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Abstract

Pressure and velocity fields around rigid prisms of rectangular cross-section are numerically
simulated for a Reynolds number of 10° using the large eddy simulation (LES). In conjunction
with LES, a finite difference scheme is employed on the basis of a staggered grid, in which the
convection terms are discretized by the QUICK scheme. The outflow boundary condition is
then satisfied by the convection condition. This numerical scheme combined with the LES
model offers a computationally efficient tool for simulating high Reynolds number flows
around bluff bodies. The LES scheme employed in this study may be viewed as a coherent
structure capturing technique to distinguish it from a true LES in which the scales are generally
resolved to very small size. The numerical scheme is applied to calculate both the instantaneous
velocity and the pressure fields over the entire domain. In addition, the mean and root mean
square (RMS) values, the power spectra of the pressure fluctuations on the prism surface, the
integral forces (lift and drag forces) and probability densities of pressure fluctuations are
presented. Additional calculations concerning the chordwise correlation of pressure around the
square prism and its eigenfunction expansion are presented. Simulated results, including the
mean velocity along the symmetry line, are then compared with the available experimental data
and numerical results by other investigators. With the exception of the lift and drag force
spectra whose values do not match closely, and the probability densities for which no
experimental data were available, all other features are observed to be in good agreement with
experimental findings. Streaklines are also employed to visualize the flow field around rectan-
gular prisms and are found to match the vorticity contour of the flow field. Streakline sequences
clearly demonstrate the shedding of two vortices in every cycle of the integral lift force on the
bluff body. The separation-reattachment features on the side faces of rectangular prisms are
also visualized. A parametric study concerning bodies of different aspect ratios illustrates
clearly the modifications in the flow field patterns which are sensitive to the streamwise length
of the body and the associated pressure distribution.
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1. Introduction

The study of wind-structure interaction has fundamental implications to engineer-
ing problems (e.g., the effect of wind on bridges, buildings, offshore facilities and motor
vehicles). In the structural engineering area, wind-induced loads on structures often
introduce concerns related to both the integrity of structural envelope and the safety
of the overall structural system. Although the knowledge of wind effects on structures
has significantly improved in recent decades, an understanding of the nonlinear
interactions that take place as wind encounters structures has not been developed in
enough detail to develop functional relationship. Not only is the wind approaching
a building complex, but also the flow patterns generated around a structure are
complicated by the distortion of the mean flow field, flow separation, vortex forma-
tion, and wake development. Such effects have precluded theoretical treatment of the
problem. Thus, emphasis has been placed on physical modeling of fluid-structure
interactions, which offers an accurate means of acquiring pressure and load fluctu-
ations on structures. Presently, such models utilize boundary layer wind tunnels to
study the characteristics and ramifications of complex, turbulent, boundary layer
winds flowing over various structural configurations.

Recently, due to advances in computational fluid dynamics, combined with the
availability of more powerful computers, the numerical modeling of flow around
structures has become an attractive alternative to physical modeling. Numerical
modeling in wind engineering is based on methods of computational fluid dynamics
(CFD). Coupled with computer aided flow visualization, which provides visual
animation, the numerical simulation may serve as a useful tool to analyze the
evolution of flow field around structures and the attendant load effects. These
techniques are presently in developmental stage and are computationally quite
intensive, and like any other modeling procedure, they are not free from error. In
wind-related problems, issues concerning space and the discretization, turbulence
modeling, atmospheric boundary layer simulation, and modeling of appropriate
inflow conditions require further investigation before numerical modeling attains
practical status. Accordingly, the development of numerical techniques that provide
realistic definition of the flow around a body will provide a valuable additional tool
that may be used in design of buildings and other structures. In addition, such
a numerical analysis tool, which can run efficiently on computers available to design
firms, would make it possible to evaluate a host of design configurations in
the preliminary design stage, while using a boundary layer wind tunnel for the
determination of the final design.

The flow field is modeled by the Navier—Stokes equations with appropriate bound-
ary conditions. Turbulence models have been developed to simulate high Reynolds
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number flows that are not achievable with direct numerical simulation (DNS) due to
computer limitations or to simulate a flow with the same Reynolds number similar to
DNS but with less computational effort. Currently, the most widely used turbulence
model is the k—& method, which has the advantage of lower computational effort,
but with a lower level of accuracy [1-4]. The LES approach has emerged as a
more attractive scheme which has the promise of providing improved results with
reasonable computational effort. In LES, fluid motion scales larger than the filter size
are resolved and solved directly, while the scales smaller than the filter size are
modeled by a subgrid-scale model [5]. The most commonly used LES simulation
relies on the Smagorinksy model for subgrid-scale viscosity [6,7]. A detailed, critical
review of the LES technique as well as other options can be found in review papers by
Boris et al. [8], Ferziger [5], Mason [9], and Lesicur and Metais [10]. Coherent flow
structures are responsible for the large-scale pressure field; therefore, a scheme that
models essentially coherent structures is appropriate for wind engineering applica-
tions. It is referred to as coherent structure capturing (CSC) to distinguish it from
classical LES approach [5]. One should not expect CSC to simulate flow field
characteristics that are associated with scales smaller than the filter length used in
LES model. The CSC is essentially a subset of LES in which the filter size is larger
than that used in typical LES simulations.

All numerical studies rely on a good numerical scheme for the evaluation of the
parameters in the sample space. Many numerical methods have been developed over
the years which include the finite difference method, finite element method, and
spectral method, each with its own advantages and disadvantages. Regardless of the
choice of method, the convection term must be properly discretized to insure both
accuracy and stability. Generally, the scheme should have at least accuracy of second
order, since lower-order schemes may introduce artificial viscosity which may exceed
the turbulence viscosity designed in LES. A proper definition of boundary conditions
is also very important. In wind-engineering-related applications, the flow field extends
to infinity in one or more directions, thus requiring an artificial outflow boundary to
keep the simulated domain finite. This kind of boundary requires more scrutiny,
because a free boundary condition, ¢/dn = 0, may not be well justified. On solid wall
boundaries, when the grid resolution is not fine enough to resolve the boundary flow,
an artificial boundary condition may also be necessary [11].

Murakami and his team conducted a series of numerical studies involving 2D
square cylinders and a cube fixed to the ground [12-17]. They also compared the
numerical results of the k~¢ model and the LES with wind tunnel results [1], and
generally found that three-dimensional modeling provides a better representation of
the flow characteristics than the two-dimensional case. Their LES modeling of the
flow field also provided an improved and more realistic simulation of the flow fields in
comparison with k—¢ based simulation.

In this paper, plane flows with zero incidence attack angle over two-dimensional
prisms of rectangular cross-section are numerically simulated at a Reynolds number
of 10°, using LES, or more appropriately CSC scheme. Computational scheme
involves a finite difference method utilizing a staggered grid on which the convection
terms are discretized by a third-order QUICK scheme [18]. The temporal marchingis
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accomplished by a Leith-type method. The pressure is calculated using a separate
equation and applying the successive overrelaxation (SOR) method. Utilization of the
LES model permitted calculations of both the instantaneous velocity and pressure
fields over the entire domain at high Reynolds numbers. For the velocity field, the
mean velocity along the symmetry line is computed and compared to experimental
and other numerical results. Mean and RMS pressure distributions, power spectra,
spatial correlation, and integral forces on the prism (lift and drag forces) are also
derived and compared with the available experimental results. In addition, streaklines
are drawn to visualize the separation and reattachment of the flow and vortex
shedding patterns.

2. Theoretical and numerical background
2.1. Governing equations

The Navier—Stokes equations for an incompressible fluid combined with a subgrid
scale turbulence viscosity model are used for the large eddy simulation (LES) of the
flow around a rectangular prism [7, 12-17]. In this study, the Smagorinsky model is
used for the subgrid-scale viscosity [6]. The governing equations are
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where i,j = 1,2 for the two-dimensional computation in this paper. #; and P are the
large-scale velocity and pressure, and v is kinematic viscosity of the fluid. Eq. (3) is
the Smagorinsky model which defines subgrid-scale viscosity vggs, Where 4 =
(Dx;Dx,)? and C, = 0.15 are used.

These equations are non-dimensionalized using the length of the front side of the
rectangular cross section L, and the inflow velocity Uy. Then time is non-dimen-
sionalized by L/U, and pressure with pU2, where p is the mass density of the fluid.
The Reynolds number is thus defined as LU,/v, with v being the fluid kinematic
viscosity.

2.2. Numerical scheme

In this simulation, the primitive variable formulation is used, while the computa-
tional domain is discretized with a staggered grid such as the marker and cell (MAC)
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method [19]. In studies involving a subgrid-scale turbulence viscosity model, it is
important that the accuracy order of the finite difference scheme be high enough to
ensure that the numerical diffusion caused by the discretization will not dwarf the
turbulence viscosity. Such being the case, a third-order, upwind difference scheme for
the convection terms in conjunction with the Leith-type scheme for the temporal
marching, following the method of Davis and Moore [20,21], are applied. The
discretization algorithm has been integrated with the LES model so that the charac-
teristics of high Reynolds number flows are captured.

The one-dimensional convection diffusion equation, using ¢ to represent velocity in
X, or x, direction at a discretized grid point, yields
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where I' includes the viscosity due to the fluid property and the subgrid-scale model.
From this equation,
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¢" defined here may be considered as an average value centered at a grid point i,
overlapping the length of a grid size Dx, and the values of ¢} in numerical calculation
are defined at the ith grid node. Thus, by fitting a parabolic curve to the points at the
(i — Dth, ith, and (i + 1)th grid nodes, and integrating over the length of a grid
centered at the ith grid, it yields
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but from Eq. (5),
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Now the convection terms are discretized by the QUICK scheme [18] and the
diffusion term by a central difference scheme. For U > 0, these schemes are listed
below:
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Substituting into Eq. (13), and noting C = UAt/Ax, y = TAt/Ax?,
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If the mixed derivatives are all omitted, then the 2D algorithm is a direct extension of
the 1D formula [20,21]; thus the discretized 2D equation is given by
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Fig. 1. Schematic of the computational domain.
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where P denotes the present point, W denotes the point west of the present point, or
left in the x, direction, WW denotes the point farther west. Accordingly, the subscripts
E, N and S may be interpreted in a similar fashion. C, is the Courant number on the
east of the present point, ie., C,=u,At/Ax,. 7, = (v + vggs)At/Ax? and 3, =
(v 4 vsgs) At/Ax3. Here vsgs is the subgrid viscosity, which is calculated using Eq. (3).
The pressure field is solved with a successive overrelaxation method as used by Hirt et
al. [22]. This procedure ensures that the flow field 1s divergence free.

The computational domain, with a uniform grid of size 0.1L, is 27L in the
stream-wise direction and 17L in the cross-stream direction (see Fig. 1). The prism is
located at the center in the lateral direction, and its front face is at a distance of 8L
from the entrance flow boundary.

The computations were carried primarily on the computer facilities at the Univer-
sity of Notre Dame. A flow simulation at a Reynolds number about 10° requires
about 5hours of user time on an IBM SP! computer, or about 6.5 hours on a Sun
Spare 20 workstation, to march for a non-dimensional time of 100 which is equal to
about 14 lift force oscillation cycles.
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2.3. Implementation of boundary conditions

The boundary condition for the velocity at the domain entrance is specified to be
equal to the far-field uniform flow, with a unit velocity in the x, direction and a zero
component in the x, direction. On the two lateral side boundaries, either far-field
uniform velocity or a free boundary condition, ¢/0n =0, can be used, and no
significant difference was noted between the results obtained from these boundary
conditions.

The outflow boundary condition is specified using the Sommerfeld radiation
condition, as used by Halpern and Schatzman [23],

ou; on;

Fri Uo
Nakamura et al. [24] discussed various outflow boundary conditions and found that
this condition performed much better than the free boundary condition é/én = 0, and
other conditions he examined. The current study also found that this condition results
in a minimum boundary reflection and does not lead to divergence even for high
Reynolds numbers. The free outflow condition ¢/én = 0 was also tested and found to
cause numerical instability for Reynolds numbers greater than 100. Except for cases
with very low Reynolds numbers, the use of free boundary condition at the outflow
boundary resulted in vortices formed near the outflow boundary, as well as zones of
high pressure which subsequently influenced the entire flow field leading to a numer-
ical instability.

The no-slip and no-penetration boundary conditions are used on the solid walls. To
implement these, it is necessary to use some fictitious points inside the solid wall
boundaries. A quadratic interpolation is used to specify these points and is found to
give slightly better results than the conventional approach discussed in computational
fluid dynamics texts [25,26].

For points on the corners of the solid walls, it is not possible to apply the
interpolation in the same way as other locations, thus other interpolation schemes are
used. One such interpolation scheme, proposed by Davis and Moore [20], when
applied, manifests a distinct discontinuity in the time-averaged pressure distribution
at the front corners. The details are discussed later. Several other interpolations are
examined here, all of which exhibited similar pressure discontinuity perhaps due to
the flow field characteristics which result in numerical error. Previous numerical
simulations have not closely examined this phenomenon.

=0. (16)

ox

3. Simulation results and discussion
3.1. Velocity field
Time histories of the velocity and pressure field are generated using the method

described above, with a computed potential flow for the same configuration or the
output from a previous simulation serving as the initial flow field setup. In either case,
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Fig. 2. Time-averaged streamwise velocity along the symmetry line.

the vortex-shedding process (for Re = 10°) begins without requiring any initial distur-
bance. The time-averaged streamwise velocity on the symmetry line is reported in
Fig. 2, together with the experimental results by Lyn [27] and Durao et al. [28], and
the numerical results by Sakamoto et al. [13,15,16] and Franke and Rodi [2].
Upstream of the square, only the current simulation results are presented since the
difference among the various studies presented is extremely small. In the wake flow,
the current simulation results show a very good agreement with the experimental
results. It should be noticed that the three-dimensional results by Sakamoto et al.
deviate from the current simulation results, although both are based on LES
modeling. The discrepancy may be due to the numerical methods and boundary
conditions specified in this study rather than the turbulence model itself. It may also
be argued the difference may be due to the fact that the Sakamoto et al. simulation
was three-dimensional while the current simulation is two-dimensional. The compari-
son will be more evident in the pressure distribution results. Indeed, different turbu-
lence models do influence the results as the differences among the results of kK — ¢, RSE
and LES in Fig. 2 clearly demonstrate this.

The velocity fluctuation history, as in a typical wind tunnel study, are recorded at
two points, A and B (Fig. 3). Fig. 4 shows the power spectrum of the u, velocity
fluctuation at positions A and B. It can be seen that the velocity fluctuations at A are
distributed over a narrower frequency range than those at point B, reflecting flow
characteristics of their respective location.
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Fig. 4. Power spectra of streamwise velocity u; at A and B.

3.2. Pressure field

3.2.1. Mean pressure distribution on the square prism
Fig. 5 shows the distribution of the mean pressure coefficients, defined as p/(3 p U3),
on the surface of a square prism. The front side facing the oncoming flow exhibits
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a stagnation face pressure field, whereas the side and back face show a separated
region pressure field. In comparison with the experimental data [29-31] and the
simulation results of Sakamoto et al. [15], the current simulation results clearly
compare more closely to the experimental data, except at two points at the corners of
the front face. The 2D results of Sakamoto et al. [15] are quite different from the
experimental results, especially in the negative pressure regions. For example, on the
two side surfaces of the square, the 2D results show that the pressure coefficient can be
as low as — 2.0, while the experimental value is around — 1.4. The team’s 3D results
are better, but still exhibit a significant deviation from the experimental data in the
regions of negative pressure. This is especially evident in the 3D results for the leeward
face, which show the pressure coefficient to be around — 1.02, as compared to the
experimental value of near — 1.3. As mentioned earlier concerning the results of the
centerline velocity, the discrepancies between the current simulation and the results by
Sakamoto et al. [15] may not be due to the turbulence model, since both used LES,
but may instead be a result of the numerical method or boundary condition
specifications. For example, the treatment of the outflow boundary by a free boundary
condition (d/dn = 0) may introduce errors in the simulated results. As noted earlier,
a convective boundary condition provides a more realistic condition.

In this study, it is noted that the pressure coeflicients at the two points exactly at the
two upwind corners deviate from the expected trend; however, their values remain
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close to the measured values when compared to the overall deviation present in other
reported numerical results. This peculiar result was first suspected to be due to the half
grid space associated with these points. Accordingly, several special schemes were
designed to improve the predictions, yet this trend persisted irrespective of the
numerical scheme for Reynolds numbers sufficient to produce vortex shedding. It is
also observed that when the Reynolds number is low enough to prevent vortex
shedding, i.e. less than 60, the pressure discontinuity disappears.

3.2.2. RMS pressure

In Fig. 6, the root mean square (RMS) values of the pressure fluctuations on the
surface of the square prism are presented. The lowest RMS is at the center of the front
surface, while higher values of pressure fluctuations appear on the two side faces. On
the rear side, the fluctuations decrease as the centreline on the back face is ap-
proached. Again, numerical results are compared with the available experimental
results and are found to be in good agreement. The range of Reynolds numbers in the
cited references in Fig. 6 are listed here: Bearman and Obasaju (Re = 2 x 10%) [30],
Lee (Re=176x10% [31], Pocha (Re=9.2x10% [32], and Wilkinson
(Re = 10*-10°%) [33]. Note that the 3D results of Sakamoto et al. [15] are also very
close to the experimental results, while their 2D results differ substantially.
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Fig. 7. Reduced normalized power spectra and time histories of pressure on front surface of the prism.

3.2.3. Power spectra of pressure and force

Figs. 7-9 show the power spectra and the time histories of the pressure fluctuations
at various locations around the surface of the prism. Each side of the square prism is
divided into 10 segments, and the pressure at five points corresponding to the 2nd, 4th,
6th, 8th, and 10th points are recorded. Fig. 7 describes the spectra and time histories
of the pressure on the front face. Observe that the bandwidth of the power spectrum at
a point is a function of its location on the surface. The locations closer to the
stagnation point tend to be broad-banded, reflecting the fluctuations in the approach
flow according to strip and quasi-steady theories, whereas near the side face, the
spectral contents exhibit narrow banded characteristics, reflecting the influence of the
wake. The time history plots of the pressure fluctuations also depict a similar trend.
Moving toward the side faces (Fig. 8), one observes the spectral contents become
narrow banded, reflecting the dominance of narrow banded fluctuations due to vortex
shedding. Fig. 9 shows the spectrum and time histories of pressure on the rear side,
which confirm that the spectrum have a wider bandwidth than those on the side faces.
On the leeward face, the time histories indicate a wider range of frequencies, which is
portrayed by the relatively broad banded spectral contents.

The lift and drag forces are the synthesis of pressure fluctuations on the two lateral
sides and front and back faces, respectively. Clearly, the spectra of the lift force reflect
the side face pressure spectra. Likewise, the drag force spectrum portrays the spectral
characteristics of pressure fluctuations on the front and back faces.
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Fig. 8. Reduced normalized power spectra and time histories of pressure on the side surface of the prism.

In Fig. 10, the power spectra of lift and drag force on the square prism are
presented. The lift force spectrum is characterized by a peak, at approximately 0.14,
which is the Strouhal number. The drag force coefficient indicates a bi-modal spec-
trum, in which the dominant peak is twice the Strouhal number. Upon comparison of
these results with the experimental findings [34], it is concluded that while the
numerical results are close qualitatively, they do not correspond with the experi-
mental data to the same degree as noted for the mean and RMS pressure coeflicients.

The average value of the lift coefficient is zero, as the symmetry of the flow field
suggests, with a lift force coefficient standard deviation of 1.06. The mean value of drag
force coefficient is 2.01, and its standard deviation is 0.21. In Table 1, a comparison
with reported experimental results under uniform or smooth approaching flow is
made, in which the Strouhal number from the simulation is in good comparison with
the experimental data. Since the RMS lift and drag coefficients and their spectral
descriptions are sensitive to approach flow characteristics, the current results are in
better agreement with Lee’s experiments conducted in the smooth approach flow.

3.2.4. Pressure correlation
The numerically simulated data is utilized to examine the chordwise cross correla-
tion structure of the pressure field. A total of 40 locations around the periphery of the
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Fig. 9. Reduced normalized power spectra and time histories of pressure on the rear surface of the prism.

prism were sampled, as indicated in Fig. 3. The cross-correlation coefficient is defined
as R,,, where subscript ‘a’ represents the reference location and ‘b’ is the location of
the second point. In Fig. 11, R, is plotted for seven different locations of the reference
location, a, and b is varied to include each of the 40 sampled locations. It is noted that
the correlation is sensitive to the reference location, suggesting a non-homogeneous
nature of the pressure field. It was also observed that the correlation with respect to
point 6 on the stagnation face exhibits a very low value with respect to all other
locations. Depending upon the reference location, the correlation structure remains
uniform over the separated regions of the side faces, whereas the front and rear faces
are characterized by sharply increasing or decreasing correlation. These points at the
dominant presence of an antisymmetric correlation pattern associated with vortex
shedding. In a later section, this correlation pattern is corroborated by streakline plots.
Furthermore, the numerical results are compared with an experimental study by Lee
[31]in Fig. 12, where the chordwise correlation coefficients with reference to a point on
the side surface, as indicated in the figure, are plotted. The agreement is very good.

3.2.5. Eigenfunction analysis of pressure fluctuation
After the fluctuating pressure around the circumference of the square prism is
decomposed into its orthonormal eigenfunctions [31,37-39], a pressure time history



146 D. Yu, A. Kareem/J. Wind Eng. Ind. Aerodyn. 62 (1996) 131161

Spectrum of drag

Spectrum of lift

]

[
-

Reduced nomalized spectral density
= =

Reduced normalized spectral density

-3 SRR R M 1 PO 4 Lo oo O R
10 . 10 . .
10 107 10° 10 107" 10° 10’
nondimensional frequency nondimensional frequency
Fig. 10. Power spectra of lift and drag (——, numerical; O, experimental).
Table 1

Comparison of mean and RMS of C and Cy and Strouhal number with experiments

RMS of Cy. Mean of C, RMS of Cp St. number

Current simulation 1.06 2.0t 0.21 0.14
Vickery, 1 1.32 0.17 0.12
Vickery, 2 1.27 0.17

Lee 1.22 2.05 0.22

Bearman and Obasaju [30] 12 0.13
Nakamura and Mizota [35] 1.0

Okajima [36] 0.13

may be expanded in optimal orthogonal functions, following Mercier’s Theorem and
the Karhunen—Loeve expansion,

N

P(x,1) = Y a,(t)Pn(x), (17)

n=1
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Table 2
Eigenvalues and corresponding energy containment

% 1st % 2nd % 3rd % 4th % 5th % total of first
eigenvalue  eigenvalue eigenvalue  eigenvalue eigenvalue S eigenvalue

Current 74.0 16.1 3.8 33 1.3 98.0
Simulation
Experiment 79.7 7.3 38 23 1.7 94.8
(Lee, 1975)
in which

L
an(t)am(z) = 6nm j‘d)n(x)qjm(x) dx = Ay0pm, O0<x<L.
0

In the preceding equation, d,, denotes the Kronecker delta function, ¢,(x) and
A, represent the eigenfunction and the associated eigenvalue, respectively. The ortho-
gonal eigenfunctions are obtained by decomposing the pressure covariance as follows:

L

fR(xl,xz)dxz — iubn(x1). (18)
0

For a discretely sampled random pressure field p(x,t) between interval 0 and L at
K locations, with a separation distance of Ax, the preceding integral equation reduces
to

K
Ax 3 Rxg,xn) $n(xh) = Autpulx,)s g =1, ..., K. (19)
h=1

It can be shown that the integral of the mean square pressure fluctuations over the
surface is equal to the sum of the eigenvalues, with each eigenvalue representing the
energy contained in its associated spatial eigenfunction. Each eigenfunction may then
be assigned physical significance on the basis of its spatial variation. For example,
a symmetrical eigenfunction may result from the large-scale incident turbulence,
whereas an antisymmetric eigenfunction may result from vortex shedding, the lateral
component of turbulence, or fluctuating separation points. Note that the ortho-
gonality condition is satisfied by both the symmetric and antisymmetric spatial
distribution of the functions.

The covariance matrix of the chordwise pressure fluctuations was analyzed to
obtain the eigenvalues and eigenfunctions, with the results showing that the first five
modes contained 98% of the total energy. The percentage of energy contained in the
first five modes are, respectively, 74.0%, 16.1%, 3.8%, 3.3% and 1.3%, which are also
listed in Table 2 and compared with the wind tunnel results of Lee for a uniform
approach flow. The total energy of the first five eigenvalues in the simulation is slightly
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Fig. 13. First five eigenvectors representing the pressure field around the square prism.

higher than the experimental findings, which may be due to slight variations in the
approach flow.

The eigenfunctions corresponding to the first five eigenvalues are plotted in Fig. 13.
The main mode of the simulation is plotted in Fig. 14 together with the experimental
result of Sakomoto et al. [31]. The values of the experimental data are directly taken
from Lee’s paper, but the numerical values are renormalized for consistency. The
comparison of Lee’s findings and those of this study exhibit generally good agreement,
with the exception of the front face. Some of this could be attributed to a higher
number of observations on each face in this study as compared to the experimental
measurements. It is observed that 74.0% of the total energy is in the first antisymmet-
ric mode. Also, the fourth mode is antisymmetric and contains 3.3% of the total
energy. The second mode is symmetric, which may reflect the incident uniform flow or
a very large-scale flow structure. The third and fifth modes are again symmetric, but
contain much less energy than the second mode. They may represent some structure
less than the second mode, but comparable in size to the square prism.

3.2.6. Probability distribution of pressure fluctuation

The probability distribution of pressure fluctuation is an important quantity from
design considerations. A brief discussion is included in the light of the simulated data.
Fig. 15 addresses the sixth point on the side face with a total number of 160 000 points
sampled at a time interval of 0.025. In the top panel, a part of the time history of the
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fluctuation is shown, which is both amplitude and frequency modulated. The asso-
ciated probability density function is similar to a process represented by a sinusoidal
function with added noise. Fig. 15 also shows similar results for the sixth point (just on
one side of the centerline) on the front side of the square prism. Here, the pressure time
history exhibits a more narrow-banded signature than that of the side face, which
reflects the approach flow characteristics.

3.3. Numerical flow visualization

Fig. 16 shows a time sequence of streakline plots of the flow around a square prism.
A streakline is the trace of a series of particles released at a certain position at the
entrance of the flow domain. In this study, they are released at the entrance boundary,
which is 8 times the side length of the square prism in front of the prism, and at
a lateral span exactly corresponding to the position of the square. For every line,
a new particle is released at normalized time of 0.1 and marched forward with the flow
as a massless marker similar to those in the marker and cell (MAC) method.
A bivariate linear interpolation in space is conducted for the particle velocities [26],
and the averaged velocity based on the previous time step and the current time step is
utilized. In Fig. 16, 8 frames of streaklines are presented at 8 time sequences in
a complete cycle of the lift force. For every frame, the corresponding lift force is drawn
on its upper left-hand side panel, in which the black dot represents the instantaneous
lift force value induced by the flow field corresponding to the streamlines shown.
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The sequence of streaklines clearly describes the shedding of vortices from the
prism. In Frame 1, the total lift force on the square is zero, and three vortices are
indicated by A, B and C behind the square. A is already shed, preparing to exit out of
the stream. B was originally formed from the lower side of the square and is still
attached to the rear side of the square. In Frame 2, A moves further outside with the
stream, and B is completely shed off the rear side surface, while C moves to the center
of the rear side surface. In Frames 3 and 4, this trend continues. In Frame 35, half
a cycle of the lift force is completed, and it may be concluded that the streaklines
close to the square in Frame 5 are similar to those in Frame 1, but only reversed. In
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Frame 5, a new vortex D is formed at the lower side behind the square. In this frame,
D is in a similar position as C was in Frame 1. In Frames 5-8, genesis of vortex-
shedding process is similar to that observed in Frames 1-4. In Frame 9, shown in
Fig. 17, another new vortex E is formed. According to this trend, in every full cycle of
the lift force, two vortices are shed, one from the lower side and one from the upper
side of the square.

In Fig. 17, instant streaklines are shown in comparison with an isovorticity plot at
the same instant. Note that the high-intensity vorticity contours correspond exactly
with the streaklines.

3.4. Influence of aspect ratio

Fig. 18 shows the mean pressure distribution around a rectangular prism with an
aspect ratio of 1:2, and a comparison with experimental results given by Miyata and
Miyazaki [40], which shows a good agreement. For a 1:2 rectangular prism, the
pressure on the two side faces and the rear face are higher (less negative) than those of
a square prism, due to the influence of the afterbody on the separated flow. In Fig. 19,
displaying mean pressure distributions over prisms with different aspect ratios con-
firms that with an increase in the streamwise body length, i.e., aspect ratio, there is
a concomitant increase in pressure recovery. In Fig. 20, the RMS pressure fluctuations
on the side surface of the rectangular prisms with different aspect ratios are compared,
revealing that for a square prism and a prism of aspect ratio of 2:3, a local minimum
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on the side face does not exist, but for 1:3 and 1:4 rectangular prisms local minima are
observed. This is due to the reattachment of the flow. It can also be noted in Fig. 19
that the mean pressure distribution on the side face of the 1:3 and 1:4 rectangular
prisms exhibit a pressure increase toward the rear end, while the square and 2:3
rectangular prism do not manifest this tendency. These are indications of reattach-
ment of the flow which leads to pressure recovery as the trailing edge of the side face is
approached, and can be confirmed by the streaklines as shown in Fig.21. The
streaklines reveal that the 2:3 rectangular prism, similar to a square, does not exhibit
reattachment. The 1:2 rectangular prisms show some tendency toward reattachment,
while the 1:3 and 1:4 rectangular prisms experience complete reattachment. Table
3 lists the mean and RMS values of drag force and the Strouhal number for
rectangular prisms with aspect ratio ranging from 2:3 to 1:4. Again, it is noted that
the mean drag force decreases with an increase in the streamwise length of the body as
a result of pressure recovery. This is in agreement with the results reported in Fig. 19.
These values are also compared to available experimental results reported in the
literature, and they are generally in good agreement.

3.5. Grid refinement study

To study the accuracy of the numerical scheme used here, a grid refinement study is
conducted. Roache [43] suggested a method for reporting numerical convergence
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uniformly, based on Richardson extrapolation. For the LES, there has been limited
experience concerning the reporting of errors associated with grid refinement study.
One way to refine LES grid is to keep the value of A in the Smagorinksy model
invariant, while refining Dx, Dy, and Dz. The other approach involves refinement of
grid uniformly, while allowing 4 to vary in each refinement since A4 is defined as
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Table 3
Strouhal number and drag coefficient of rectangular prisms
Aspect ratio 2:3 1:2 1:3 1:4
Mean of Cp,, Current 172 1.62 1.56 1.43
simulation
Mean of Cp, experiment, [41] 1.8 1.6 1.4 1.4
Mean of Cyp, experiment [40] 1.65
RMS of Cp, curent simulation 0.19 0.14 0.0927 0.168
St, current simulation 0.10 0.18 0.17 0.15
St, experiment [36,42] 009 0.08 0.17 0.135
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Fig. 22. Results of grid refinement for the time averaged centreline velocity distribution.

(Dx-Dy-Dz)"? in the Smagorinsky model. Theoretically, the results should converge
to the ‘true solution’ as the grid refines. Obviously, these two approaches are not
equivalent and may not necessarily produce the same results, thus warranting addi-
tional investigation through numerical experiments.

In the simulation of turbulent channel flow using LES, Mason and Callen [44]
changed the grid size, Dy, while keeping C,-Dy invariant, observing substantial
variation with ground changes. Though their purpose was to study the effect of C,
instead of grid refinement, the results also raised doubts regarding the influence of grid
refinement on their LES-based simulation.

In this study, a grid system with half the grid size (i.e., Dx = Dy = 0.05)and 4 = 0.1
in the Smagorinsky model was used. The results for the time-averaged velocity



158

Fig. 24. Results of grid refinement for the RMS pressure coefficient distribution on the square prism.
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distribution along the centerline are presented in Fig. 22, while the mean and RMS
pressure distributions are presented in Figs. 23 and 24, respectively. For all these
quantities, the refined grid system gives results on the front side of the square which
are close to experimental findings, with some differences noted in the separated flow
regions. These differences are small and repeatable and are within the range of
experimental error. At the same time, these deviations are noticeable and will be
further investigated and addressed in future studies.

4. Conclusions

A numerical algorithm using a staggered grid based on the QUICK scheme for the
convection term, Leith’s method for the temporal marching, and the LES model for
the subgrid scale viscosity is presented. The LES model used here may be viewed as
a coherent structure capturing technique. This scheme is utilized to compute flows
around 2D prisms at a Reynolds number of 10°.

The study computes time averaged centerline velocity distribution, mean and RMS
pressure distributions around rectangular prisms and compares these results to
available experimental and numerical results reported in the literature. The findings of
the study are in excellent agreement with experimental data. In addition, the power
spectra of the pressure and velocity fluctuations at various points of interest and their
probability distributions are reported.

The chordwise cross correlation of pressure at different points on the prism is
obtained which shows a good agreement with the wind tunnel resulits. Furthermore,
an eigenfunction analysis is conducted by expanding the pressure covariance matrix.
The derived eigenfunctions match well with the experimental results.

The streaklines generated in the study provide a good illustration of the vortical
structure of the flow field and flow separation—reattachment characteristics of rectan-
gular prisms with different aspect ratios. The streaklines suggest qualitative patterns
of pressure distribution along side faces which corroborate with the simulated pres-
sure distribution around prisms. Finally, a grid refinement study is conducted, and the
results of the refined grid for time-averaged velocity on the centerline and the
distribution of mean and RMS pressure coefficients on the square prism are presented.
It is observed that the pressure on the upstream face of the square remains unchanged
with grid refinement examined here, while in the separated regions there are some
differences. The simulated pressure field characteristics are nonetheless very close to
the experimental results.
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