INTRODUCTION

STOCHASTIC DECOMPOSITION AND APPLICATION TO
PROBABILISTIC DYNAMICS

By Yousun Li' and Ahsan Kareem,> Member, ASCE

ABsTRACT: The frequency-domain analysis concerning the response of nested-cascade
multiple input/output systems requires computation of the cross-spectral density matrices
that involve the input, intermediate, and output vectors. Clearly, as the number of nested
systems increases, the order of the cross-spectral density matrix increases, demanding
additional computational effort. This feature lessens the computational attractiveness of
the frequency-domain analysis. A stochastic decomposition technique is developed that
improves the efficiency of conventional frequency-domain analysis by eliminating the
intermediate step of estimating cross-spectral density matrices. Central to this technique
is the decomposition of a set of correlated random processes into a number of component
random processes. Statistically, any two processes decomposed in this manner are either
fully coherent or noncoherent. A random subprocess obtained from this decomposition
is expressed in terms of a decomposed spectrum. A theoretical basis for this approach
and computational procedures for carrying out such decompositions in probabilistic dy-
namics are presented.

The frequency-domain analysis is frequently used in the response analysis of linear dynamic
systems subjected to stochastic loads primarily for its computational efficiency and concise and
clear relationship among various load and response processes. A multivariate process is char-
acterized in the frequency domain by its cross-spectral density matrix. The cross-spectral density
matrices of the input and output of a linear dynamic system are related by a transfer function
matrix. However, if the dynamic system consists of a number of nested-cascade systems (Fig.
1), a significant amount of central processing unit (CPU) time is needed for the computation
of the cross-spectral density functions involving the initial input, and the intermediate and final
outputs. This feature lessens the computational attractiveness of the frequency-domain approach.

Typical examples for such systems may be found in the perturbation and iteration solution
techniques that are often used for the analysis of nonlinear dynamic systems following a lin-
earization or a quadratization of the nonlinearity. In a perturbation technique, the equations
at different perturbation orders can be regarded as nested-cascade systems, in which the cross-
spectral density functions between the responses at different orders are required for the final
solution. Similarly, in an iteration procedure, the cross-spectral density functions between the
input and the output obtained in the previous iteration are computed to account for the feedback.
Therefore. computation of the cross-spectral density functions in both perturbation and iteration
procedures for systems with large degrees of freedom, and multicorrelated input/output, may
become an arduous task. For example, the analysis of offshore platforms exposed to random
loads poses difficulty due to nonlinear dependence of wave-induced loads on the wave-particle
kinematics and the structural response. The equation of motion can be solved by a perturbation
or by an iteration procedure after an equivalent statistical linearization or quadratization. The
application of these solution techniques to jacket-type platforms may be found in Deleuil et al.
(1986). Eatock-Taylor and Rajagopalan (1982), Lipsett (1986), and Grecco and Hudspeth (1983).
However, for moored floating structures, (e.g., tension leg platforms), the problem is more
complex due to the dynamic nonlinearity in the applied loading that precludes straightforward
application of iteration and perturbation techniques.

In view of this shortcoming, a technique. referred to as stochastic decomposition, has been
developed in the present study. This technique decomposes a set of random processes into
component random processes, the relationship between any two of which is either fully coherent
or noncoherent. Each component process is described by a corresponding decomposed spectrum,
which is related to conventional spectral description, for example, a spectral density function.
Any linear transformation that relates a set of random processes also relates the corresponding
decomposed spectral description of these processes. The fully coherent or noncoherent rela-
tionship between the decomposed processes alleviates the need for the computation of the cross-
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FIG. 1. Nested-Cascade System

spectral density function, thus enhancing the computational efficiency of the frequency-domain
approach.

The examples of the concept can be found in probabilistic mechanics. For example, the
simulation of random processes, in which each random process is the sum of noncoherent
component processes generated by Fourier transformation [e.g., Shinozuka (1963)]. Bendat
(1976) and Dodds and Robson (1975) decomposed input processes into noncoherent processes
for optimal linear operations for engine-noise detection. In the present study, emphasis is placed
on the application of such a decomposition in the frequency-domain analysis of a nested-cascade
dynamic system. The decomposition concept was extended to the quadratic dynamic systems
that will be addressed in a forthcoming report.

SPECTRAL DESCRIPTION OF NESTED-CASCADE SYSTEMS

A nested-cascade system consists of a number of linear subsystems closed in series, in which
the output of a subsystem becomes part of the input to the following subsystems. For each
subsystem, from the given spectral descriptions of the input time processes, the output spectral
density functions and the statistical relationship between input and output can be calculated
through transfer functions. The computation of the system output from the input involves
evaluation of the intermediate processes that links different subsystems. Hence, not only are
the spectral density functions of the output of each subsystem needed, but the relationship
among all the processes, including input, intermediate, and the required system output, needs
to be computed in terms of the cross-spectral density functions. To explain this further, it is
necessary to examine a typical nested-cascade system shown in Fig. 1. The subsystem 1 is excited
by a correlated input vector y,(¢) containing N, processes. The output of subsystem 1 is described
by the vector y,(¢) consisting of N, processes, and subsystem 2 is excited by y(¢) and y,(¢), and
so on. The power spectral density functions of the output of each subsystem are obtained by
the following equations:

G:(0) = H(0)G(0)H(0);  Gy(w) = Hy(0)G,(w) (1a.b)

G(@) = Hy(w) Gi(0) GiH(w) H: (0); G; (w) = Hy(w) Gi(w) Gi(w) (lc.d)
Gix(w) Giw) Gj(w) Gi(w) Gy(w)

Gi(») Gi(w) Giw)
Gi(w) = Hy(w) I:Glz(‘”) Gy(w) G?z(w)] Hi(w) (1e)
Gi(0) Gy(w) Gyw)

where G;(w) = the spectral density matrix function of y,(¢); G,(w) = the cross-spectral density
matrix between processes y,(f) and y;(¢); H;(w) denotes the transfer function matrix of the ith
subsystem; and = is the transpose and conjugate operator. With an increase in the number of
nested-cascade systems, the size of the spectral matrix increases concomitantly. Examples of a
cascade system can be found in the procedures used in the solution of nonlinear dynamic systems.
Let x(f) be a set of time series of responses under an exciting load vector f(r). For a weakly
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nonlinear system, perturbation techniques may be used for the spectral analysis of this system,
for example, Lipsett (1986) and Eatock-Taylor and Rajagopalan (1982) used perturbation for
the response spectral density functions of fixed offshore platforms. This method is based on the
assumption that

x() = i elrlx’(t) ()

r=0
in which the perturbation parameter ¢ << 1; and the superscript [r] is the perturbation order.
Forr =0

x(r) = LIU(f(1)) (3a)
where L1} = a linear operator. For r # 0
Xy = LW, X0, ..., x () (3b)

where the linear operator, L' is formed according to the response obtained in the previous
perturbations. The transfer function H"l(w), a function of the statistics of 2%~ 1, x1*I(¢), corresponds
to L. Fig. 2(a) illustrates the perturbation procedure represented by a nested-cascade system.
The spectral transformation in each subsystem is given as follows:

G, (w) = H"(w)G, (w)H!"'(w); G (o) = H'(@)Ga(w)H!'T"(w) (4a.b)
G = oo { o) G} o 0

If the dimension of x(¢) is N, then the dimensions of HY(w) are (N, 2N). The cross-spectral
density matrix of the response is given by

£ (£) xt) =) x"(e)
——] B¥w) —| H M w) 1 7% w) —
O
|
(a) N
£ (t) xYt)
o H(r-lxm) H(z)(w) >
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FIG. 2. Schematic Representation: (a) Perturbation Procedure; and (b) lteration Procedure
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G(w) = 3 S Guniw) (5)

r=0 s=0

which involves significant computational effort to evaluate the correlations among responses at
various perturbation orders. Considering up to third-order terms for illustrative purposes, the
previous equation is given by

R
G (o) ~ G.m(w) + 2eGm(w) + £2Guw) + 2e2G o (w) + 283G ua(w) + 263G, n(w)  (6)

The cross-spectral density functions in the preceding equations are computed by

G (w) = Gua(w)H! (w) (7a)
and
Gua(w) | _ | Guu(w)  Guo{w) -
|:Gx[1|au|(w):| B [wauu(w) G,oi(w) :l HE (o) (7b)

With an increase in the perturbation order, more cross-spectral density functions must be com-
puted.

The second approach for the solution of the nonlinear dynamic equation is the iteration
technique. Let us assume that the nonlinear equations can be linearized as

x(1) = L(£(r)) ®)

where the linear operator L denotes the dependency of the linear transform on the statistics
of the response parameters (e.g., variance). Athe the rth iteration, the transformation is carried
out by

G n(w) = H(@)G(@)H" (o) ®

in which H(w) is evaluated based on the response spectra, G,c-v(w), computed at the previous
iteration. An example in using the iteration technique in the spectral analysis of offshore struc-
tures can be found in Grecco and Hudspeth (1983).

For the case in which a robust criterion for iteration convergence is required, let us define
an error time series e(t), which can be viewed as a linear transform of the response from the
present and previous iterations

e(t) = x(1) — xV(r) (10)

The spectral and cross-spectral density functions of the error time series are used to determine
the convergence

G (w) = Gn(w) + G-n(w) — 2 Re(Gnwr n(w)) (11)
The cross-spectral density between the two iteration response components is given by
Gnyr-n(w) = H(@)G(0)H D (w) (12)

Fig. 2(b) shows a cascade system representing the iteration procedure. Iteration continues until
G.(w) is within a prescribed limit.

The above two examples demonstrate that, during the spectral analysis, one has to keep track
of the relationships among the input, output, and intermediate random processes in terms of
the cross-spectral density functions. Sometimes, a cascade system may contain many more
subsystems than shown in these examples, or each subsystem may have a large dimension or
both. Therefore, the cross-spectral-density-function computation may become further compli-
cated and must require a significant additional CPU time.

DECOMPOSED SPECTRA AND THEIR PHYSICAL INTERPRETATION

The decomposed spectral matrix D,(w) (dimension as M, A), of a set of random processes
y(£), is complex, and is defined as

D (0)D(w) = G, () (13)

The element in the pth row and Ath column in matrix D () is denoted by D, (w). A slash is
added between the subscripts u and \ since D, ,(w) does not only indicate an element in a
matrix, but, it also has a certain physical meaning that is addressed later. Let us define the uth
row of D,(w) in terms of the following decomposed spectral vector:
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D, ()
D,y (w)

D, (w) = (14a)

D, (w) [

D, ()
Similarly, define each column of the matrix D,(w) by the following vector:

Dy, (0) )
Dvl,}(w)

D, () = (14b)

D, (o) [

D, (o) ]

The decomposed spectral matrices and the vectors defined above have many useful attributes,
which are summarized in the following. The decomposed spectral vector D, (w) is linearly
related to y,(f). For example, if

Yu(6) = ay,.(£) + By.A1) (15a)
then
D, (0) = aD,  (w) + BD, . () (15b)
The linear transformation of a set of random processes can be realized by the linear trans-
formation of its decomposed spectral matrix. If y(f) and z(f) are linearly related through a
transfer function H,_ (), then their decomposed spectral matrices are related by
D.(w) = H.(w)D,(w) (16a)
where
G,(B) = D(w)D}(w)  and G.(w) = D.(w)D}(w) (16b)

If two sets of random processes y(f) and z(r) are linearly related by H,,(w) as shown in (16),
and w(¢) is a random process vector consisting of processes y(#) and z(¢), then the decomposed
spectral matrix of w(¢) is simply a stacked matrix of D, (») and D.(w)

D,(w) = [gggg] (17)

These properties lead to the physical interpretation of the decomposed spectra. This inter-
pretation is referred to here as stochastic decomposition. In this concept, each random process
y.(1) is decomposed into a number of component processes y,,,(f) such that

RCEEING (18)

in which, y_,(1) and y,,,(f) are noncoherent if X # A', and fully coherent if A = A’. This
decomposition is sketched in Fig. 3. The component processes are related to the corresponding
decomposed spectra. The spectral density function of y,,,,(¢) is

G,,.(@) = D, (@)D, (@) (19a)
and the cross-spectral density function is given by
Gopvpn(@) = D, (@)D, () (19b)

where the overbar denotes conjugate. Corresponding to (14a) and (14b), let us define two
vectors for the subprocesses:

Y,ul(t)
yu/z(t)

Yult) = 3 yu/;(t) r (20a)

L y;u’\(’)

in which all the elements are the components of y,(¢) and mutually noncoherent, and
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FIG. 3. Schematic Representation of Stochastic Decomposition Scheme

Yunlt)
Van(t)

yalt) = 1 (200)

Yinlt) [

YM/;‘(’)

contains all the component processes that belong to different parent processes, but these are
fully coherent. Each component process is described in the frequency domain by the decomposed
spectrum that is a complex function. The modulus of the complex function is related to its
spectral density function, and its argument is the phase difference with other component pro-
cesses fully coherent with it.

Since any two component processes are either fully coherent or noncoherent, the computation
of the cross-spectral density functions is no longer required. Now we can return to the nested-
cascade system described by (1). Following stochastic decomposition concepts, a given spectral
matrix G,(w) is first decomposed into D,(w), according to (13). Then the following transfor-
mations are performed:

D (u)) D, (w)
D.(w) = H(w)D,(w); Dy(0) = Hy(w) [D;(w):l; D, () = Hy(w) g:((‘”; (2la-c)

It is noted that with an increase in the number of subsystems, the decomposed spectral matrix
experiences only an increase in its row dimension, and the column dimension remains unchanged.
In contrast to this formulation, the dimension of matrices increases in the conventional approach
[(1)]. As stated earlier, in this scheme the need to compute the cross-spectral density functions
is eliminated. If it is required, the spectral density function of any process or the cross-spectral
density function between any two processes can be derived from the decomposed spectra by a
simple computation.

Let us now rearrange all the input and output processes of the subsystems and use D(w) to
denote the decomposed spectral matrix of all the input, intermediate, and output processes.
The spectral density function of the uth process is given by

G (w) = Di()D, (w) (22a)
and the cross-spectral density function between the pth and w'th processes is

The stochastic decomposition can be used in the perturbation and iteration procedures used
in the fequency-domain analysis. As a first step in the application of the stochastic decomposition
in the frequency domain, we decompose the spectral density matrices containing all the given
processes into decomposed spectral matrices
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G(w) = Dy(@)Df(w) (23)

Then at each perturbation order, we obtain

D,\"”’(w) = H"”(w)D/-(w); Dv‘.lll(w) = H“I(w)DJM(w) (24a,b)
and
D,2(w) = HE(w) [g::ggz] (24¢)

The response decomposed spectra is simply a summation of all the decomposed spectra at
different perturbation orders

D(w) = i D (o) (25)

r=0

which leads to the cross-spectral matrix of the response given by (13). As for the iteration
procedure, each iteration is given by

D, = H(w)D,(w) (26)
and the decomposed spectra of the error function is
Dt,(w) = Db\.m(u)) - Dxu—u(w) (27)

which leads to G,(w) given by (13).

It needs to be emphasized that the stochastic decomposition technique is not an approximation
of conventional spectral analysis. No information is lost following the decomposition. Mathe-
matically, these two methods lead to precisely the same solution. The method presented herein
is computationally more efficient than conventional spectral analysis as applied to the cascade
systems.

SPECTRAL MATRIX DECOMPOSITION

168

The decomposition of G,(w) in (13) is not unique, and thus the resulting decomposed spectra
are not unique either. Regardless of the decomposition not being unique, the parent spectral
matrix is uniquely defined by any decomposed matrices. There are many approaches to realize
(13). Typically, we can use the Cholesky decomposition as follows:

w—1l 172
Dy, (@) = {va(w) -2 [D\.W,A(w)Dm(w)]} (284)
and
D, (w)=0 ifD, (o) =0 (28b)
otherwise
n-l
G, (@) = 2 D, (@)D, (o)
D, (w) = = (28¢)
withp=1,2,... ,Mandv =i+ 1,i+2, ... N.

Let the dimension of the decomposed spectral matrix be M X A; A is M minus the number
of elements of D, (w) = 0in (28b and c). A is named as the decomposition order here and
is equal to the rank of the spectral matrix. It is also a function of w, that is, A(w). A lower
decomposition order helps to further reduce the necessary computational effort. The decom-
position order can be kept lower by introducing approximations. Consider the pth time process
consisting of a number of mutually noncoherent component processes as in (18), the standard
deviation of the pth process can be written as

A

o, = /2 o2, (29)
A=1

in which o denotes the standard deviation of a process. Hence, neglecting a component process

with less energy has little effect on the total energy of the process. The Cholesky decomposition

procedure is helpful in determining the energy level. Let us add an extra condition to (28a)
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n—1

3 D, (@)D, (@)

Ao <T
G ((.0) ol

A g

D, (w) =0 ifl —

(30)

where T,, = an error tolerance. Accordingly, the decomposition order is reduced.

EXAMPLE—FREQUENCY-DOMAIN MOTION ANALYSIS OF MOORED

STRUCTURES
Governing Equations

The dynamic response analysis procedure of a moored floating offshore platform, exposed
to random wind and wave fields is used to demonstrate the effectiveness of this approach.
Moored platforms, for example, semisubmersibles and tension leg platforms are being used for
deepwater oil drilling and production. The deck of a moored platform is supported by the
buoyancy force of columns and pontoons. The wind-induced and ocean-wave-induced forces
are resisted by the mooring systems, such as flexible mooring lines and tethers. Typically in the
global motion analysis, the entire deck structure is viewed as a rigid body with six degree-of-
freedom motions. The mooring system is either represented by massless springs or as a secondary
system representing dynamics of the mooring system. The governing equation of the platform
motion is given by

MX(t) + (Cy, + C.)X(t) + KX(¢1) = F(t) (31)

in which X(z) represents six degree-of-freedom rigid-body motions; M, C,,,, C,.q, and K = mass
(including water-added mass) matrix, structural and radiation damping matrix and stiffness
matrix due to mooring systems (6, 6), respectively; and F(¢) represents the wind and wave loads
acting on the platform (6 degrees of freedom). All of these vectors are referred to the rigid-
body coordinate system (O X, X, X3) (Fig. 4). The wind condition is given by the cross-spectral
description of the wind velocity field, which is used to obtain the cross-spectral density matrix
(6, 6) G .(w) of wind loads acting on the platform in terms of six degrees of freedom (Kareem
and Dalton 1982; Kareem 1985). The wave field is described by the spectrum of wave surface
elevation m(¢) at a reference location. The wave forces can be divided into the potential and
drag forces (Sarpkaya and Isaacson 1981). The potential force on the structure can be described
by the diffraction theory or the inertia term in the Morison equation, depending on the ratio
between the wavelength and platform component sizes. Accordingly, the wave forces of the
potential origin in the six degrees of platform motion F,,(f) can be expressed as a linear transform
of n(r). The transfer function H,,(w) in this case can be derived from a boundary-element
diffraction code [e.g., Kareem and Li (1988)].

The drag force is related nonlinearly to the relative fluid-structure velocity. If the immersed
parts of the structure are discretized into N, components, the drag force on the ath component,
in terms of three degrees of freedom with respect to each component’s fixed frame, is given by

fd"(t) = Cduv(x(t)lvu(t)| (32)

where C,_is a local drag coefficient. The relative fluid-structure velocity v,(t), is equal to the
difference between the water particle velocity vector at the ath component u,(¢) and the velocity
vector of the motion of the ath platform component x,(¢)

Volt) = u(t) — %,(1) (33)

In the preceding equation, vectors v,(¢), u,(t), and x.(¢t) are referred to the local coordinate
system (0, x,, Xz, x3,) (see Fig. 4 for coordinate system). According to the linear wave theory,
u,(t) is a linear transform of m(¢) and the transfer function H,_.(w), for deep water is given
below
w exp(—k{, + jkE,)
Hnun((“)) = Tu {]"‘) CXp(——kCu + ]kgu)} (34)
0

where T, = the transformation matrix (3, 2) from space-fixed coordinates (0 £ ) to local
coordinates (04X, XoXs,) (see Fig. 4); {, and &, = locations of the center of the ath component
relative to the reference location in the vertical and horizontal directions along the direction of
wave propagation, and k and @ are wave number and frequency, respectively. The ath com-
ponent of platform velocity vector %,(t) is related to the rigid-body platform through a trans-
formation matrix

(1) = T.X(1) (35)
Accordingly then, the global drag force is given by
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FIG. 4. Coordinate Systems of Floating Platform

Fog(t) = % T, (0 (36)

«=

where f, (t) = drag force on the ath component in local coordinates. However, the nonlinear
relationship in (32) makes the frequency domain analysis difficult. Some mathematical manip-
ulations involving linearization lead to the following approximate equation [e.g., Eatock-Taylor
and Rajagopalan (1982); Li and Kareem (1993)]

f,,(1) = Qu(Covo)v.(r) (37)

where Q,(Cov,) is a coefficient matrix (3, 3) and it is a function of the covariance matrix of
v,(t). Hence, (31) can be rearranged as

MX() + C(Cov)X(t) + KX(t) = F(t) (38)

where the damping coefficient matrix is a summation of the structural, radiation, and drag
damping. The drag-damping term is a function of the covariance of the fluid-structure relative
velocities. Total damping is given by

N,
C(Cov) = C,, + Cpy + 2, TIQ,(Cov,)T, (39)
a=1
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and the load vector in the right-hand side is
IA?(t) = Fpo((t) + deg(t) + F/\(’) (40)

In the preceding equation, the exciting-wave drag-force vector deg(t) is a function of the
covariance of the fluid-structure relative velocities

Fuuelt) = 3 TIQ.(Cov)H, .n(0) (41

Conventional Spectral Analysis Procedure

Before proceeding to the analysis based on the stochastic decomposition, conventional spectral
analysis is briefly introduced. Following (34-36), and so on, the global spectral matrix (6, 6)
of wave forces, FU)(r), that include both the potential and drag forces, in the rth iteration is
given by

G(w) = (H,,m(m) + 2 T7Q.(Cov( ”)H,,un(w)) G ()

-(Hpm(w + 3 TIQ(Covy “)H,,(,,.(w)) (42)

a=1

where the coefficient Q.(Cov{~"), defined previously in (37), is obtained from the preceding
iteration. By assuming that the wind and wave forces are uncorrelated, the total environmental
loading on a platform is given by

G(w) = G + Gy (w) (43)
The global response spectral matrix can be obtained by
GP(0) = H(0)G Y (0)H" (w) (44)
in which the system transfer function is based on the equation of motion given in (38)
H(w) = (—wM — joC(Cov)" D + K)~! (45)

For the next iteration, the spectral matrix of the relative fluid-structure velocities needs to be
computed to evaluate C(o) in the transfer function. This spectral matrix is given by

G(@) = G, (0) + GV(w) — G, (0) — G (w) (46)

in which the first two spectral density functions can be obtained in a straightforward manner
G (w) = (TLjw)G ()T jw)* (47)
and

G, (w) = H, ()G H} (0) (48)

e

The third term, G, (») (3, 3), however, involves a series of matrix operations. As alluded
to earlier, these computations can become quite extensive for platforms that are discretized into
a large number of elements.

Frequency Domain Procedure by Stochastic Decomposition Method

The stochastic decomposition approach precludes computation of the cross-spectral matrices.
The computational procedure is illustrated in Table 1 and detailed in the following section.

The decomposed spectral density function, D, (w), for the wave surface elevation and the
decomposed spectral matrix, D, (w) (6, 6), for the wind loads are given below

D, (w)D,(w) = VG, (w) (49)
and
D. (w)D} (0) = Gp (w) (50)

The associated potential wave forces and the water velocities are represented by their respective
decomposed spectra, D, (») (6, 1) and D, () (3, 1) as

DFM(m) = H, (w)D, (w) (Sla)

and
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TABLE 1. Response Computation of Compliant Platform by Stochastic Decomposition

Wave refated Wind Related p =
Process item n=20 1 2,3,45 6 Equation
(1) (2) (3) 4 (5) (6)
Wind force (6 x 1) F,(r) — F. (1) F. (1) (50)
Wave surface elevation n(t) - — — (49)
Wave potential force (6 x 1) Fo.(1) — — — (S5la)
Wave practical velocitics (3 X 1)
a=1,2....N u, (1) — — — (51b)
Wave drag force (6 x 1) Fi.(0) — — — (53)
Applied loads (6 x 1) F)(r) Foolt) + FL0) | Fou(0) Fo(0) (54)
Displacement response (6 x 1) X(1) X0 X Xi2() (55)
Velocity response (6 x 1) X(¢) X () X9(1) X9 (59)
Local velocities (3 x 1) x(r) X000 X () x0() (60)
Relative velocities (3 x 1) v{(r) u (1) — x{0(1) =X —X() (61)
Convergence e () el(t) e(1) ed(t) (56)
D, (w) = H, (w)D (0) (51b)

Accordingly, the wind load is decomposed into six noncoherent vector subprocesses

Fa) = X Eu(0) (52)

At the rth iteration, the exciting drag force is given by

DY () = 3 TIQ.(Cov D, () )

By taking into consideration that the potential and wave drag forces are fully coherent and
that they are noncoherent with the wind force, we can write the total applied load F)(¢) in
terms of seven mutually noncoherent subprocess F, () among which F,, (1) = (F,,(t) for
p = 1-6, and F{ (¢) = Fo(t) + FZ(¢). The corresponding decomposed spectral matrix,
D )(w), is expressed as

DP(w) = [Df,(w)(Dyo(w) + DY (@))] (54)
The decomposed spectral matrix function (6, 7) of global response at the rth iteration is
D{(@) = H (@)D H(w) (55)
The convergence is checked by the decomposed spectral error matrices (6, 6)
D.(w) = DY(w) — DY “(w) (56)

If all the elements of the matrix

I

Cov, f( D,(w)D?(w) de (57)

are less than a prescribed value, the computation is completed. The cross-spectral density matrix
of the response is simply given by

GA(®) = DP(w)DY (o) (58)

However, if the convergence criterion is not satisfied, the iteration process must be continued
and the input to the next iteration is prepared. The global velocities are first expressed as

DY (w) = —joDY(w) (59)
The local velocities (3, 7 matrix function) are given by
D{(w) = T.D¥(w) (60)
The relative velocities [in (33)], related with waves and winds, are respectively represented by
DY (@) = D, (w) ~ DY (w) (61a)
and
DY (0) = =D} (w):  forp =1,2,....6 (61h)
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An integration of the decomposed spectra of the relative velocities leads to the covariances of
the relative velocities

Covy) = f D(w)D? () dw (62)

This is then used to obtain the new transfer function for the next iteration.

In the procedure shown, by using the stochastic decomposition technique, each transformation
only involves matrix multiplication with dimension less than seven. The cross-spectral density-
function calculation is totally eliminated. Computational effort in terms of matrix multiplication
is only one-third of that required for conventional spectral analysis. If the convergence criterion
described by (10} is introduced, the difference is much larger. Table 1 presents the relationship
among all decomposed subprocesses, including the given, intermediate, and final solution, and
offers a flowchart of the analysis procedure. The last column in this table indicates equation
numbers corresponding to each variable that provides a convenient reference for tracking the
computational procedure. In Table 1, all the component processes in the same column are fully
coherent, and any two component processes in different columns are noncoherent.

Further applications of this approach in offshore mechanics include response of a moored
floating system in multicorrelated wind and multidirectional seas. The response due to second-
order effects, for example, low-frequency drift can be conveniently obtained by using the sto-
chastic decomposition concept for quadratic systems. Details will be addressed in a future
publication.

CONCLUDING REMARKS
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