %)

u\/l'eE §2
x J exp (— 5) df] (28)

—00

where €= /1 —m3/(mym,) is a descriptor of the

bandwidth of the parent Gaussian process and the m;
can be described in terms of moments of the one-sided
spectral density of the process, m; = [s° n'S(n)dn, where
n is frequency in Hertz. For a narrow-banded process,
€ =0, and eqn (28) yields the Rayleigh distribution.
The cumulative distribution of the extremes of the
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parent Gaussian process is {(e.g. Refs 9,34)
Py, (u) = exp[-N(1 — Py, (u))] (29)

where N = \/my/m,T is the expected number of
maxima during an interval of length, T (e.g. Ref. 35),
and from eqn (28) assuming that u is large, we may
approximate33

1-Py (W= VI1- szexp(—ﬁ)

2

1 u my —u?
+0 (;exp (— ?> ) N exp (T) (30)

which leaves

[ 2
Py_(u) = exp —\/mz/mOTexp(—%—)] (31)
So, we have for the extremes of X

Py_(x) = exp |—+/my/myT exp (— ﬁ?)] (32)

The peak factor, gy, relates the mean of the positive
extreme values of X to its standard deviation. To
compute it, we must first determine dPy_(x). Making
the assumption in eqn (30), we have for the case when X
is zero mean

dPyex(x) = exp(—)dy, ¥ = T exp[—u*(x)/2]

and vy = \/my/my (33)

This gives

Xy = j°° x(1) exp(~1)dtp = gogors (34)

In order to evaluate eqn (34), we must develop the
form of x(). This is accomplished by first solving for
u(x), according to

u(x) = v/2Iny,y T — 2Inyp (35)

Since the time, T, is usually very large, an asymptotic

expansion for eqn (35) is
Iny  (Ing)?
u(x) 25—7— 28

where (= ./2lnyyT. Substituting eqn (36) into the

moment-based Hermite transformation model and
retaining terms of O(3~"') and greater, yields

8ng =k{(ﬁ+%) + (B + 22— 1)+ hy

(36)

X

8

where v =0.5772 (Euler’s constant), 8= /2In(1,7T)
and v is the zero-upcrossing rate, &, A3, A4 are functions

2 2
ﬁ3+36(7—1)+§-(~7r——7+%>

N —
—~
W
~
—

of skewness and kurtosis. For Gaussian processes, hy
and A, =0 and o =1 which reduces eqn (37) to the
standard Gaussian form given by Davenport.*® For
the 900 s realization of data in Fig. 6, vy = 1.334. The
peak factor based on eqn (37) using statistical infor-
mation derived from the data is equal to —7.4, whereas
the corresponding value for the Gaussian case is —3.9.
It is important to note that eqn (37) is for positive
extremes and for the negative extremes which we have
considered here, the opposite of the skewness value must
be used.

By comparison, Cheong37 treats exceedence of a
threshold which lies two standard deviations below the
mean as a separate random variable. By choosing a low
threshold, successive exceedences may be considered
independent. The occurrence of exceedences of the
threshold is modeled as a Poisson process and the
distribution of exceedences is modeled by an exponential
distribution. From this model, the distribution of the
largest exceedence, S, for a duration, ¢, is derived as

Ps(t) =e ™" (38)

where p and 6 may be obtained from data as the
reciprocals of the mean exceedence and the mean inter-
exceedence interval, respectively. In terms of the
distribution parameters, the expected value and the
most probable value of the maximum exceedence are
given by

E[S(1)] = In(81) +0.5772 Simp = In(61) (39)

" 7

Thus, the expected minimum C, and its most probable
minimum are

E[C,(0)] = C, —20¢, ~ E[S(1)]
Cpop = Cp = 20¢, = Smp (40)

For the data considered above, E[C,(t)] = —7.019,
Cpn, = —6.562. These values approach the peak factor
attained by using the moment-based Hermite transfor-
mation model, but are somewhat less conservative in
their estimate of the extreme value. This can be noted in
Figs 6 and 7.

In a recent study, Krayer and Marshall®® have
pointed out that the linear gust factor ‘based on
extratropical storms may underestimate the gust factor
for hurricane conditions. It is quite clear that the
hurricane wind field comprised of turbulence due to
convective processes superimposed upon a large,
coherent vertical structure results in non-Gaussian
fluctuations. Near the ground, a change in energy
distribution with respect to frequency may result from
non-linear interactions between different frequency
components. Changes in the pdf and the power spectral
density would certainly introduce changes in the
statistics of velocity fluctuations, leading to a larger
gust factor. A closer examination using a theory based
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on the preceding comments is being pursued to model
the observed data.

SIMULATION OF NON-GAUSSIAN PROCESSES

Among a host of approximate analytical techniques
developed for the analysis and prediction of non-linear
system response, simulation methods are becoming
more attractive due to the increasing ability of high
speed computers. For implementation of time domain
schemes, the time histories of loading functions are
generated in accordance with desired statistical and
spectral characteristics. The simulation procedures for
Gaussian random processes are well established.”*
However, progress in the simulation of non-Gaussian
processes has been elusive. A recent book on non-
Gaussian processes provides an excellent overview of
current methods of non-Gaussian simulation.*> Several
promising methods currently being pursued by the
authors are presented here.

Correlation-distortion method

An approach used by Yamazaki and Shinozuka* for
the simulation of non-Gaussian processes begins with
the simulation of a Gaussian process which is then
transformed to the desired non-Gaussian process
through the following mapping:

X()=F{o()} (41)

An iterative procedure is necessary to match the desired
target spectrum since the non-linear transformation in
eqn (41) also modifies the spectral contents.

The necessity for an iterative procedure may be elimi-
nated if one begins with the target spectrum or auto-
correlation of the non-Gaussian process and transforms
it to the underlying correlation of the Gaussian process.*’
Then, a simulation based on the schematic shown in Fig.
8 would eliminate the spectral distortion caused by the
non-linear transformation. This approach is referred to
as the correlation-distortion method in stochastic system
literature.*~*® For a given static single-valued non-
linearity x = g(u), where u is a standard normal

Gaussian process, the desired autocorrelation of x in
terms of y can be expressed as*’

Ru(r) = 3 atehu(r)

k=0

- L[ ) Bdn (@2
o === stowexs( - ) Hewau @2

where p,, is the normalized autocorrelation of the
non-Gaussian process, and H;(u) is the kth Hermite
polynomial given by

2 k 2
He(u) = (1) exp (7) j—uk {exp (— ”7)] @3)

An alternative to the preceding approach is to express x
as a function of a polynomial whose coefficients are
determined by a minimization procedure (e.g. Ref. 49).
Another approach uses translational models involving
the Hermite moment transformation described earlier.
In this study, we utilize a Hermite model. The
simulation algorithm is as follows: (i) estimate the
auto-correlation of the mean-removed normalized
parent non-Gaussian process to be simulated; (ii)
transform to the auto-correlation of the underlying
Gaussian process by solving

Ry(7) = &Ry (7) + 2Ry (7) + 6hi Ry, ()] (44)

for R,,(7)*, where eqn (44) is a truncated infinite series,
and the unspecified parameters are defined in eqn (16);
(i) simulate a Gaussian process using the spectrum
associated with R, (7); (iv) transform this process back
to a non-Gaussian process using

x = afu+ hy(u? — 1) + hy( = 3u)) (45)

(v) replace the mean and variance of the original parent
process. A sample realization of a simulated process
consistent with the data in Fig. 6 is given in Fig. 9. The
comparison of simulated and target pdfs and spectral
characteristics is excellent and is shown in Fig. 10, where
the simulation results are an ensemble average of 100
realizations.

Simulate ssi . .
. Gau sian Y F Nonlinear  Static X R _F
process with desired By Ly . n x fx
. Transformation

correlation and spectral
—_— — — -
. . structure. i Non-Gaussian
input Gaussian gausslland output process
sequence orrelate

Process

Fig. 8. Schematic of the correlation-distortion method of non-Gaussian process simulation.
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Fig. 9. Sample realization of simulated pressure data in Fig. 7 using correlation-distortion.

Direct transformation methods

Another application of the correlation-based approach
concerns the simulation of a process consistent with a
sample of a non-Gaussian time history. The non-
Gaussian sample process, x(t), is transformed to its
Gaussian underlying form, u(x), through eqn (16).
Subsequently, linear simulations created through stan-
dard techniques based on the target spectrum of the
Gaussian process are transformed back to the non-
Gaussian parent form through eqn (45). The short-
coming of this direct transformation technique is the
distortion of the frequency distribution of signal energy.
The resulting simulated non-Gaussian signal power
spectrum does not match the parent non-Gaussian

spectrum to a satisfactory degree. This distortion may
stem from the inability of the three-term truncated
Hermite moment transformation in eqn (16) to produce
a Gaussian signal for cases when the parent signal is
highly non-Gaussian. The linear simulation is then
based on a target spectrum derived from a process which
is assumed Gaussian, but is not. It is at this point where
the frequency information is distorted, and results in
poor simulations. One option for improved results is to
add terms to the Hermite series until a Gaussian
transformation is achieved. This may require a different
number of terms to achieve accuracy for varying input
sample signals.

A simple correction has been suggested to remove this
distortion in the direct transformation method.*
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Fig. 10. Pdf and power spectral density of measured and ensemble of simulated records using correlation-distortion method.
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Fig. 11. Pdf of measured and ensemble of simulated records and a realization of the pressure record in Fig. 6 using modified direct
transformation method.

Referring to eqn (16), it can be seen that the governing
parameters A3, Ay, a, b, ¢, o and thus u(x) are dependent
on the skewness and kurtosis. v; and 74 may be treated
as adjustable input parameters in order to force the
transformed process, u(x), to be Gaussian. Optimization
of these two parameters is based on the minimization of
the function

min(v;, +3,) (46)

where 3, and v, are the skewness and kurtosis of the
inverse Hermite transformed process u(x). The opti-
mized input parameters 7; and <4 now provide a
Gaussian process, and the linear simulations do not
contain distortion. The same parameters are used to
transform back to a non-Gaussian simulation whose pdf
and power spectral density closely match those of the
parent process. This correction is essentially a quanti-
fication of the error in truncating the Hermite series
after the third order.

An example is given in Fig. 11, where the simulated
and target pdf are shown along with a sample realization
of the measured pressure in Fig. 6. The pdf is an
ensemble average of the pdfs from 100 realizations of
the same length as the original record. The comparison
of target and simulation power spectral density is similar
to that in Fig. 10, and is not shown here.

Simulation based on higher-order transfer functions

The Volterra series model in the frequency domain (eqn
(2)) lends itself to the simulation of non-linear processes
for which the Volterra kernels are available or may be
estimated. A second-order non-Gaussian signal result-
ing from a quadratic transformation of a Gaussian
process may be simulated by the addition of second-
order contributions to the complex spectral amplitude

components at the appropriate sum and difference
frequencies before inverse Fourier transforming the
sequence to the time domain. These second-order
contributions are formed from the products of pairs of
linear Fourier components with the QTF in the
frequency domain, and correlate the phase between
various frequency components to a degree weighted by
the QTF. The memory retained by convolution with the
QTF facilitates the simulation of processes that are able
to match not only the power spectrum and pdf of the
parent process, but the bispectrum as well.

This approach requires information concerning the
QTF of the desired process. In the case of non-Gaussian
waves and their loads on offshore structures, the QTFs
can be derived computationally. However, in the case of
wind effects this is not possible due to the complexity of
non-linear interactions that take place as turbulent wind
encounters a structure. In the absence of the necessary
information, it is possible to estimate a QTF based on
the desired process and an extracted underlying
Gaussian process. Such an attempt is made here by
using the pressure data in Fig. 6. Due to the presence of
higher-order non-linearities, an estimated QTF may not
completely model the non-Gaussian features. This
concept in principle may easily be extended to the
simulation of non-linear processes beyond the second
order, where higher-order information, e.g. trispectrum,
may improve the model.

A simulation based on a QTF extracted from pressure
data is shown in Fig. 12, along with a sample of the
measured data, and indeed reflects a lack of com-
pleteness in the second-order Volterra model. The model
fails to properly reflect the skewness and kurtosis of
the measured record. The use of higher-order transfer
functions is currently being researched to improve upon
the simulation. A second example is shown in Fig. 13,
where the data being simulated is mean-removed
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Fig. 12. Non-Gaussian simulated pressure realization using eqn (2) (left), and a measured sample of pressure data (right).

measured wind velocity from a hurricane. In this case
the higher-order statistics of the measured and simulated
processes match up well, and the visual comparison is
much closer to the target than the previous example.
The second-order Volterra model is appropriate for the
severity and type of non-linearity in this case.

The role of phase tailoring

It is also interesting to examine the role of phase
tailoring. It will be shown here that certain constraints
on the envelope of the time series may be accommodated
by controlling the phase. The widely used simulation
approach for generating processes with a prescribed
spectral density function uses the inverse Fourier
transform of a complex amplitude spectrum whose
components possess deterministically chosen amplitudes
and random phases. For a phase angle of zero, the
simulated time history represents the impulse response
of a system. For a linearly varying phase spectrum, the
resulting time series 1s the same as a delayed zero phase.
Accordingly, a random phase results in a random signal.
This is in direct contrast to the distinctly transient,
impulse response-like signal which is generated when
smooth and deterministic phase variation with fre-
quency is introduced.®® An assumed description of the
phase spectrum does not alter the spectral characteristics
of the simulated time history. It is thus possible to
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introduce spiky features or grouping effects in a
simulated time history by tailoring the phase spectrum
before inverse Fourier transformation. Such determinis-
tic signals cannot be utilized for statistical analysis, but
may be quite useful for deterministic applications such
as input to a system under test loading. The importance
of phase information in the Fourier representation of
non-Gaussian pressure records is used as the basis for a
simulation method which combines an autoregressive
model with Fourier transformation.>! Kobayashi et al.*?
have implemented the concept of phase tailoring in a
wind-tunnel simulation of wind gusts observed at a site
utilizing oscillating vanes.

The phase spectrum contains no relevant information
under the assumption of a Gaussian random process.
However, attention has recently been given to the
identification of phase information for non-Gaussian
processes. Bispectral analysis of measured processes, €.g.
ocean wave records, indicates the presence of phase
coupling among the various component wave frequen-
cies in many cases. This coupling results in a non-
Gaussian signal which is capable of dramatically
altering the response statistics of a system thought to
be subject to Gaussian input. The removal of the
coupled phase information from the record returns a
Gaussian signal with no significant bispectral character-
istics, but identical autospectra. This demonstrates the
potential importance of the phase information in
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Fig. 13. Non-Gaussian simulated hurricane wind velocity realization using eqn (2) (left), and a measured sample of hurricane wind
velocity data (right).
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identifying non-Gaussian signals, and is the basis of the
simulation of non-Gaussian signals in the previous
section, where the second-order contributions to the
linear complex spectral amplitudes result in phase
coupling weighted by QTF. The interpretation of
information from the phase spectrum of non-Gaussian
signals is still not well established and is an area of
current research in wave mechanics, e.g. Ref. 52.
Higher-order spectral analysis offers a convenient
format which has provided significant insight into
phase information, and is currently being used as a
tool to identify distinctive phase characteristics of non-
Gaussian wind pressure data.

In a less complicated application of phase tailoring,
the injection of constant phase over a small frequency
range of otherwise random phase results in a signal with
characteristics often desired in the simulation and
analysis of system response to particular types of
grouped input. This concept may be applied to
simulating concentrated groups of turbulent gusts
during a thunderstorm in synthetic wind records.
Further work is needed to identify and quantify the
existence of such groups of gusts in thunderstorms.

Conditional simulation

Simulation of random velocity and pressure signals at
uninstrumented locations of a structure conditioned on
measured records are often needed in wind engineering.
For example, malfunctioning instruments may leave a
hole in a data set or information may be lacking due to a
limited number of sensors. This concept is similar to
conditional sampling in experiments or numerical
simulations. This field has matured significantly in the
last few years (e.g. Refs 54-58). Fundamentally, two
approaches have been introduced in which the simula-
tion is either based on a linear estimation or kriging, or
on a conditional probability density function. Following
Borgman’s work on ocean waves,”® Murlidharan and
Kareem® have developed schemes for conditional
simulation of Gaussian wind fields utilizing both
frequency and time domain conditioning. The condi-
tional simulation permits generation of time histories at
new locations when one or more time series for the full
length interval are given, and extension of existing
records beyond the sampling time for cases where
conditioning time series are limited to a small subinter-
val of the full length. Consider a pair of correlated
Gaussian random vectors ¥, and V,. Let the bivariate
normal distribution of these variables be denoted

w=elpl=n((n] ) @

where 4, is the mean value, and Cj; is the auto or cross-
covariance between the variables. If a sample of V), is
measured and denoted as v;, then it is the conditional
simulation of ¥, based on the measured record that is

desired. The conditional pdf for V, given the informa-
tion on V) is expressed as

p(ValV1 = v)) = N(pa + ChCri (vg — 1), Coz
- CHCH Cr) (48)
and a conditional simulation is provided by
(V2lVi =) = CLCil' (v = V1) + V2 (49)

Derivations of the covariance matrices C;; and Cj, in
the time and frequency domains then provide all that is
needed for conditional simulation. Details concerning
these matrices for wind simulation may be found in
Murlidharan and Kareem.” In a conditionally simu-
lated field, fluctuations at intermediate points will follow
the fluctuations of the surrounding locations provided
the scale of fluctuations at surrounding locations. An
interesting application of conditional simulation con-
cerns generation of wind velocity fluctuation at a large
number of grid points as an upwind boundary condition
for a computational study conditioned on measurements
at a limited number of locations in a wind tunnel.®

An example application of Gaussian conditional
simulation is shown in Figs 14 and 17. These examples
are based on measured correlated wind velocity records
at four elevations on a full-scale tower with the mean
removed. Figure 14 shows three of these records at
stations 1 through 3 and a frequency domain condi-
tional simulation of the fourth location based on
information from the other three known records.
Here, eqn (49) is used for a uni-dimensional multi-
variate conditional simulation. Figure 15 is a compar-
ison of the target cospectrum with the cospectrum
between the measured records at station 1 and 4, and the
cospectrum between the conditionally simulated record
at station 4 and the measured record at station 1. The
jaggedness of the cospectra in the figure arises from the
variance inherent in individual realizations. An ensem-
ble average of many simulations results in a smooth
cospectrum which lies along the target cospectrum.
Figure 16 is a comparison of the target power spectral
density with that from the measured and conditionally
simulated records at station 4. Figure 17 shows a
measured record up to 2500s in the top figure. It is
assumed here that the record is only available up to
980s, indicated by the darker portion of the signal. A
time domain conditional simulation of the record from
98025005 is shown as the lighter portion in the bottom
figure, based on information from the first 980s. The
lighter part of the top figure indicates the portion of this
signal which is not known when generating the bottom
figure. Both examples demonstrate the effectiveness and
utility of conditional simulation.

In cases involving non-Gaussian processes, the
conditional simulation schemes suffer impediments
like their Gaussian counterparts. In Elishakoff et al.,%®
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Fig. 14. Measured wind velocity at 40, 60 and 80 m, frequency domain conditional simulation at 100 m based on records at lower
three stations.

iterative schemes have been utilized to simulate non-
Gaussian processes. The authors sought to combine the
techniques developed for unconditional simulation of
non-Gaussian processes and the procedure of condi-
tional Gaussian processes. The non-Gaussian known
processes are mapped into underlying Gaussian pro-
cesses, where conditional simulation is done. These
simulated time histories are then mapped back into the
non-Gaussian domain.

WAVELET TRANSFORMS

The inability of conventional Fourier analysis to
preserve the time dependence and describe the evolu-
tionary spectral characteristics of non-stationary pro-
cesses requires tools which allow time and frequency
localization beyond customary Fourier analysis. The
short-term Fourier transform (STFT) provides time and
frequency localization to establish a local spectrum for

Cospectrum between stations 1 and 4
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Fig. 15. Conditional, measured, and target cospectral density between stations 1 and 4.
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Power Spectral Densities of Conditionally Simulated data at station 4
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Fig. 16. Target, measured, and conditionally simulated power spectral density at station 4.

any time instant. The problem is that high resolution
cannot be obtained in both time and frequency domains
simultaneously. The moving window must be chosen for
locating sharp peaks or low frequency features, because
of the inverse relation between window length and the
corresponding frequency bandwidth.

This drawback can be alleviated if one has the

flexibility to allow the resolution in time and frequency
to vary in the time—frequency plane to reach a multi-
resolution representation of the process. This is possible
if the analysis is viewed as a filter bank consisting of
band-pass filters with constant relative bandwidths. One
type of local transform is the recently developed wavelet
transform (WT) which decomposes a signal using

Given time series to be simulated
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wavelet functions. Fourier methods of signal decom-
position use infinite sines and cosines as basis functions,
whereas the wavelet transform uses a set of orthogonal
basis functions which are local. Various dilations and
translations of a parent wavelet are joined to form the
family of basis functions. This allows the retention of
local transient signal characteristics beyond the cap-
abilities of the harmonic basis functions. The wavelet
transform allows a multi-resolution representation of a
process and provides a flexible time—frequency window
which narrows to observe high frequency energy
content, and broadens to capture low frequency
phenomena.

Brief wavelet overview

Development of the parent wavelet begins with the
solution of a dilation equation to determine a scaling
function ¢(n), dependent on certain restrictions. The
scaling function is used to define the parent wavelet
function, 1(n). The basis functions used to represent the
signal are defined by translations and dilations of the
parent wavelet. The shape of the parent wavelet is not a
single unique shape, but depends on the desired wavelet
order.

The signal being decomposed must consist of 2¥
samples, where M is an integer. Wavelet analysis
decomposes the signal into M + 1 levels, where the
level is denoted as i, and the levels are numbered
i=1,0,1,...,M — 1. Each level of i consists of j = 2
translated and partially overlapping wavelets equally
spaced 2 /j intervals apart. The j = 2' wavelets at level i
are dilated such that an individual wavelet spans N — 1
of that levels intervals, where N is the order of the
wavelet being applied. Each of the j = 2’ wavelets at
level i is scaled by a coefficient 4;; determined by the
forward wavelet transform, a convolution of the signal
with the wavelet. The notation is such that i corresponds
to the wavelet dilation, and j is the wavelet translation in
level i. a;; is often written as a vector ay,;, where
J=0,1,...,i — 1. There are as many wavelet coefficients
as signal samples. The level i = —1 is the signal mean
value.®! A variety of packages are available to perform
discrete wavelet transform (DWT) analysis (e.g. Ref. 62).

Applications to wind engineering

The present research concerns the use of wavelets to
aid in the analysis and simulation of non-stationary
data. Multi-scale decomposition of processes utilizing
wavelets reveals events otherwise hidden in the original
time history. Wavelet coefficients may be used to derive
an estimate of the power spectrum. These estimates
may be extended to multi-variate, e.g. cospectral,
estimation. The wavelet coefficients provide the scalo-
gram, which describes the signal energy on a time-scale

domain over a range of logarithmically-spaced fre-
quency bands. This facilitates identification of time-
varying energy flux and spectral evolution. The
property of accurate energy representation lends itself
well to signal reconstruction and simulation. A
stochastic manipulation of the wavelet coefficients
leads to a simulation which is statistically similar to
the original signal.

Wavelet filterbank

Figure 18 presents the time history of the response of a
large floating structure to wind and wave loads, and the
resulting band-passed time histories using a wavelet-
based filterbank. The summation of the band-passed
histories returns the original time history. This figure
unfolds the response time history into a very revealing
display of the time-scale representation. The top left
block is the mean-removed original signal, the blocks
following column-wise downward are the band-pass
filtered signal in order of decreasing frequency, and the
lower right block is the low pass channel or mean of the
signal. Note the different scales on the plots for the
filtered processes, indicating relative contribution in that
frequency band. The power spectral density of the signal
in Fig. 18 is shown in Fig. 19, in which the frequency
bands 1 through 7 of the filtered process are marked.
The higher relative magnitudes of bands 3 and 4
correspond to the right peak in the spectrum, and are
due to first-order wave effects. The high relative
magnitude in bands 6 and 7 corresponds to structural
resonance due to wind and second-order wave effects.
The wavelet-based filter bank has helped to identify, e.g.
high frequency spikes and their time of occurrence,
associated with waves slamming the structure, observed
in bands 1 and 2. These transient events in the response
of the structure exposed to wind and wave fields are not
clearly discernible in the time history where large
excursions may be due to either occasional slamming,
or large but not slamming waves. The improved
efficiency over FFT and other filtering techniques, e.g.
multi-filtering with simple oscillators (e.g. Ref. 63),
renders wavelet filterbanks a quick and convenient time-
scale decomposition method.

Signal analysis with spectral methods and wavelets/time-
scale decomposition

A wavelet power spectrum is estimated by plotting the
summed coefficients with respect to the scale axis only.
Small changes in frequency within an octave band are
not easily resolvable. This is a larger problem for the
high frequency range where the octave spans half the
total frequency range. This may be alleviated by several
methods which allow intra-octave wavelet coefficient
estimation. One option is to apply a number of slightly
dilated parent wavelets recursively to the data, creating
a denser sampling grid than the octave-by-octave grid
used by the original parent wavelet.** Another method
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Fig. 18. From left column-wise downward: measured offshore structured response to wind and wave field and its time-scale
decomposition using wavelet transforms.

used in this study is the application of zoom techniques
to the filtered data.

An example of octave band and intra-octave band
wavelet spectral estimations and an FFT-based estima-
tion are shown in Fig. 20. The left figure is the power
spectrum of the response of an offshore platform to
wind loads, and the right figure is the cospectrum
between the measured wind speed input and resulting
platform response. The areas under the wavelet spectral
and cospectral estimates represent the true variance and
covariance from the time histories almost exactly, while
the area under the FFT estimate does not. Further,
smoothing of the FFT estimate with segment averaging
renders its resolution inferior to that of the wavelet
estimate at low frequencies. The FFT spectral estimates
are the average of eight segments, while the wavelet
estimate is based on the entire data record.

Wavelength coefficients in an octave band represent
the energy at time intervals equally spaced over the
duration of the signal, and may be used to analyze

non-stationary events for transient and evolutionary
phenomena. Accordingly, the transfer of energy from
one octave band to the next may be observed along the
time-scale in the scalogram. Two example applications of
the scalogram are shown in Figs 21 and 22. In Fig. 21 the
analyzed signal in the top plot is a sine wave of constant
amplitude whose frequency is steadily increased in time.
The transfer of energy from lower to higher frequencies
in time is clearly demonstrated as the dark region. In Fig.
22, the signal is a hurricane velocity record measured
after the hurricane eye has passed the instrument. In the
scalogram the light region shows the band of frequency
content of the record remains relatively constant, while
the magnitude at earlier times is larger than at later time,
suggesting non-stationary features.

Wavelet simulation of non-stationary processes

The concept of applying a modulated stationary process
centred at narrow-banded frequencies to model ground
motion has been extensively used (e.g. Refs 65, 66). In
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Fig. 19. Power spectral density of measured offshore structural response seen in Fig. 18.

this representation each component process, s;(¢), is
modulated by a different modulating function m;(z)

x(0) = Y my(1)5(1) (50)

There are different approaches to modeling m; and s; to
describe x.

The retention of both time and frequency informa-
tion makes wavelets a useful tool for the simulation of
non-stationary signals. This can be done given either a
parent non-stationary signal, or a target spectrum and

modulation function for each octave. Given a parent
non-stationary signal, e.g. a local wind velocity record,
an ensemble of signals may be simulated whose average
statistics closely resemble those of the parent process.
The parent signal is discrete wavelet transformed
(DWT), and the coefficients multiplied by a Gaussian
white noise of unit variance w(n). The inverse wavelet
transform (IWT) then produces a simulation statistically
similar to the parent process.

Given a target spectrum and modulator functions for
each octave, the simulation is done by first finding the
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Fig. 20. Left — Power spectrum estimates of offshore platform response using FFT, octave band wavelet, and intra-octave band
wavelet estimation techniques. Right — cospectrum estimates between wind velocity input and resulting platform response.
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energy contained in each octave from the target
spectrum. The wavelet coefficients for the simulated
process are multiplied with the appropriate modulator,
and normalized such that the energy equals that in the
corresponding octave. These modulated and normalized
coefficients are then multiplied through by white noise
and inverse wavelet transformed. The process is
represented by®’

X(n) =1IWT (w(n)* (%)) (51)
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Fig. 22. Measured hurricane data and scalogram.

When a parent signal is used to determine the modulator
function, the measured wavelet coefficients q;; and
target spectrum are used as

e = Ay/2e e (4] (52)
ij i \/Ei

where A; is the level-dependent amplitude constant and
S; is the energy corresponding to the ith octave from the
target power spectrum. Figure 23 shows a measured
non-stationary wind velocity record, and a simulated
process using the wavelet transform. Both statistical and
visual comparisons between the target and simulated
records are good.

CONCLUDING REMARKS

Progress in quantifying and simulating the non-
Gaussian and non-stationary effects of wind on
structures has been elusive due to the limitations of
traditional analytical tools. Here, an overview of
techniques is presented with examples which aid in the
efficient modeling, simulation, and pdf estimation of
non-Gaussian processes. The estimation of Volterra
kernels from system identification is addressed, as well
as other representations for non-linear systems. The
estimated pdf of non-linear system response is presented
via several methods with examples which involve the use
of Volterra kernels in the Kac—Siegert approach, the use
of joint moment information as constraints on system
entropy, and the use of moment-based Hermite
transformation models. Several techniques for simulat-
ing non-Gaussian signals, including convolving Fourier
amplitude pairs with higher-order Volterra kernels, non-
linear mapping, as well as the concept of conditional
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Fig. 23. (a) Measured and (b) a realization of simulated wind
velocity using wavelet transform.
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simulation, are discussed. The implications of non-
Gaussian winds and their load effects on fatigue damage
and gust factor representation of dynamic wind loads
are illustrated. The analysis and simulation of non-
stationary processes is accomplished by the application
of localized basis functions via the wavelet transform.
Applications and examples are given which pertain to
non-stationary effects of wind on structures.
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