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Closure by Nikolaos Plevris*
Associate Member, ASCE,
and Thanasis C. Triantafillou,’
Member, ASCE

The writers wish to thank the discusser for his interest in
the paper. The points raised by the discusser are addressed in
the order he presented them.

MATERIAL CONSTITUTIVE LAWS

The quite common assumption made in the paper is that
wood is characterized by the same modulus of elasticity in
both tension and compression. Its value is obtained from bend-
ing tests, and it can be thought of as an ‘‘average’’ one, which
is different from the individual moduli by not more than 2-
3%. On the other hand, the model parameters given in (1)-
(16) are calibrated from bending tests too, which makes the
whole procedure followed here for the prediction of creep in
wood beams consistent, and so E.(t) defined by (18) is not
affected by the difference between tension and compression.

ANALYSIS OF CROSS SECTIONS

Shrinkage in the transverse direction has not been consid-
ered in the model. It should be remembered that the analytical
model presented in the paper refers to creep-related phenom-
ena, that is to serviceability limit states, and thus failure of the
FRP-wood interface (a strength limit state) has been consid-
ered of no relevance. The same comment applies to the dis-
cusser’s point regarding contraction-induced stresses, which
can be studied independently (and are far from the scope of
this study).

PARAMETRIC STUDIES

The AFRP used is low modulus, indeed. The authors agree
with the discusser that high modulus aramid has better creep
characteristics than the low modulus one. However, these char-
acteristics are by no means better than those of glass. The
relatively poor creep performance of AFRP, even high mod-
ulus, has been demonstrated by various researchers [e.g.,
Imperial College (1988), Phillips (1989)].

We disagree with the discusser’s point that the dependence
of FRP creep strains on stress level has not been considered
in the paper. A better examination of (21) shows exactly this
dependence [0 in (21) is the applied stress, and m is also a
function of stress]. A similar argument holds for moisture ef-
fects on the creep response of FRPs, In the analytical formu-
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lation, these effects can be taken into account through the ma-
terial constants E, and n. But since the effect of moisture on
the viscoelastic moduli of unidirectional composities is not
significant (as it may be on the strength under sustained loads),
it has not been considered in the parametric study.

Consideration of FRP debonding is a strength limit state,
and its study lies outside the scope of the paper. Strength limit
states analyses for FRP-reinforced wood can be found in
Plevris and Triantafillou (1992).

The meaning of the authors’ statement that *‘creep behavior
of FRP-reinforced wood is primarily dominated by creep in
wood’’ is that creep-related phenomena (such as curvatures)
are caused primarily because wood creeps a lot more than
FRPs. In other words, the largest portion of creep (curvature,
for instance) is due to creep of wood, regardless of the type
of FRP used as reinforcement. The comments by the discusser
with regard to the increase of FRP stress levels, the modular
ratio of FRP compared to wood, and that FRP will tend to
control deflections are all valid and present nothing new; they
have all been presented in the paper and are clearly illustrated,
for instance, in Fig. 7(a) and 10(a) of the paper.
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PERFORMANCE OF MULTIPLE MASS
DAMPERS UNDER RANDOM LOADING®

Discussion by Patricio A. A. Laura®

The authors are to be congratulated for their interesting and
very practical results. Some additional references on the sub-
ject may be useful to the interested reader.

The feasibility of implementing two dynamic vibration ab-
sorbers was first explored by Snowdon and coworkers (Snow-
don and Nobile 1980; Snowdon et al. 1984). They proposed
the ‘‘cruciform dynamic absorber,”” which comprises two
beam-like dynamic absorbers attached to one another at right
angles at their midpoints. One of its branches (arms) can be
tuned to suppress the fundamental resonance of the system,
while the other can be tuned to suppress the second or third
resonances or to lower the transmissibility at any higher trou-
blesome resonance.

The possibility of implementing two mass dampers in the
case of a machine foundation excited at its translational and
rotational fundamental modes was successfully investigated by
Pombo and Laura (1986).
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Closure by Ahsan Kareem* and Samuel Kline®

The writers would like to thank the discusser for his interest
in the paper. We certainly welcome the additional references
related to our work provided in the discussion. Our work pri-
marily addressed the application of dampers to civil engineer-
ing structures. In this context, we had indicated that multiple
dampers can be configured in a series or a parallel arrange-
ment. These can be incorporated in a structural system at one
location or distributed spatially. The effectiveness of multiple
dampers, spatially distributed in a structure, was investigated
by Kareem and Sun (1987). Bergman et al. (1989, 1991),
Subardjo et al. (1992) and others. The analysis suggested that
the damper tuned to the fundamental mode is most effective
and other strategically located dampers, tuned to higher
modes, facilitate improved performance. The discussion has
provided examples of multiple dampers used to control ma-
chinery vibrations.

The type of multiple dampers studied in our paper is dif-
ferent from the aforementioned ones. The analysis in this pa-
per concerns multiple mass dampers in which the natural fre-
quencies of the dampers are distributed over a range of
frequencies. The total mass of these smaller dampers is equal
to the mass typically used for a single damper. These dampers
are more effective under excitation frequencies distributed
over a wider band. Such units can be placed at appropriate
locations to control different modes of vibration.

EBEF METHOD FOR DISTORTIONAL
ANALYSIS OF STEEL BoOXx
GIRDER BRIDGES"

Discussion by Victor H. Cortinez* and
Marcelo T. Piovan®

INTRODUCTION

In their paper, the authors have proposed the EBEF method
for the distortional analysis of box girder bridges.

It consists fundamentally in the use of the analogy between
the beam on elastic foundation (BEF) and the distortional anal-
ysis of box girders.

While the traditional BEF analysis is based on the Fourier
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series solution, the EBEF method uses a finite-element (FE)
formulation.

The FE developed by the authors takes into account the
shear effect [Timoshenko’s (1956) theory] providing the Ber-
moulli Euler BEF as a particular case.

The EBEF method, as the authors have pointed out, is more
versatile than the traditional one because it can be applied with
great simplicity to more complex problems such as varied sec-
tions and multispan beams.

The purpose of the current discussion is to present an al-
ternative FE, based on the exact solution, that may be more
convenient, for some situations, than the authors’ approach.

To develop the present element, the shear effect is neglected.

EXACT FE

Consider an element of length of /, with constant values of
EI, and k,, subjected to an arbitrary loading p(x). The govern-
ing differential equation [(1) of the authors] may be written in
dimensionless form as

d'n _pi:
ds* T El

where s = x/Leg(0, 1); and & = kI?/(4EL). Subjected to the
boundary conditions (Fig. 11)
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where g; = nodal generalized displacements.
The general solution can be expressed as

n=y + v, (69)
where v, = a particular integral of (67) satisfying
v2(0) = dv,/ds(0) = v,(1) = dv,/ds(1) =0 (70)

and v, = complementary solution of (67) (with p = 0) given
by

v (5) = Cie¥cos(Es) + Cye¥ sin(Es) + Cye ™ cos(és)
+ Cie™® sin(gs) = g C/F,(s) an

The C; constants are to be determined in such a way that v,
and then m verifies conditions (68).
Accordingly, by substituting (71) in (68) an algebraic linear
system is obtained, which may be symbolized as
> 4,C=q a2)

By solving (72) for the C;s and replacing in (71) one arrives
at

4
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where

No= D F®y [oy] = [4,]7 (T4a,b)

The governing energy functional of the element is given by
1 2 1 1
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By using (69) and reordering this last expression may be writ-
ten as





