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Abstract

This paper concerns the damping in structures with emphasis on treatment of inherent
uncertainty in its prediction and estimation. Material or structural damping is addressed as well
as damping due to the aerodynamic and hydrodynamic forces of the fluid surrounding the
structure. The reported data base on damping information is examined in light of wind sensitive
structures that rely heavily on damping for their performance under winds. The basic tech-
niques for estimation of damping from response time histories are reviewed, and the random
decrement technique is considered in some detail. The implications of the uncertainty of
damping on system response are analyzed in terms of a perturbation technique, second-
moment analysis and Monte Carlo simulation. Several simple illustrative examples are pro-
vided throughout the text.

Keywords: Aerodynamic damping; Higher mode damping; Hydrodynamic damping; Monte
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1. Background

Estimation of damping in structural systems poses a most difficult problem in
structural dynamics. Unlike the mass and stifiness characteristics of a structural
system, damping does not relate to a unique physical phenomenon. Damping is often
required and it is difficult to engineer it unless external damping systems are intro-
duced in the structural system. The importance of damping is becoming increasingly
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significant as buildings are becoming taller and relatively more flexible. Modern
high-rise buildings designed to satisfy lateral drift requirements still may oscillate
excessively during wind storms. The level of these oscillations may not be significant
enough to cause structural damage but may cause discomfort to the building occu-
pants. The estimates of damping in structural systems have intrinsic variability which
makes the assessment of the serviceability limit states more uncertain. Any accurate
information concerning the damping values, at the design stage, may certainly
alleviate a major source of uncertainty routinely experienced by designers of wind
sensitive structures,

Structural damping is a measure of energy dissipation in a vibrating structure that
results in bringing it to a quiescent state. The damping capacity is defined as the ratio
of the energy dissipated in one cycle of oscillation to the maximum amount of energy
accumulated in the structure in that cycle. There are as many damping mechanisms as
there are modes of converting mechanical energy into heat. The most important
among these are material damping and interfacial damping (Nashif et al., 1984).

The material damping contribution comes from a complex molecular interaction
within the material, thus the damping is dependent on the type of material, methods of
manufacturing and final finishing processes. The complexity of the situation is further
enhanced by the simple reality that material properties often differ from sample to
sample, resulting possibly in significant differences in energy losses among distinct
members of a structural system. The equations of motion in structural dynamics
usually describe a macroscopic behavior, while material damping processes arise from
microscopic phenomena. This conflict in the scales leads to a search for phenom-
enological theories for the representation of structural damping.

The interfacial damping mechanism is Coulomb friction between members and
connections of a structural system, and between structural components like partitions
and exterior facade. Welded connections tend to reduce the contribution of interfacial
damping as compared to the bolted connections. Soil-structure interaction also
contributes towards the overall damping depending on the soil characteristics (e.g.,
Novak, 1974; Wolf, 1988).

Aerodynamic or hydrodynamic damping is experienced by a structure vibrating in
air or water. In cases of ocean structures, both damping sources may contribute
simultaneously. Generally, the acrodynamic damping is quite small compared to
mechanical damping of the structure and it is positive in low to moderate reduced
wind speeds (speed normalized by frequency and body width), but at certain wind
speeds negative aerodynamic damping may be experienced. The hydrodynamic
damping is relatively large, especially for ocean structures in the presence of waves
and currents.

Nonlinearities either in loading or in structural systems introduce complications in
damping estimations. Nonlinearity effects in combination with nonstationary features
of full-scale observations under winds may affect the accuracy of conventional
damping estimation procedures (Jeary, 1992). Nonlinearity cither in loading, or in
a structural system that may couple two orthogonal modes with equal frequencies can
add indirectly to the damping available in a system as energy transfers from one
direction of motion to another as in a beating mode (Kareem, 1982). This feature in
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design can indirectly help to augment damping in buildings provided the two ortho-
gonal modes have the same frequency.

This paper examines types of damping sources available to structures and their
modelling and treatment of uncertainty in damping estimates for practical applica-
tions.

2. Structural damping

Typically in engineering practice a viscous damping model is used for the sake of
simplicity as it lends to a linear equation of motion. The viscous damping coefficient is
either assigned on the basis of the material of construction, e.g., steel or concrete, or it
is evaluated using a system identification technique. A logarithmic decrement of a free
vibration test is one such approach. Any source of nonlinearity is obscured in this
approach and consequences of such an assumed model are either ignored or disre-
garded. This concept has been extended to represent equivalent viscous damping,
whereby the energy dissipated by a nonlinear system in a steady-state vibration is
equated to the energy dissipated by an equivalent viscous system.

2.1. Damping models

Some of the commonly used damping models can be described by
Ja(x, %) = ax| %" 71, (1)

where f3(x, X) is the damping force and a is the damping coefficient. The value of
0 determines the damping model, e.g.,

linear viscous damping (6 = 1)
Jalx, X) = ex; 2

Coulomb damping (8 = 0)

Ja(x, X) = MI%I = psign(x); (3)

quadratic damping (6 = 2)

falx, %) = g%|%]. )
The ratio of the equivalent viscous damping for these cases is given by
viscous damping

¢/2mw; (5)
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I'( ) denotes the Gamma function, c is the viscous damping coeflicient, g the quadratic
damping coefficient, p the Coulomb damping coefficient and 4 the amplitude of
motion.

It is important to note that the linear viscous damping ratio is independent of
amplitude, whereas Coulomb and quadratic damping ratios are inversely and directly
proportional to amplitude of motion. For a lightly damped system, where all three
preceding damping mechanisms may be present, a first-order approximation for the
total damping present in the system can be obtained by fitting data to Eq. (1). Such
a model may bring out useful information regarding the inherent damping mecha-
nisms in a system which experiences different types of damping sources, e.g., an
offshore platform, or a building whose damping is amplitude dependent. Novak
(1971) offers a number of techniques to quantify parameters of nonlinear vibration
systems.

Estimates of the model parameters are obtained by a least square fit of the data.
Other models such as “stick-slip” type models, elasto-plastic and bilinear models can
be invoked to describe the variation of system damping with amplitude. In the case of
steel buildings such models can describe the dissipation of energy in frictional modes,
e.g., in-filled panels and partitions and between structural framing and cladding. In the
case of concrete structures, for uncracked state purely viscous damping occurs. For
cracked cases both frictional damping, due to friction between the concrete and
reinforcement steel in the cracked tension zone, and viscous damping in the compres-
sion zone are present. A concrete element may be modelled by a spring oscillator with
viscous dashpot and a stick-slip element.

2.2. Full-scale measurements

The selection of an appropriate value of damping is a subject of controversy in
design practice. The present state-of-the-art in the design of tall buildings is such that
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it is difficult to predict structural damping closer than plus or minus 30% until the
building is completed. This is essentially ascertained on the basis of the knowledge
gleaned from existing buildings of similar material and structural systems on which
tests have been conducted. Although it is generally agreed that damping values
change with amplitude of motion, their fundamental description are rather uncertain
and limited. Besides the complex nature of damping mechanisms, the methods
employed to ascertain damping of full-scale structures and the analysis and inter-
pretation of data introduce additional uncertainty. Assessment of damping in full-
scale structures has been undertaken by several investigators. A sampling of such
studies can be found in Jeary and Ellis (1981), Yokoo and Akiyama (1972), Hudson
(1977), Hart and Vasudevan (1975), Taoka et al. (1975), Raggett (1975), Celebi and
Safak (1992) and Trifunac (1972). Information available from full-scale experiments
has been assembled by Haviland (1976), Jeary and Ellis (1981), Yokoo and Akiyama
(1972), Davenport and Hill-Carroll (1986), Jeary (1986), Lagomarsino (1993) and
Tamura et al. (1994), among others.

Haviland (1976) reported a wide range of data for different levels of response
amplitudes, wide classes of structural systems and building heights. This study showed
that the log-normal and Gamma distributions provided the best fit to the damping
variations. The coefficient of variation (COV) of damping estimates based on his data
set varied in the range of 42-87%. Davenport and Carroll (1986) reexamined the data
base and noted that the COV ranged from 33% to 78% and suggested a value of 40%.
Based on measured data, ESDU (1983), Jeary (1986), Logomarsino (1993} and
Tamura et al. (1995) established expressions for damping ratio variation as a function
of structural displacement level. 1t is important to note that most of these data bases
have a large overlap of information since they have many common buildings.

A review of the data base that has led to carefully selected expressions for damping
variation as a function of amplitude suggests that the data contained therein mostly
concerns mid-rise buildings in the vicinity of 20 stories or shorter. However, there is
a serious scarcity of data for high-rise buildings taller than 20 stories especially for the
level of amplitudes not related to earthquake-induced response which generally
provide much higher damping estimates than those available for wind excited struc-
tures. More importantly, it is above this range of height where the wind excited
resonant part of structural response begins to dominate the background (nonresonant
part). Needless to mention, it is the resonant response component that is influenced by
damping for which we do not have much information. In Davenport and Carroll
(1986) a summary of damping estimates versus amplitudes clearly demonstrates the
point made earlier regarding the scarcity of data. In their database for buildings over
20 stories, damping estimates are available at acceptable levels of motion from human
comfort considerations and some data points are present for the transition region
where the building height determines the level of acceptability. However, not a single
data set exists for acceleration levels which are not acceptable with a mean recurrence
interval of 10 years. It is the last two levels of motion that are of interest to the designer of
tall buildings. A similar difficulty with lack of information of buildings with periods
larger than 3 s exists in the data set reported by Lagomarsino (1993). Jeary (1986) very
carefully scrutinized the damping data base and eliminated a majority of the measured
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damping data due to concerns ranging from lack of documentation to absence of
variance errors and confidence intervals. The remaining data base which was used for
developing the model was again biased toward mid-rise buildings with the exception
of the Transamerica building. The predictor model, however, agrees well with the
general conception that the damping values reduce with increasing building height or
period. The model due to Lagomarsino (1993) exhibits an opposing trend in that
a larger period results in larger damping. With a few notable exceptions, this contra-
dicts most full-scale measurements reported in the literature.

2.3. Damping in higher modes

Damping in the fundamental mode is very low, which indicates that very little
energy is dissipated by structural connections and most of the building structure
deforms as a rigid body. However, it is expected that in higher modes a building
experiences more flexural and shear deformation which may contribute to higher
damping. Also, radiation damping due to soil-structure interaction may contribute to
higher damping (Novak, 1974). In light of the difficulties with the availability of data
and its reliability for damping in the fundamental mode, information on damping in
higher modes becomes even more scarce and less reliable. However, for estimating
building acceleration to appraise serviceability limit states, the contribution of higher
modes must be included. Kareem (1981a) has noted that for the across wind acceler-
ation response of a square cross-section building, the contribution of the second mode
is about 13%. Neglecting such contributions may impact the serviceability of a build-
ing. O’Rourke (1976), in his discussion of the paper by Saul and Jayachandran
(referenced in O’Rourke) concerning the importance of modes vis-a-vis the total
acceleration response, examined values of damping in higher modes. Saul and
Jayachandran assumed lower damping in higher modes in comparison with the first
mode which may have resulted in overemphasizing the relative importance of higher
modes. O’Rourke analyzed the data available in the literature and noted that based
on the data selected 61% of the cases the damping in the second mode was higher than
the damping in the first mode, the corresponding value for the third mode was found
to be 53%. The average value of the ratio of second to first mode damping was 1.39
and for the ratio of the third to the first was 1.61. Unlike Saul and Jayachandran’s
assumption, Kareem (1981a) assumed damping to be proportional to stiffness which
increases in higher modes. Accordingly, the damping in higher modes was given by

Sn Jn
2_1+C({2-1), 9

1 1

where C is a constant approximately equal to 0.38 based on the data available in
Yokoo and Akiyama (1972) and f represents frequency in the mode given by the
subscript. In Fig. 1, the data base from the study by Tamura et al. (1994) and other
sources was utilized to examine the applicability of the expression in Eq. (9) in light of
the additional data. The data base is restricted to steel buildings of height greater than
20 stories under light to moderate levels of oscillations generally experienced in
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Fig. 1. Damping data base and application of Eq. (9).

typical wind conditions. In view of the general variability of damping which is further
compounded by the higher modes, the expression in Eq. (9) appears to portray
a satisfactory representation of the general trend.

3. Aerodynamic damping

The equation of motion of an aerodynamically excited structure is given by
MX + 20M{X + Mo?X = F(t, X, X, X). (10)

The left-hand side of the equation represents typical inertial damping and stiffness
forces acting on the structures, whereas the right-hand side of the equation denotes the
aerodynamic forcing function which is dependent on time, space and its derivatives.
Typically the X and the X are known to have insignificant influence on building
response due to the relatively small value of the aerodynamic mass and stiffness in
comparison with that of the building. It is the X term which depending on its sign
contributes positive or negative values of acrodynamic damping on structures. Since
the aerodynamic damping is due to building motion, it is manifested in the alongwind,
acrosswind and torsional directions. There are two approaches to quantify aerody-
namic damping, namely, quasi-steady or unsteady aerodynamics of buildings. These
are described below.
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3.1. Quasi-steady aerodynamics

The evaluation of aerodynamic damping has been made for a long time with respect
to the galloping phenomenon. The concept of quasi-steady theory is invoked. It
essentially implies that for every instant during the oscillations, the aerodynamic force
is the same as the force on a rigid segment of the body at the same angle of attack. This
assumption has been shown to hold good for large reduced velocities where the
wavelengths associated with the frequencies of acrodynamic loading are several times
the representative width of the building. In this situation, the approach flow can be
assumed to be locally steady. The aerodynamic damping on a segment of a building is
determined from sectional aerodynamic characteristics for the corresponding angle of
attack in terms of a force coefficient and relative Velocity:,Thé aerodynamic damping
in lateral and torsional directions based on the quasi-steady theory are given by

S oonVee a3 mVadCy
T Y TG 0 fd d0

e S
3 Ya V, tb dCF"

11
8(3 + o) py fod 2 dO ° (1

where o is the power law exponent, y,, 7, are the air and building specific weights, Cy ,
Cr, and Cp, are force coefficients in the x, y, § directions, f,, f,. fp are the natural
frequencies in their respective subscript directions, d is the body width, r is the distance
of the leading edge from the building centroid, and r,, is the mass radius of gyration
(Kareem, 1978). The preceding expressions utilize linear mode shapes in all three
directions.

As noted earlier, the quasi-steady theory is generally not applicable in the low
reduced velocity range applicable to the operational velocities of typical buildings in
wind. Therefore, the evaluation of aerodynamic damping must be based on unsteady
aerodynamics. This can be accomplished through a free oscillation or forced oscilla-
tion test.

3.2. Unsteady aerodynamics

The importance of evaluating the aerodynamic damping has increased with the
advent of so called aerodynamic models or those utilizing high-frequency base
balances. Although there have been a number of reported studies concerning the
measurement of aerodynamic loads on structures using a wide variety of force
balances, Saunders and Melbourne (1975) were first to carry out a measurement
program that resulted in a host of force spectra acting on a wide range of building
cross-sections. They also concluded that the nondimensional cross-wind force spectra
on the types of buildings tested were insensitive to the level of motion of the buildings
for reduced velocities up to at least ten. In other words, the aeroelastic effects, or
aerodynamic damping could be neglected. Kareem (1978) noted in a validation study
concerning the crosswind spectra derived from statistical integration of surface
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pressures that the response estimates computed by using the measured spectra began
to depart from the estimated values based on aeroelastic model test of the same
building at reduced velocities above 6. The predicted values of response for reduced
velocities greater than 6 tended to under-predict the aeroelastic measurements. This
suggested that a contribution from the motion-induced effects was missing as it had
automatically been accounted for in the aeroelastic case. The damping estimates from
the aeroelastic model suggested a constant increase in the negative aerodynamic
damping. By including the negative aerodynamic damping, the response predictions
provided a better comparison with the aeroelastic tests at higher reduced velocities,
but at intermediate reduced velocities some discrepancies remained unresolved
(Kareem, 1982). It appears that simply attributing all motion-induced effects to
aerodynamic damping may be an excessive simplification. Indeed the motion of
a structure also modifies the flow field around it and tends to enhance particularly the
spanwise pressure correlation which may lead to an increased forcing in comparison
with that measured by a force balance.

Following the work of Saunders and Melbourne (1975), Kwok and Melbourne
(1981) reported that at close to the critical reduced velocity and particularly at low
values of structural damping, displacement dependent lock-in excitation was found to
be significant which resulted in large increases in crosswind response. They suggested
inclusion of a sinusoidal lock-in excitation model along with a random excitation
model to account for the preceding observation. It was suggested that the lock-in
effects become important when the ratio of the building top displacement to its width
exceeds 0.025.

Boggs (1992) reported a systematic study that focussed on the validation of
aerodynamic model. Although this topic had been addressed earlier, but the relevant
error-controlling parameters had not been clearly identified, nor had quantitative
limits required for valid results on the parameter studies been established. This study,
though limited to a slender square building, has provided a clear picture of the
consequences of neglecting aeroelastic feedback and define conditions when an
aerodynamic model is valid. The normalized tip deflection criterion was noted to be
a poor indicator of aeroelastic magnification and the existence of such a critical limit is
not justified. Results of this study show that the reduced velocity, in conjunction with
the mass damping parameter, provide a good characterization of the aeroelastic
magnification factor given by the ratio of the response estimate by aeroelastic model
and the aerodynamic model. Bogg’s results demonstrate that for the mass damping
parameter in the range of typical tall buildings the motion-induced effects may be
worth consideration for reduced velocities as low as 6. This corroborates observation
made by Kareem (1982).

3.3. Experimental identification of aerodynamic damping

Experimental identification of aerodynamic forces can be accomplished either by
a free vibration or a forced vibration test. In the free vibration case, the change of
frequency and damping of models oscillating in wind are observed. This method has
been extensively used to identify motion-dependent aerodynamic forces in bridge
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aeroelasticity (Scanlan and Tomko, 1971). Kareem (1982) has utilized a free vibration
approach to assess the acrodynamic damping of building models and chimneys in the
wind tunnel. A number of researchers have utilized forced vibration tests to identify
aerodynamic stiffness and damping of two-dimensional models (e.g., Otsuki et al.,
1974). Steckley (1989) used an experimental system for the measurement of motion-
induced forces on a base pivoted model. This study cataloged variation of the
motion-induced force with oscillation amplitude for prisms of different cross-section.
This data was later employed by Watanabe et al. (1995) to fit empirical aerodynamic
damping functions for practical applications. Their model is based on real and
imaginary parts of the modified complex transfer function of a single degree of
freedom (SDOF) oscillator.

4. Hydrodynamic damping

In the case of offshore systems in addition to the structural and aerodynamic fluid
damping discussed above, the damping due to hydrodynamic effects provides an
important contribution to the structural response.

The sources of hydrodynamic damping are generally radiation and drag induced
effects. For the large majority of offshore structures, the drag-induced component of
hydrodynamic damping is the dominant contributor. The magnitude of the drag-
induced damping is dependent on the drag coefficient used in the Morison equation,
which expresses hydrodynamic force as a function of relative fluid-structure velocity
and acceleration as in

Fy :f(a) + %prDwAw(u - X)Iu - X|s (12)

where a, u are the water particle acceleration and velocity, p,,, A,, are the water density
and the frontal area of the immersed system, and Cjp, is the underwater drag
coefficient. The negative force due to the minus sign in the last term above provides
the hydrodynamic damping. The damping coeflicient is dependent on the size of the
structure with respect to the wavelength of the incoming wave field, and is generally
determined experimentally.

Depending on the structural size to wavelength ratio the drag mechanism may
exhibit both linear and quadratic dependence on relative fluid-structure velocity. For
frequency domain analysis the linear term is treated in a straightforward manner,
while the quadratic term may be expressed through an equivalent linearization
approach. The total system damping is expressed as the sum of its components

¢=2&+&a+ Sw, +Ewss (13)

where the subscripts S, A, W, W, indicate structural, aerodynamic, and first and
second order hydrodynamic terms. Now, the linear hydrodynamic term is given as

YPw I Di
Ew, _ IPwTN V) D \/VZ’ (14)

m./4nf,
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Fig. 2. Damping components for a TLP.

where h is the draft of the structure, v is kinematic viscosity, ¥ D; is the sum of the
diameters of the underwater portion of the structure, f, is the natural frequency of the
system, m is the system mass, and y is unity for Stokes damping, and larger for
turbulent fluid. The quadratic hydrodynamic damping term is

= _ prDwAwJu 2 (75 T Uc
ng—————4(2nfn)m [(2\/;>exp<— 5 )+2U?erf<ﬁ>], (15)

where U, g, are the mean current velocity and the r.m.s. water particle velocity in the
waves.

4.1. Example

Currents, wind and waves all contribute to the nominal surge damping of a tension
leg platform (TLP). The damping sources include viscous, radiation, aerodynamic and
structural effects. For the motion in the horizontal plane, the viscous damping has the
most significant contribution to the overall damping (Fig. 2). The radiation damping
is negligible, but the aerodynamic damping which is often neglected should be
included for an accurate prediction of the response. In the presence of currents, the
viscous damping ratio would be as large as 30%, and in such cases it dominates any
other damping source for the motion in the horizontal plane.

5. Evaluation of damping
Damping estimation from a time history of response can be classified into two

categories: spectral and time-series approaches. In this paper, auto-correlation decay,
logarithmic decrement, spectra based half-power method, spectral moment method,
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random decrement method, spectral curve fitting, and wavelet transform based
spectral estimates are classified as spectral approaches. The time-series techniques are
those related to methods of time-series analysis, i.e., maximum entropy estimates,
auto-regressive (AR), or auto-regressive and moving averages (ARMA).

5.1. Spectral techniques

The infinite harmonic basis functions in Fourier based spectral estimation necessar-
ily introduce errors when applied to finite duration signals. Most spectral-based
approaches have difficulties providing sufficient accuracy because of limitations on
resolution and high coefficients of variation (COV) of spectral estimates as longer data
sets are needed to improve estimates. By increasing degrees of freedom, either by
merging neighboring spectral estimates, by ensemble averaging the individual esti-
mates from several realizations, or both, spectral estimates can be improved, but this
approach is marred by the unavoidable presence of nonstationarity concerns inherent
with long records. Details concerning this issue in the literature abound. In view of the
preceding difficulty, attempts to smooth the actual spectral estimates have been made
through curve fitting. For example, the fitting of spectral estimates to a transfer
function of a SDOF system by employing maximum likelihood estimator and a least
squares approach can be found in Breukelman et al. (1993) and Jones and Spartz
(1990), respectively. By selection of a sample length long enough to ensure sufficient
frequency resolution, avoiding nonstationarity problems and by ensemble averaging
of similar records to reduce variance of spectral estimates good smoothed spectra for
linear systems can be obtained. However, the characteristic features of nonlinear
systems, with transfer functions that depart from linear, and the response of systems to
nonlinear loading may be obscured in such a curve fitting approach. Similar observa-
tions have been made by Jeary (1992).

Wavelet-based spectral estimation offers another alternative, as it better represents
the true signal energy due to the use of localized basis functions (Gurley and Kareem,
1995). It is shown in Gurley and Kareem (1995) that the wavelet estimator exactly
reproduces the signal energy which the Fourier-based spectral estimate does not
reproduce due to leakage that results in raggedness in the spectral curves. The use of
orthogonal wavelets provides the spectral estimates, especially at the high frequencies
with resolution that is not as good as that obtained in Fourier-based approaches.
However, at very low frequencies the wavelet-based estimates give much better
resolution. This can be further improved by spectral estimation within an octave by
over-sampling which leads to nonorthogonal wavelets or by a zooming technique
(Gurley and Kareem, 1995).

In a later section, the efficacy of the random decrement method for estimating
damping will be evaluated through examples.

5.2. Time-series methods

The methods based on a time-series approach offer advantages over spectral
methods as they eliminate the problems of resolution based on short length of records
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as well as questions about the stationarity of long records. These spectral estimates
provide smoother curves without the leakage problems associated with the Fourier-
based approaches. The leakage problems are significant for short length data sets
where the uncertainty principle does not permit good frequency resolution. The
time-series methods are sensitive to the order of the model or the number of
coefficients (Li and Kareem, 1990, 1993). In the case of an AR model if the order is
small then the dominant peaks may not be resolved, whereas, large-order systems may
introduce spurious peaks which may contaminate the spectral estimate as well as the
variance. An optimal selection of the order results in accurate spectral estimates.

A serendipitous advantage of these time-series-based models is that the spectrum as
well as the time series are estimated once the model coeflicients are known. Further-
more, the estimates of structural characteristics is also possible from system identifica-
tion techniques using time-series models, e.g., ARMAX models {(auto-regressive mov-
ing average model with exogenous input). In such a case, the system is modelled by an
input, output, and noise. The modulus and argument of the poles of the system
transfer function are related to system damping and frequency (e.g., Safak, 1989).

5.3. Random decrement method

This method utilizes the resulting signature from the ensemble averaging of seg-
ments of the response of a linear system to determine system damping. The require-
ment of specific initial conditions for each segment in the averaging procedure yields
a signature which represents free vibration of the system from an initial displacement.
Damping estimates are then extracted from this free vibration signature (Cole, 1973).
The response of a dynamic system is a superposition of the response due to both
displacement and velocity initial conditions, and the forced vibration response

XT = x-“o + xio + xF' (16)

The goal is to ensemble average samples of response data such that the initial velocity
response and forced vibration response components reduce to zero.

The forced vibration response of a linear system due to a zero mean stationary
random input is itself random zero mean stationary. As the number of segments
increases, the ensemble average of such a process tends to zero. If all segments in the
average begin at the same threshold level x,;, and alternating positive and negative
slope, then the response due to initial velocity is averaged out while the response due
to initial displacement at x,;, remains. The random decrement method is demonstrated
in principle in Fig. 3, where the components of the signal are ensemble averaged
separately to illustrate the progression of the signal from a forced vibration to a free
vibration decay.

The random decrement signature #(¢) is expressed as (Yang et al., 1983)

=

n(x) = xi{t; + 1), (17)

1
N,

1
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Fig. 3. The random decrement technique.

where x;(t;) is the threshold value and, the initial slope flips for each sequential
segment. The random decrement signature is defined in the time interval 0 <7 <y
where 7 is the time from the starting point of the last segment to the end of the signal.
N is the number of segments in the ensemble average.

This intuitive explanation has been used in much of the available literature, and
seems to be reasonable for linear systems. The technique has an advantage over the
use of autocorrelation or spectral methods in that it is not encumbered by the
limitations concerning input amplitude and resolution, respectively. Some researchers
have found the method suitable for systems with nonlinear damping characteristics
(e.g. Jeary, 1992). However, the number of segments needed in the ensemble may be
quite high in order to produce a repeatable signature, thus a large data set is required.

The conclusion that the resulting signature is the free vibration decay of the system
does provide reasonable damping estimates in many cases. However, it has been
shown (Vandiver et al.,, 1982) to be mathematically incorrect. Specifically, the require-
ment of a uniform value for the initial condition of each segment biases the expected
value of the excitation, and the last term in Eq. (16) is not necessarily zero in the
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average. The solution to the equation of motion is given by

_x )y, . )50 _x .
xq(t) = xoe~ <cos w4t +— sin wdt> + —e " sinwgt
Wy Wy

t

+ Jh(t — 1) f(7)dr, (18)

0

where w, = \/k/m, ws = w,/1 — &%, xo and X, are the displacement and velocity
initial conditions, and h(t) is the system impulse response function.

The random decrement signature is the expected value of Eq. (18) conditioned by
the initial values of each segment in the average as in

. _ W, . Xo s, .
E[x7(t)] xq, Xo] = xoe %" (cos wgt +—"sin wdt> + E(—Oe s sin wdt>
(697 Wy

t

+ Jh(t — 7)E[ f(1)| x0, Xo]dz. (19)

0

The first term on the right-hand side is not affected by the expected value operator,
and gives the free vibration response to an initial displacement. The magnitude of the
second term on the right-hand side is the same with alternating sign over an even
number of samples, which averages to zero. The expectation in the third right-hand
term, according to the intuitive theory, vanishes, since f(f) is a random zero mean
process. However, since it is conditioned by the requirement of x, and x,, it is not in
general zero. Thus the intuitive interpretation of the random decrement signature as
the free vibration response is not correct (Vandiver et al., 1982).

For the case where the excitation is stationary Gaussian white noise, the autocorre-
lation of the response of a SDOF system is proportional to its free vibration response.
For most applications, random decrement is applied to narrow-banded systems with
relatively wide-banded excitation (e.g. building response to buffeting effects of wind).
For such cases a white noise approximation is acceptable, and the intuitive explana-
tion is appropriate, though not rigorously correct.

The resultant signature for a linear system under Gaussian stationary input is
proportional to the autocorrelation of the system response, and is expressed as
(Vandiver et al., 1982)

R,
n(t) = E[x7(t)| x0, Xo] = R—l%%)fo,

with a variance of

Varl()] = 4 R0) (1 - ”Z(J)). Q1)

Xo
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Where it is seen from Egs. (20) and (21) that the variance is independent of the
threshold level x,, since it is assumed that there is no noise in the measured signal. If
noise exists, the variance should increase with decreasing threshold levels.

Several examples of the application of the random decrement method are now
shown. The data set for the first two examples is the response of a model TLP
subjected to wind and wave loads, and has a bimodal spectrum. The response of
systems with more than one well-separated mode must be band-pass filtered about the
desired mode in order to apply the random decrement method. First, the low
frequency mode is analyzed by low-pass filtering the data. The lengths of the data
records proved to be too short to generate a repeatable signature. That is, the
signature should give the same damping estimate regardless of the user selected
constant value at which segments are initiated. Fig. 4 shows several random decre-
ment signatures for the same system response. The signatures vary drastically from
case to case, and a consistent damping estimate cannot be made among them. Notice
also that the signatures do not resemble a free vibration decay signal.

The recommended number of segments is 400 to 500 according to some researchers
(Yang et al., 1983), while others recommend at least 2000 (Tamura et al.,, 1992). The
above records have 6000 data points at most, and for the low frequency mode this
included about 50 complete cycles. Each cycle can produce two segments for the
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Fig. 4. Random decrement signature of low frequency response of an offshore platform.
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Fig. 5. Random decrement signature of wave frequency response of an offshore platform.

ensemble average, but 100 segments is not enough to sufficiently average out the
random components of the response. In addition, the low frequency response is
nonlinear, which violates the assumption of superposition of the response compo-
nents.

The response of the platform also has a mode corresponding to the natural
frequency of the incoming wave field. At the wave frequency, many more cycles are
present in data recorded than for low frequency oscillation. This allows for more
segments to be averaged when acquiring a random decrement signature. Fig. 5 shows
the random decrement signature for this higher frequency linear response to the wave
field. The number of segments range from 163 to 458. These signatures are much more
consistent with each other, and more closely resemble a free vibration decay signature.
The response at the wave frequency is linearly related to the input wave elevation,
which corresponds with the assumption of superimposed responses. This signature
may be used to estimate damping at this mode, but there is no exact value of damping
to compare the estimate with.

In order to evaluate the applicability of the random decrement method to the above
example, the response of a linear oscillator with a natural undamped frequency of
0.35 Hz and known damping to a wave train is numerically simulated at a sampling
rate of 4 Hz. The random decrement signature is then used to estimate the known
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Fig. 6. Random decrement and free vibration decay response of linear oscillator under colored noise.

damping value. A JONSWARP sea spectrum is applied to produce a linear wave train
from standard frequency domain simulation techniques. The sea state used is fairly
wide-banded, with a peakedness parameter of 1.0, and the system frequency is set at
the peak of the input spectrum in order to better facilitate the white noise approxima-
tion. Fig. 6 shows the random decrement signature of the oscillator response using
1109 overlapping segments with an initial displacement at each segment of 0.6. The
known damping is 5% of critical, while the damping estimates from the signature
using the logarithmic decrement and half-amplitude methods are 2.9% and 3.1%,
respectively. Several threshold values were selected as initial displacement conditions
in different runs, resulting in a consistent underestimation of the damping from 15%
to 40%. Fig. 6 also shows the actual free vibration response of the oscillator with an
initial displacement equal to the corresponding threshold value. It is clear that the
random decrement signature does not decay as quickly as the corresponding free
vibration response.

The same oscillator is subjected to white noise excitation with the same energy level
as that of the above wave train in the range of the system natural frequency. The
resulting signature from 1109 overlapping segments with a 0.6 threshold value and the
corresponding actual free vibration decay are shown in Fig. 7. The estimated damping
values are 5.3% and 4.9% for the logarithmic decrement and half-amplitude methods
respectively. The damping estimates and the results in Fig. 7, in comparison with
those in Fig. 6, demonstrate the importance of applying a white noise or wide-banded
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Fig. 7. Random decrement and free vibration decay response of linear oscillator under white noise.

input process in order to validate the application of the random decrement
method.

The effects of violating the linear system assumption are investigated by replacing
the linear oscillator with a nonlinear softening oscillator. This system is subjected to
the same white noise input as the previous example. Fig. 8 shows the resulting random
decrement signature and free decay of the nonlinear oscillator using 1109 segments as
before. The damping estimates are 5.5% and 5.2% for the logarithmic and half-
amplitude methods respectively. It is noted that the frequency of the signature departs
from that of the free decay as the amplitude decreases in the record. This will effect the
damping estimate depending on the particular cycles used for the damping estimation
techniques. Here, they are the same as the previous examples. The estimates are
comparable to those of the linear system, however, they are not robust with respect to
the selected threshold value and selected cycles for the applied techniques, as they
were found to be for the linear system. Varying the threshold value from 0.3 to 0.8 for
the linear system provides averaged damping estimates from the two methods in the
range of 4.5% to 5.2%. For the nonlinear system the estimates range from 4.4% to
5.8%, and show a wide degree of scatter.

The technique is next compared with the spectral damping estimation approach
using the half-power bandwidth method. The response record of the linear oscillator
subjected to white noise is segmented into 64 segments of 512 points each. These
segments are windowed and the power spectral density is estimated using standard
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Fig. 8. Random decrement and free vibration decay response of nonlinear oscillator under white noise.

FFT methods. The half-power bandwidth method estimates the damping at 3.8%, an
underestimation of 24%. A longer data record may well provide better estimates by
adding resolution to the spectrum, but the random decrement method closely predicts
damping with the current record length, as demonstrated above.

This method is well suited to the response of structures under buffeting wind
loading, where the spectrum of the input process is wide-banded. However, wind
forces which are the result of vortex shedding are narrow-banded in nature, leading to
the same difficulties experienced in the above colored noise example.

6. Uncertainty analysis

The treatment of inherent uncertainty associated with damping in structural sys-
tems, as alluded earlier, is presented here to incorporate its effect on structural
response estimates. A second-order perturbation technique, a second-moment ap-
proach, and a Monte Carlo simulation are presented to examine the effects of
damping variability on the dynamic response of structures. The damping uncertainty
may be expressed in terms of the damping constant, or alternatively, in terms of
critical damping ratios. In view of the impracticality of determining damping coeffi-
cients and the general engineering practice of expressing structural damping in terms
of the critical damping ratio, the analysis reported here is based on the damping
ratios.
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6.1. Perturbation approach

The equations of motion of a discretized system subjected to an external excitation
are given by

M¥ +CX + KX = Flr), (22)

in which M, K are assembled deterministic mass and stiffness matrices, C is a propor-
tional uncertain damping matrix, X is the response vector, and F(z) is the external
excitation vector (e.g. wind or wave loading). Employing the standard transformation
of coordinates involving undamped eigenvectors @; of the system offers the following
uncoupled equations:

i + 2E0i; + wiq; = pi(0), (23)

in which p,(1) = @] F(1) and X = &;q;.
The uncertain damping ratio that corresponds to the ith mode in the previous
equations may be expressed in terms of the mean and perturbed values

&=801+m), (24)

in which & is the mean value of the damping ratio, and % is a small Gaussian
fluctuation. In certain physical situations it is possible to experience random fluctu-
ation in damping as a function of time, e.g., in aeroelasticity applications. Uncertainty
in damping is propagated using a second-order perturbation technique. The higher-
order perturbations are possible in principle, but would require moments of order
higher than fifth, involving extensive computations. Following the perturbation
approach, the modal response is expressed in terms of the mean and perturbed values

qi=a; + qio + g %7, (25)

in which ¢}, gi, q} are various orders of perturbation.

Substituting Egs. (24) and (25) into Eq. (23) and equating the same powers of «;
offers the following zeroth-, first- and second-order equations for externally excited
systems.

@0 + 280! + ofq? = P, G+ 28 0d; + olg = — 280!,
i +28wgi + oiq) = — 28 wig;. (26)
The transient and steady-state modal response at each order may be obtained
following the procedures of random vibration theory. In this paper, only the steady-
state response analysis is considered. The interested reader is referred to Kareem and
Sun (1989) for other details and seismic analysis.
In the frequency domain, the mean square response of a linear system is given by

agn = leqf.”(Q) ?S(2)dQ,  Si(Q) = {&} [Se(Q2)]{®:}. 27
0
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in which ¢ is the variance of the rth order modal response in the ith mode, | Hy(Q) |
is the squared modulus of the system transfer function, and S(€2) is the power spectral
density (PSD) of the excitation.

The transfer functions corresponding to Eq. (26) are given here

1
Hp(Q) = H(Q), Hi(Q)= ’
10 (€2) () (€) Q% + w? + 2jQuwE?

Hy(Q) = — 280w; jQHpp(QH(Q),  Hp(Q) = — 2800 jQH, (QH(Q).  (28)

Generally, the integration in the preceding equation is performed numerically. How-
ever, for white noise excitation and a class of filtered white noise excitation, closed-
form integrals are available (James et al., 1947). Accordingly, the mean square
response at various orders is given by

5 nS; ) S;A3B7

0, P 5 Og ]
28w} A (AA — A1Ag) — AoA3

2
» _ mSiaobslacasas + ajae — a,a,as)
o=

(29)

7.3
aolagas + -+ — a1a,a3a4as)

in which S; is the amplitude of the mode-generalized external excitation, e.g., wind or
wave loading, at the ith modal frequency, and

B = —28w;, Aj=of, A =48w}, A, =20} + 407,
As=4w&,  Ai=1,
by =@l wi)?  ao=1, a;=6"w;,  ay =30l +4),
as = 45; (267 +3),

6

a = 3wl + 4%, as = 6w}, ag = W;.
The response in the physical coordinates at the nth node is given by
M
X”(t) = z ¢m'qi(t)s Xn(l) = ?TQ, (30)
i=1
where ®,; denotes the nth element of the ith mode shape, " = [®; @, &, ], and
0= [go ag' o*q"]". The covariance of X ,(t) is expressed as
I, =050, (31)
in which the covariance matrix 2, is given by

[E(g°q°)]  [E(q°2¢™)] [E(g°*q"™)]
2= [E(xq2q’")] [E(ag'a’q"")] (32)
symmetrical [E(e’q"0’q"")]



A. Kareem, K. Gurley/J. Wind Eng. Ind. Aerodyn. 59 (1996) 131-157 153

and the operator E( ) denotes expectation. Assuming independence of ; and ¢; and
its components, and utilizing relationships for the higher-order moments of Gaussian
processes, the terms in the preceding equation can be evaluated. Some of these terms
vanish by virtue of Gaussianity. The contribution of the off-diagonal terms is relative-
ly small in relation to the main diagonal terms. As an approximation, by ignoring
them, the mean square value of the response at the nth node is given by

M
oz, =Y. Prilop+ ogo; + 30705 ], (33)
i

where ¢? with a subscript denotes the mean square value of the prescribed variable.

An example is presented to demonstrate the influence of uncertain damping on the
along-wind acceleration response of a 100 ft square in plan and 600 ft tall high-rise
building. The structural system is lumped at five levels and the associated mass and
stiffness matrices are described in Li and Kareem (1988). The modal damping ratios in
ascending order are 1%, 1.57%, 2.14%, 2.52%, and 2.95%, respectively. The COV of
the modal damping ratio was varied from 10% to 40% with uniform increments of
10% and the mean wind was 100 ft/s at the building height. In Table 1 the r.m.s.
alongwind acceleration (mg) at each building lumped node is presented in terms of the
zeroth-, first-, and second-order perturbations. The second-order contribution in-
creases concomitantly with an increase in the COV of the damping value.

6.2. Monte Carlo method

The concept of gust factors and uncertainty analysis is applied to a TLP to predict
its response statistics to wind loading (Gurley and Kareem, 1993). The hydrodynamic
damping related to quadratic damping is only considered here. The simulation
consists of assigning random values to the various uncertain parameters described

Table 1
r.m.s. acceleration response (mg) to wind excitation

Node Q¢ (%)

1 2 3 4 5
Zeroth-order 0.983 1.705 2.278 2.714 2.987
First-order 0.998 1.729 2311 2.753 3.030 10
Second-order 0.998 1.730 2.312 2.754 3.031
First-order 1.039 1.801 2407 2.868 3.156 20
Second-order 1.049 1.806 2414 2.875 3.164
First-order 1.105 1.915 2.560 3.049 3.356 30
Second-order 1.116 1.936 2.589 3.084 3.394
First-order 1.191 2.064 2.759 3.286 3.617 40

Second-order 1.222 2.124 2.843 3.387 3.727
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Table 2
TLP uncertainty analysis results

All uncertainties included Drag coefficients uncertainties

Mean CcOov Mean COV
Hydrodamping 0.27502 0.12724 0.28154 0.29976
Aerodamping 0.02370 0.09549 0.02370 0.22312
Response 24825 m 0.29618 m 24.019 m 0.26802 m
Gust factor 1.4683 0.02245 1.4911 0.04671
Wind force 7% probability of 9.84101e6 N 947524 e6 N

exceedence

based on their assigned probability density function. The wind field is simulated using
an ocean based wind spectrum for the frequency domain based fluctuating response
calculation, and a twenty year extreme value distribution based on full-scale ocean
measurements is used to simulate the wind speed for the mean response calculation.

Here we present the change in response, damping, gust factor and wind force
statistics with a changing number of uncertain versus deterministic parameters. The
parameters considered uncertain in the first simulation example are parameters in the
input wind spectrum, the natural frequency of the system, the air and water drag
coefficients, the turbulence intensity of the incoming wind field, and parameters in the
coherence function. In the second simulation all parameters are deterministic with the
exception of the drag coeflicients in air and water which contribute to aerodynamic
and hydrodynamic damping. The results of both simulations are presented in Table 2.
It is noted that the effects of the type of uncertainties are dependent on the item of
interest due to interdependency of parameters. Additional details can be found in
Gurley and Kareem (1993).

6.3. Second-moment analysis

The second-moment techniques have provided practical and efficient means of
analyzing problems in engineering mechanics. The attractiveness of these techniques
rests on the limited statistical information needed to analyze a problem, i.e., only the
first two moments. The coefficient of variation of structural response R = f (X,
X,, ..., X,) which is a function of a number of variables X; in the first-order second
moment (FOSM) format is given by

o9
%/ \0X;

1[ X /g
%= ﬁ[i% (axi

in which p;; is the correlation between X; and X;, Qy is the COV of variable X;. This
concept is utilized to illustrate the influence of uncertainty in acrosswind aerodynamic
damping on the response of a chimney via the functional relationships between them.

1/2
)X,XjQXiQXj] . (34)

2)2.292 +Y 3 p; 99
X‘ i X, ij 5X,

i#]j

X,
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The aerodynamic damping in the acrosswind direction are given by Basu and Vickery
(1983) as follows:

D2 N
£, = _/)Mo[c1 _ c2<Di> ] (35)
€ 0

where M, is the equivalent modal mass per unit length, and C,, C, are functions of the
mode shapes and aerodynamic parameters, o is the response level and Dy is the
chimney diameter. Following the FOSM approach the uncertainty in aerodynamic
damping is given by

L[/ o& ) %, \ 0%\ = ZAWS
Qiu = 5_3':(5;) Q% + (am*> an* + 5{70 K[%O.ng + E a2§23

&N 20r o (%Y n2on |7
+<ag},> G0+ (50 ) Nk | (36)

in which K¢ is an aerodynamic parameter related to C; and C, (Kareem, 1988). In
Kareem (1988), analysis of a chimney response with 14 uncertain parameters was
conducted. Structural damping COV was 0.35. The uncertainty in the aerodynamic
damping following the preceding equation based on the assigned uncertainties to
various parameters was found to be equal to 0.3. The propagation of uncertainty
resulted in a COV of 0.575 in the acrosswind bending moment. The structural and
aerodynamic damping contributed COVs of 0.369 and 0.153, respectively.

7. Concluding remarks

Structural, acrodynamic and hydrodynamic damping mechanisms are each separ-
ately treated and recent advances in each summarized. The estimation of damping by
the random decrement technique is presented in some detail. Examples show the
utility of the method compared to spectral methods which are subject to resolution
restrictions, and also show the limitations of the method in that its application
requires nearly white noise input and a nearly linear system. The present state of the
art in the design of tall buildings does not permit accurate damping estimates until the
building construction is complete. In view of this uncertainty, the methodologies
illustrated here offer a convenient tool for the estimation of building response with
uncertain damping,
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