RECURSIVE MODELING OF DYNAMIC SYSTEMS
By Yousun Li' and Ahsan Kareem®

ABsTRACT: The dynmmic response enalysis of structural systems to a variety of
random excitations using recursive models is presented, The methodology permils
anulysis of siationary, nonstationary, or transient response of structures ander sto-
chostic loads, e.g., correluated multi-input loading due to fiuctuations in wind or
wave surface profile, or seismic excitation. For the nopstationary, or transient,
excitation, the anslysis involves a direct computation of the cutput covariznce from
& given nonsiationary correlntion structure of the input, The accuracy end stebility
of the simulated time histories {5 assessed. A detailed example is presented to
itlustrate the proposed recursive model. The concept of an ARMA (suto-regressive
moving average) system is presented in which the ARMA representation of the
response is obtained in terms of the ARMA description of the stotionary excitation.
The usefulness of the recursive approoch for nonlinear systems is demonstrated by
means of nn example involving on elasto-plastic beam subjected to a suddeniy
applied lond.

INTRODUCTION

Recursive models have been used for numerical integration of uncoupled
dynamic equations of motion in the literature. The classical recursive for-
mulation relies on Z-transform methods (Tury 1964; Stagner and Hart 1970).
Cronin (1973) implemented Duhamel’s integral in a recursive format to eval-
uate the response of uncoupled systems. Recently, the response time his-
tories of a coupled six-degree-of-freedom model of an offshore tension leg
platformn under random wind and wave fields have been simulated numeri-
cally using a combination of recursive modeling techniques (Li 1988). Ho-
shiya et al. (1984) presented a method of obtaining covariance response in
recursive form for a multi-degree-of-freedom linear structural system sub-
jected to nonstationary rendom excitation. The covariance response matrix
was derived from the state space matrix, The formulation involves decou-
pling of the equations of motion by means of a modal superposition tech-
nique with implicit assumption of proportional damping. The recursive mod-
eling approach has been applied in a variety of other problems, e.g., simulation
of wave surface profile or wind velocity fluctuations (e.g., Samaras and
Shinozuka 1985; Spanos and Mignolet 1986; Li and Kareem 1987).

In this paper, dynamic response analysis of structural systems to a cor-
related multi-input random excitation and seismic loading using recursive
models is presented. The response covariance is expressed in a recursive
form, which permits evaluation of the response statistics under nonstationary
stochastic loading. Other applications include transient response statistics.
The accuracy and stability of the recursive model are investigated. A detailed
example is presented that highlights the analysis of response statistics and
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accuracy and stability of the recursive model. The concept of an ARMA
systern is presented in which the ARMA representation of the response is
obtained in terms of the ARMA description of the stationary input. Finally,
the usefulness of the recursive technique for nonlinear systems is demon-

..strated by means of an example of an elasto-plastic system subjected to a

suddenly applied load. The computationally efficient procedure presented
here holds the promise of becoming a convenient design office tool.

ForMuLATION OF Recursive MopeL

The input-output relationship of a multi-depree-of-freedom (MDOF) sys-
tem is described by the following matrix equation:

MX+CX+EX=MV 4+ CVHEY=F) . oerererennannnnn. ()

in which M = mass matrix (n X n); C = damping mamix (n X n); K =
stiffness matrix (n X n); X, X, and X = response displacement, velocity,
and acceleration vectors; M¥*, C*, and K* = coefficient matrices associated
with the type of loading; and ¥, Y, and Y = input loading vectors. The
preceding matrix equation may be solved by the following recursive model:

P ot
Xpt 2 AX, = D Bttt 2
r=1 r=—Q"
in which ¥, = the input vector at time nAr; X, = output vector at ime nAr;
Ar = time increment; and A, and B, = coefficient matrices. The output at
time nAf is a weighted sum of the past, present, and future inputs and the
past outputs. Introducing the backward shift operater B[BX, = X, and (1
— B)X, = X, — X,.;] and the following Newmark-3 time-integration scheme
in Eq. 1, we obtain

X, = X, + A, + 0.5(1 — 2B)AK,.; + BACK,
and
X, =X, + Q0 =8AX +8AFK, (3)

The preceding substitution provides the following relationship for structures
initially at rest.

BB+ EB +E)X, = (BB + BB +ENY, ..o, €]
The parameters in Eq. 4 are '
Eg=—M —BArC — BAfTK . ..ottt i (5a)
E, =2M+ (-1 + 28)AIC +(-0.5 -8+ 2PAK .......ooina.L (5b)
E:=-M+(1-BAC+(—05+8—BATK ..o, (5¢)
Ef = —M* — BAICY — BAITK® ... e (3d)
E} = 2M* + (—1 + 28)AiC* + (0.5 — 5 + 2BACK* ..ol (5e)
and

Ef = —M*+ (I - 8AC*+ (05 +3—PAK* .......ovininnn. 673

661



2x10% kg

120 kN/m
ax10° kg
240 kNim
4 x10° ky
360 kN/m
JN N

FIG, 1. Lumped-Mass Model of Example Building

The displacement response vector is given by
X, =E;Y{-EX, | —EXu T EY, - E¥Y,, T E¥Y,) e, 6

The preceding matrix equation describes Eq. 2 and the coefficient matrices
are given by

A =ETE: A= EBg Bt e (7a)
B,=E'ElY, B, =E;'EX B.=E;'E¥ ... ..c0veeuiiiinins (7b)
for

P =2 g =0 O = (7e)

A recursive formulation for the response covariance may be derived from
Eq. 2. Multiplying Eq. 2 with Y7, and X7, and taking expectations of both
sides provides the following recursive covardance matrices:

P o+
Cyln,m) + D AC,(n—rym) = > BCyln —7rm) .eoooeeroo ... (8)
=1 r=—0"
and
F o+
Colnmy + 2, ACtn—rm = >, BCyn—rm).eoveennnnnn... ®
=1 re—

in which C,(n,m) = cross-correlation between X, and Y,,. These equations
can be solved recursively for a given set of initial conditions,

Numerical Example

The preceding recursive formulation is illustrated by means of an example
building subjected to a transient ground acceleration. The transient response
of this building under stationary time-limited earthquake excitation is given
by Madsen and Krenk (1982) using a random-vibration-based approach. The
example building is shown in Fig. 1. The applied loading is of 10 sec du-
ration. The frequency contents are described by the Kanai-Tajimi spectral
density function given by

4 21 3
w, -+ 45 uw )

e

(mz' - w?) + 4§§m§m‘

Srr{w) = Sn(
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FIG. 2. Correlation Function of Input Ground Acceleration

in which », = 4% rad/sec; and &, = 0.6. The intensity of ground acceler-
ation S is taken as 1.0 m*/sec’. For this loading, the terms on the right-
hand side of Eq. 1 take the following form: M* = 0; C* = 0; and K* =
—M and Y = ground acceleration. The correlation function obtained from
the spectral description of the input is presented in Fig. 2. The parameters
for this recursive analysis are chosen to be equal to: § = 0.5; B = 0.0833,
and Ar = 0.05 sec. The coefficient matrices are evaluated for this problem
based on Eqs. Sa—f and 7a—c and are
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FIG. 3. Cross Correlation and Covatiance of Input-Output
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FIG. 4. Auto and Cross-Correlation Functions of Response
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By solving Egs. 8 and 9 recursively, the covariance of structural response
is obtained. In Fig. 3, the cross correlation and covariance of response at
each floor level with the excitation are presented. The autocorrelation of
response at each floor and cross correlation of response between different
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FIG. 5. Variance of Response at Each Floor

floors are presented in Fig. 4. A direct comparison of these results to the
figures provided in Madsen and Krenk (1982) is not possible, since the re-
lated results in their paper are expressed in the modal coordinates, whereas
the present analysis is accomplished in the physical coordinates. The vari-
ance of the transient floor displacements in the physical coordinates is pre-
sented in Fig. 5 with Madsen and Krenk’s (1982) data. The results are al-
most coinciding.

The method presented here is computationally convenient and accurate for
stationary, tranmsient, or nonstationary response of MDOF systems. It does
not require eigenvalue analysis. Furthermore, a proportional - damping con-
dition is not a prerequisite for the analysis, which makes it very attractive
for the treatment of soil-structure or structure-appendage systems.

AccURACY AND STABIITY ANALYSIS

One of the merits of using a recursive model is the convenience of eval-
uating the stability and accuracy of the computational procedure. Conse-
quently, this approach facilitates the selection of the most suitable model
and time increment that offers a stable response with least computational
effort and accuracy to the prescribed limits.

Numerical stability of time-integration schemes implies that the integrated
output of & system will be bounded for bounded inputs. For time integration
schemes, e.g., the Newmark-B method, the stability is ensured by limiting
the integration time step to a fraction of the minimum natural period of the
MDOF systemn. In the case of Newmark-8 method

8 1/2
{g(a - 035+ [5 — B+ E@G - 0.5)3] }
o<y ———— . e, (12)

)

in which T,;, = the minimum time period associated with the system (Be-
lytschko and Hughes 1983). For § = 0.5, § = 0.25, and & (damping factor)
= {), the numerical scheme becomes unconditionally stable.
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TABLE 1. Error Assoclated with Time Integration Scheme (Newmark-f3)
Ar B e (%h) fa
{1) (2) (3) {4

0.5 0] 2 0.204
0.5 0.0833 0.5 0.2
0.5 - 0.25 -6 - 0.192

1.0 0 23 0.216
1.0 0,0833 10 0.2
1.0 0.25 12 0.18
1.677 0 38 0.27
1.677 0.0833 77 0.202
1.677 0.23 16 0.144

Note: 8 = 0.5; f, = resonant frequency = 0.2 Hz.

A linear discrete time system is stable provided all the poles of the re-
cursive model lie outside the unit circle in the Z-plane. For a second-order
recursive model, the absolute values of the eigenvalues of the matrix Z in
the following matrix equation larger than 1 will ensure a stable system:

EZZ + E\Z+ Ep=0. .. ittt iiianiarianes (13)

and
1 .
=5 BIUE, = (BE, — 4B ] . e as

It can be shown that the preceding condition for stability also provides the
stability condition previously stated for Newmark-8 method (Eq. 12), thus
confirming that the stability of a recursive model represents the stability of
the associated time-integration scheme. In this manner, the stability of the
present recursive numerical scheme can be ascertained by checking its sta-
tionarity. This is accomplished by assessing the location of the poles of the
system with respect to the unit circle.

A comparison of the transfer function of the recursive model to the exact
transfer function provides an assessment of the numerical error given by

e= J [AHEAH* - HABEEEEEST Y (15a)
' fovin
in which
) P -1 g*
H(f) = [1*2 A, exp (erwAgf)] [ > Bexp (jr2wArf)] ......... (15h)
=1 r==0g"

H(f) = [-@nf)'M — j(25)C + K]™'[-@nfyYM* ~ j2wnf)C* + K*] (150)

An example of a discretized five-degree-of-freedom system with each mass
equal to 4.5 X 10° kg, inter-story stiffness equal to 8,770 ¥N/m and the
modal damping ratio of 2% in the fundamental mode was employed to study
the accuracy of the recursive scheme. The resulis are described in Table 1
considering the response in the first mode only. The results delineate error
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assoclated with the different values of the model parameter B and integration
time step., For B = 0.25, the numerical scheme is unconditional and the
convergence is of the order O(Ar®). In the case of B = 0.0833 and zero
damping, the convergence order is G(Ar*), The conventional convergence
expressed in terms of O(AtY) cannot explicitly represent the error in 2 manner
listed in Table 1. Rather, it indicates how fast the numerical results approach
the exact values by decreasing At. For large time-step-to-period ratio G(Ar?)
raay not be better than O(At™), as noted in Table 1. The changes in the period
are also included in Table 1 in terms of the response frequency. As At in-
creases, the numerical error and period also magnify. The best results are
for At = 0.5, in which the time-step-to-period ratio is 0.1.

ARMA REPRESENTATION OF RESPONSE

The parametric time series modeling, as popularized by Box and Jenkins
(1976) for time series forecasting, have been found to provide good simu-
lation of random processes. An ARMA (auto-regressive moving average)
model combines the features of AR (auto-regressive) and MA (moving av-
erage) processes. In this model, an input driving sequence W, and the output
sequence X, are reiated by a linear recursive operator

P
X D DX = D W Wy ottt (16)
r=1

The vector X, is said to be an ARMA process of order (p,q). The ex-
citation sequence W, is composed of a zero mean and unit variance, un-
correlated random process (i.e., white noise), and @, and W, are auto-te-
gressive and moving average coefficient matrices, respectively, which are
determined from exact knowledge of the correlation structure of the tire
series. The significance of ARMA processes lies in the fact that a stationary
time series often can be described by an ARMA model involving fewer pa-
rarneters than an MA or AR process by itself. Finding an optimal ARMA
maodel with the lowest orders is the desired objective.

The purpose of this section is to use a recursive model to express the
system response in terms of an ARMA model given the ARMA represen-
tation of the input. In this manner both the time histories of the response
vector and the associated cross-spectral density matrix may be obtained di-
rectly. Considering that the inputs are expressed in terms of an ARMA model

P q
Yot D B = 2 WoWo ot (an
re=l r=0

in which Y, = the input excitation vector; and W, = a white noise vector.
The preceding equations can also be expressed as

B )Y, = W BIW, o e e e (18)

To obtain an ARMA model describing the system response, substitute Eq.
18 in Eq. 4 and after subsequent rearrangement

EB)X, = EX B0 B BIW, e ottt ie et (19}



in which matrix operator E(B) = E.B + E,B + E;. The desired ARMA
format for the output is

pt2 gl

D BX = ) W W, (20)

r=0 r=0

" In this manner, the inptit-output relationship is given by

Sle, olfv,.. 1 _Slw o]fw,.,
2[0 A,]{X,,_,}_Z[B, OH ] } ........................ @1

r=0 r=0

in which A, and B, are defined in Eq. 2.

In the preceding equations, the evaluation of the coefficient matrices is
difficult for the general loading representation expressed in Eq. 1. However,
it is possible to obtajn these coefficient matrices for special class of exci-
tations acting individually such as wind, waves, earthquakes, or out-of-bal-
ance machine components. This is possible if E*(B) can be expressed in the
form of E*(ay + o B + 0.8, in which E¥ is an invertible matrix inde-
pendent of operator B. This reduces Eq. 19 to an ARMA format

BRE*TEBIX, = (g + B + caBYVBIW, oo (22)

In the following, the coefficient matrices are derived for typical environ-
mental loadings. A related application of this concept may be found in the
simulation of stochastic processes, e.g., ocean surface profile. In such an
approach, a time series is obtained as an output of a white-noise-excited
dynamic system whose power spectral density is represented by a differential
equation (Spanos 1983). The application to the simulation of multiply cor-
related random fields is a possible extension.

Typical Applications

The first application concerns external excitation applied at each degree
of freedom, which results in M* = 0, C* = 0, and K* = 1, and Y(#) is
the applied load. This case is a typical example of wind or wave loads acting
on structures. Eq. 4 reduces to

BB +EB +EX, = (@B 4+ 0B + 0g)Y oo eveoeeeennnnanns (23)

in which ag = —BAr*; of = (~0.5 + 2p — 8)Ar; and o} = (0.5 — B +
8)At*. The ARMA model for the output displacement vector is given by
pt2 q¥3

B, = Y W W, (24).
> 2

r=0 re0

in which (Do =1 ‘I),. = EEI([D,.EQ + (I),._.iE] + (IJ,...Z + @,._QEE); 11’,- =
Ei'(agV, + W, + oW, );and ®, = W, = 0 for r < O,

A numerical example is presented in the following section for this case
in which the dynamic response of a wind excited tall building is examined.

Another related application is an extension of the previous case in which
the input is fluctuation in either wind velocity or wave surface profile rather
than the wind or wave loads directly. In this case M* = 0, C* = 0, and
E* = K*, and ag = —0.5 BAt*; oy = (—0.5 — § + B)AL® and as = (—0.5
+ & — B/2)Ar* in Eq. 23. A typical element in the K* matrix for the wind
loading, is given by Kf = pCpZj_,amyUj, in which p and C, are the air
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density and the drag coefficient, respectively, @; and U; are the jih element
area and mean wind speed at the centroid of the element, and n; denotes
the transfer matrix that relates the force on the jth element to the force being
transferred to the ith degree of freedom.

For structures subjected to ground acceleration, M* =0, C* =0, and
E* = K* = —M., The values of o, o, and o, are the same as given in the
previous exdmple. The grownd acceleration is described by the Y vector,

Vibrations induced by an unbalanced machine can be expressed in an ARMA
format. Tn this case, C* = K* = 0; and E* = M*. A typical element of
M* represents the mass of the unbalanced component related to a given
degree of freedom. The displacement vector Y represents eccentricity of the
respective unbalanced mass. In this situation, the value of o, in Eq. 22 is
equal to —1, 2, and —1 for i = 0, 1, and 2, respectively.

Numerical Example

A numerical example of an ARMA system is presented to illustrate the’
salient features of this approach using a high-rise building subjected to the
along-wind aerodynamic excitation. The building dimensions are 100 ft square
(31 m X 31 m) in plan and 600 ft (183 m) tall. The structural system is
lumped at five levels and the associated mass and stiffness matrices are de-
scribed in Appendix I. The five eigen frequencies of this building in cycles/
sec (Hz) are 0.20, 0.583, 0.921, 1.182, and 1.348, respectively, and the
modal damping ratios corresponding to these five modes in the ascending
order are 1%, 1.57%, 2.14%, 2.52%, and 2.9%, respectively (Kareem 1981).

The along-wind aerodynamic loading is based on the quasi-steady and strip
theories

4F3
Sem) = 5 SUmL(R) oo oo e @3)
Va
Sein) = V8 mSeCohy(n) ..ot (26)
_ _nC:|zi - -}E
Cohy(n) = exp T an
(U + U,
2( i J)
Fy=~ POOVEBD e e (28)
L) = Jady weonei e (29)
2
Jy = s EXp (G G — 1 e (0
) ( _ch.y)_ Yy ey
J 2 lexp (—v.C) + v.C. — 1] 31
v = = lexp (—v.C. Y — 1 e s
(v:C)
_ 2ngD. _ 2néB Vi+r C,B

1 ¢ =

z H = PP EE—— r=
¥ V, ¥ Va a+n c.D

“in which Sy, (1) = power spectral density (PSD) of wind loading at the ith
level; .S'_..-u(n) = ¢ross-PSD between loads at the ith and jth levels, J; and Jy
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account for the spatial-temporal correlations; C, and C, = decay constants
equal to 16 and 10, respectively; S.(n) = wind velocity spectrum; B = build-
ing width; A = building height; D = H/5; V, = wind velocity at the centroid
of a segment; p = air density; and €, = drag coefficient. Details concerning
the preceding model and theoretical background are available in Kareem (19835)
and Davenport {1977).

The preceding multi-level correlated description of the wind load effects
was used to develop an ARMA model. In this case, the development of an
ARMA model poses difficulty to the high Niquist frequency associated with
a small time increment required by the time-integration of the dynamic sys-
tem. Generally, this problem may be eliminated by simulating the load time
history at larger time increments. A subsequent interpolation of the simulated
time histories for obtaining smaller time increments helps to meet the re-
quirement of the time-integration models (i 1988). However, the ARMA
system being sought in this example may become more complicated by the
introduction of an interpolation scheme. Therefore, an alternate approach is
introduced to fit an accurate ARMA model. This is accomplished by intro-
ducing a two stage approach in which the load time history, e.g., Y() is
transformed to F(#)

R Y. ) A (33)

in which @ = a constant; and B = backward shift operator. The spectral
description of F() is obtained in terms of the transfer function corresponding
to Eq. 33 and the PSD of Y{f). An ARMA model consistent with the spectral
description of F() is conveniently obtained as a result of a change in the
shape of the target function

o 2
Fot 2 B F = 2 W Wttt (34)

r=1 r=]

Using Eq. 33, it is possible to obtain

a1 g '
Yot D B = D W W ot 35)
re=| r=1

in which the coefficient matrices @, are determined from Eqs. 33 and 34.
Based on this approach an ARMA model with orders p = 4 and g = 3 was
obtained that best describes the loading under consideration.

The coefficient matrices concerning the loading and response ARMA models
are given in Appendix I. The simulated description of the loading time his-
tory provided excellent agreement with the target spectral description of the
wind loading. A time history of the along-wind load acting on the 5th level
of the buoilding derived from the ARMA model is presented in Fig. 6.

Following the procedure outlined in this section, an ARMA model (6 X
5) for the building displacement response at five levels was obtained. The
spectral matrix of the building response is obtained from the ARMA model
by the following expression:

e NG : () a5 T (36a)
pt+2 =1rg+d

H(f) = [1 + ) Dexp( jr?.qrAg"):I [2 W, exp ( jrzmgq] .......... (36h)
=1 r=0
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in which H(f) = the transfer function of the ARMA model; and * and T
= conjugate and matrix transpose, respectively. The diagonal elements of
the spectral matrix G.(f) represent the power spectral density (PSD) func-
tions and the off-diagonal elements describe the cross-spectral relationships.
The PSD of the building response at the 5th level is presented in Fig. 7.
The off-diagonal terms provide the cross-spectral density function, cross cor-
relation or coherence, and phase information. For the sake of illustration, in
Fig. 8 the coherence and phase of the displacement response at the 5th and
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3rd levels are presented. The associated response time histories were gen-
erated from the ARMA model and are given in Fig. 9. Both the time his-
tories in Fig. 9 and the coherence and phase relationships given in Fig. 8
suggest that the responses at the 5th and 3rd levels are almost fully coherent.
This is quite obvious, since the displacement response is dominated by the
fundamental mode. The response time histories clearly reflect the compo-
sition of the spectral contents shown in Fig. 7; i.e., a low frequency sig-
nature, contributed by the background response, superimposed by the res-
onant component. The ARMA system presented here enhances the versatility
of ARMA modeling and provides a convenient computational tool to de-
scribe the response of a system in terms of an ARMA maodel, given the
ARMA description of a correlated vector-valued excitation.

REsPONSE OF NONLINEAR SYSTEMS

A system behavior becomes nonlinear if the elements of the stiffness or
damping matrix depend on the system displacement vector or its derivatives,
or the system input becomes a function of the response. Generally, in these
cases an iterative numerical scheme is used to estimate the response. How-
ever, for the cases in which the system stiffness is a function of displace-
ment, K(X), setting & = 0.5 and B = 0 {which is a central difference scheme)
leads to a recursive model in which the coefficient matrices depend only on
the past time histories of response, thus eliminating the iterative solution.

Example

The response of a simply supported beam with elasto-plastic properties
given in Biggs (1964) is used to illustrate the current technique and to com-
pare the results of the proposed method to the given solution, In Fig. 10,
the beam is shown as an idealized single-degree-of-freedom system follow-
ing Biggs (1964). Details of the elastoplastic characteristics and loading are
also included in Fig. 10. The structural mass = 0.0259 kip-sq sec/in., and
stiffness = 83.4 kip/in. Following the proposed procedure, the recursive
coefficients are evaluated to be equal to A; = —0.0259; A, = 0.0515; A; =
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FIG. 10. Elastoplastic System Subjected to Suddenly Applied Load

—0.025%; B, = 0; B, = —400 X 10™% B; = 0. The response at varigus At
values are presented in Table 2 with the results from Biggs (1964), which
are indicated as the analytical values. The results show excellent agreement
for both maximom and minimum displacements and their time of occur-
rence. For larger At, the resnlts exhibit a departure from the analytical re-
sults. The displacement response is plotted as a function of time in Fig. 11.
The given yield displacement and the maximum displacement given in Biggs

TABLE 2. HResponse of Elasto-Plastic System

Maximum displacement Minimum displacement
Methed Yield time (at time) (at tima)
)] {2) (3) {4)
Analyticel 0.0371 0.806 (0.0669) 0.438 (0.123)
Ar = 0.02 0.0248 0.886 (0.06) 0.548 (0.10)
Ar = 0,01 0.0314 0.819 (0.08) 0.455 (0.12)
Ar = 0.002 0.361 0.804 {0.066) 0.438 (0.122)
14
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(1964) are indicated in the figure by solid points. As stated earlier, the re-
sults are almost coincident.

ConcLupING ReEmaRks

A computationally efficient recursive procedure for evaluating the re-
sponse statistics of dynamic systems subjected to stationary, transient, or
nonstationary correlated multi-input random excitation was presented. A pro-
portional damping matrix is not a prerequisite for the application of this
technique. The computations are carried out in physical coordinates, which
precludes the need for evaluating the system mode shapes. The procedure
also offers a convenient means of evaluating the stability and accuracy of
the numerical procedure. The response may be expressed in terms of an
ARMA model based on the given ARMA representation of a stationary in-
put. In this maaner, both the time histories and the cross-spectral density
matrix of the response may be obtained from the derived ARMA model.
The computational procedure also permits response analysis of nonlinear sys-
tems. A number of examples have been presented here that demonstrate ex-
cellent agreement with the exact solutions.
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APPENDIX |. BuiLbDiNe Mass, STIFFNESS, AND DAmPING MATRICES,
AND INPUT/OuTPut ARMA CoEFFICIENT MATRICES

. Number of D.O.F, = 5.

Input order of AR Parameters = 4.
Input order of MA Parameters = 3.
& = 0.50.

B = 0.25.

Time step = 0.5 sec.

. Reduced wind velocity.

. At top of the building = 4.

. Wind spectrum—Harris.

- Boundary layer—urban,

[y

Input Data

Mass Matrix (Slugs}

4.50E+05 0.00E+00 O0.00E+00 O0.,00E--00 0.00E+00
0.00E+00 4.50E+05 0.00E+00 0.00E+00 0.00E+00
0.0CE+00 0.00E+00 4.50E+05 0.00E+-00 0.00E4+00| ........ (37
0.00E--00 0.00E+00 0.00E4-00 4.50E+05 0.00E+00
{.0O0E-+-00 Q.00E+00 O.00E+00 0,00E+00 4.50E+035
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Damping Marrix (Slug/sec)

3.41E+04 —1.99E+04
—1.99E+04  4,96E+04
-4, 40E+03 —1.72E+-04
—1.75E+03 . —3.33E+03
-6.80E+02 —1.07E+03
Stiffness Matrix (Ib/ft)
8.77E+06 —8.77E+06
—B.77E+06 1.75E+07
0.00E+00 —8.77E+06
0.00E+G0 (.00E+00
0.00E+00 0.00E+00

Input ARMA Parameters

MA Parameter Matrix:

Oth

1.6873E—04
7.4139E—05
3.1786E—05
1.3288E—05
| 4.8278E-06

1st

=1.3384E+02
2.40B3E+02
1.4668E+01
—6.53659E+01
_—4.0914E+0]

2nd

—1.0609E+03

6.0331E+01
~4.8998E4+01
—3.6142E+01
| —8.7736E+00
3rd

—1,2023E+02
—1.7109E+01
~1.7723E+01

1.5542E+00
| 5.0B00E+00

5.8501E—03
1.0B17E—04
4.7410E—05
1.9778E—05
1.1412E-06

1.75408+02
—3.4B07E+02
7.4333E+01
8.2267E+00
—3.2059E+01

6.347BE-+01
—9.9193E+02
2.3667E+01
—1.5933E+01
8.6816E+00

=1.0321E+0
—B.8784E+01
—4.0951E-01
—3.5673E+00

5.5983E+00

—4.40E-+03
—1.72E+04
5.03E+04
—1.66E+04 ..
—2.65E+03

0.00E+Q0
—8.77E+06
1.75E+07
—B8.77E-+06
0.00E+00

2.0016E—03
3.6230E—03
B.2115E-05
3.4823E~03
1,2543E—-05

1.2235E--00
1.0369E+02
—2,1282E+02
I.1947E+02
—6.6420E+01

—4,4587E+01
6.8363E+01
—7.3722E+02
2.5713E+01
—9.7908E+D0

~1.4151E+01
4.4650E-+00
—6.2811E+01
-1.0925E+01
1.0329E+D01
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—L75E+03
—3.33E+403
—1.66E+04

5.15E+04
~1.53E+04

0.00E+00
0.00E+00
—8.77E+06
1L.75E+07

—8.77E+06

5.9058E—06 1.1150E-06

1.064BE—05
2,4032E-05
5,7141E~05
2,0781E-05

~9.6152E+01
1.34B0E+01
1.8725E+02
—1.0439E+02
—8.7660E+01

—3.724BE+01
—2.2565E+01

6,4458E+01
—5.0359E+02
—6.5230E+01

7.2652E+00
—9.4139E+00
—1.3648E+01
—4,4643E-+01
—3.8203E+00

—6.80E+02
—1.07E+03
—2.65E+03
—1.55E+04

5.40E+04

0.C0E+00
0.00E+00
(.GOE+00
—8.77E+06
1.75E+07

2.0038E—06
4.5084E—06
1.0687E—05
2.5670E—05 |

~1.2698E+01
—3.3117E+01
—4.6267E+01
1.2936E+00
1.9017E+02_

—2.3777E+01
—4.3577E+01
—5,6490E+01
—8.2646E+010
—1.B746E+02_|

~7.4217E-01
-3.4965E+00
—7.1436E+00
—3.8775E+00

ceel. (39)

o (400

. (41)

. (42)

. (43)

—6.7445E+01 |



AR Parameter Matrix

1st
~1.9035E+00

8.7920E-02
—1.3128E-03
—3.4934E—02
" [-resisE-02
2nd

7.2102E~01
~1.3956E—01
~2.6557E~02
4.5119E~02
| 3.2500E-02

3rd

[~ 4.0000E-01
4.5598E—02
3.9019E~02

—4.4003E—D3

—1.2306E—02

4th

[~2.1342E-01

7.5833E-03
—1,2262E-02
—6.8318E-03
| ~7.2418E-04

5.1950E~02
—2.0435E-+00
1.7714E-02
—2,2364E-03
—1.8210E-02

—9.9673E-02
9.2101E-01
—.7977E-02
—B.0089E-03
4.0533E-02

4,7184E-02
3,5428BE-01
6,2609E~-03
1.5146E-02
—2.5775E-02

5.3054E-04
—2.3124E-01
4.1267E-03
—5.3595E-03
3.3606E—03

~1.2891E-02
2.0296E—02
—3.0186E+00
6.4343E—02
—4.8678E—02

—2.2142E-02
—4.0662E-02
9.1386E-01
—1.0962E-M1
8.5708E—02

5,4260E-02
2.7336E-03
3,2577E~01
4.1B19E-02
—3.7249E-D2

~32.0943E-02
5.0621E-03
~2,1773E-01
4.0013E-03
—3.3307E-D4

Output ARMA Parameters

MA Parameter Matrix

Oth

[1.6873E—04
7.4139E—05
3.1786E—05
1.328BE—05
| 4.8278E-06

1st

[ 3.3450E~04
1.5802E~04
6.6767TE~05
2.4204E~05
| 7.1797E-06

5.9501E-05
1.0817E-04
4.7410E—05
1.9778E—-05
7.1412E-06

1.2247E-04
2,0285E—-04
9.2638E-05
3.8530E~05
1.2632E-05

2.0016E—05
3.6230E-03
B.2115E-05
3.4823E~05
1.2543E-05

4.11B1E—-03
7.4425E—05
1.56%0E—04
7.1077E—05
2.2929E—05
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—1.0334E-01
—1.0420E—-03

1.4060E—01
—1.9998E+00
—1,0267E-01

1.5044E-01
—3.3403E-02
—2.3747E-01
8.9222E-N
1.2150E~01

-3,198RE—-02
5.0287E-02
8.B858E—02
3.2643E-01
5,6033E—03

~1,7246E-02
—1.7038E—-02

9.6560E—03
—2.1465E-01
—2.7720E-02

5.9058E—-06
1.064BE—035
2,4032E-035
3.7141E~05
2.0781E-05

6.3610E—06
2.2231E-05
5.4640E—03
1.1074E—-04
3.6799E—05

' —1.4859E+00J

—3.6293E-02 |
~7.4344E—02
~1,0506E~01 | . -
—4,5216E-02

. (4D

1.6127E—02
4.2378E-02
£.3293E—02
2.3709E~02
—-6.8574E—02]

5,8485E-02
5.2002E-02
1.1106E—01
3.9944E-(2
8.0717E-01

—3,9203E—-02
—6.2416E-02
—7.3320E-02
—2.1284E-02
—2.4418E-01

1.1150E-06
2.0038E-06
4,50B4E—06
1.0687E—05
2.5670E—-03

ce.. (48)

—1.531BE—07
1. 1049E—06
6.9515E—06
2.3678E—05
5.9773E-03

... (49



Znd

7.8493E—-05 3.8719E-05 (.0B71E-05 —1.0BS9E~-05 —B.1650E—06

6.0033E—05 2.3389E—03 2.4472E—-05  6.0985E-06 —9,4221E-0§

2,1112E~05 1.0986E-D5 2,6866E—05  2.754BE-05 -6.0167E~06 | ....... (50)
—23134E-07 T7.7267E—-06 2.2240E—05  2.2015E—05  %.2799E-06

—3.6000E-06 6.2654E—07  2.3492E-06 ~1.2807E—06  3.2802E-03
3rd

[ 1.8208E~04 ~5.5B0RE~D5 —2.3647E-05 —1.7363E—05 —1.1847E—05 |
—6.3869E—05 —1.3488E—-04 -—3.1287E-05 —1.3051E—05 —1.4B49E—05
—3.3983E-05 -5.0823E-05 —9.2370E—-05 —1.4683E-05 —1.6010E-05)..... G
~3.0993E-05 —2.2124E-05 —3.1352E-05 —6.1542E-05 —1.1467E—05

| ~9.6134E~06 —B.0854E~06 —[.4175E—05 —3.103BE-05 —1.4174E-05
4th

—1.0529E-04 —3.3379E-05 -1.5261E-D5 —6.2318E-06 -—5.3868E—06
~4,4534E—05 —6.9383E-05 ~1.9424E—05 —8,7160E-06 -7.0324E—06
—2,3161E—05 —2.B023E—05 —4.8299E-~05 ~1.3610E—05 —B.7047E—06 |..... (52)
—1.0944E-05 —1.2202E-05 —1.9235E-05 -3.3870E—05 —9.4965E~06

| —3.8467E—06 —3.2294E~06 —6.3977E~06 —1.4915E—05 —1.62B4E~05 |
5th

_ 1
—1.0483E—-05 —3.8357E—06 —1.9081E—06 —1.8387E—-07 -—4.3662E~07
—3.4872E-06 —5.7503E—06 —1.B644E—06 —1.1487E—06 ~7.0603E-07
—3,0484E—06 —2.4617E—06 —3.8516E—06 —1.9870E-06 -1.1550E—06 |..... (53)
—1.0890E-06 —1.1022E—-06 —1.8956E—06 —2.9134E-06 -1.7407E—06

| —1.8530E—07 —B.0LI4E—-09 —2.5922E-07 -1.1853E-06 —3.3204E—06J
AR Parameter Matrix
1st

—2.1926E+00 —9.8233E—01 —3.6859E—01 —2.7333E-01 -—1.5155E—-01
—8.2871E-01 —1.B66BE+00 —6.8562E—01 —2.5404E-01 —2.7591E-01
—3.6310E—01 —7.4315E-01 -—1.7039E+00 —4.8522E-01 —4,I767E-01 |..... (534)
—1.7523E-01 -3.1345E-01 -6,1309E-01 —1.6493E+00 —4,6682E—01

| —6.8661E—~02 ~—1.0530E~01 -2.2307E—01 -—B.463BE-01 —7.B61SE~01
2nd

[2.2946E+00 1.8160E+00 7.7825E-01 5.0948E—01 B.1118E-02

1.7526E+00 1.3437E+00 1.4535E+00 6.3713E-01 1.3059E—0t

7.2168E—01 1.4287E+00 1.1821E+400 1.2939E-+00 3.0499E-01 [ .....ovvun (55)
3.3471E—01 5.8441E—-01 1.2983E+00 [.1002E+00 8.3873E-01

1.3624E—01 2.3966E—01 5.3366E-0I 1.1501E+00 8.5539E-03
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3rd

—LE6425E+00 ~§.4292E—01 —3.3936E-01 -1.9163E—-0I  1.2756E—02
—6.6792E—-01 —1.2542E+00 -6,1010E~01 -2.6755E—-01  B.6721E-02
—2.563BE-01 ~-5.7231E-01 -—12200E+00 -5.6480E-01  6.4180E-02 | .... (56)
—13861E—01 —2.2345E-01 ~36113E~01 -1.1267E+00 —3.1600E—01
_LT78ITIE-02  —1.3178E-0F —2.7887E-01 —14270E-01 —B.7326E—01 |
4th

2,7182E-01 —4.2750E—-01 ~23388E—01 —-8.0163E—02  2.3720E~02 |
—5.527T4E-01  7.4113E-01 -3.5335E-01 -2,K200E-01  3.980D1E-02
—2.3432E-01 -2.7942E-01  7.3666E—01 —5.5B38E~01 ~1.8260E-02 | .... (37)
~6.6009E—02  1.0960E—01 =3.1124E—01  6.6894E~01 —3.6B95E—01
| ~2.0661E~03 —2.3662E—02 =-0.0544E—-01 —1.2772E~01  1.9(43E-01 |

5th

[ 4.8685E—01 2.2901E-01 1.6707E-0F  1.1394E—-02 1.6792E—01
2.3157E-D01 2.6684E—01 1.8290E—01  1.4035E-01 1.6832E-01
1.4010E—01 1.6136E—0f 2.2504E~01  2.7144E-01 2.1213E-00 J.......... {58)
5.0831E—02 6.3437E-02 1.7773E-01  2.0B63E-01 3.9937E—01
| 1.6792E-02 1.8354E~02 5.0494E—02 -4.0326E—-02 7.4979E-0]

6th

_—2.0485E—Ul —1.1510E-03 -1.4521E-02 2.1909E-02 —1.4230E—01
9.6247E-03 -2.3373E-01 1.60B7E—02  2.B8715E—02 -1.6653E—01
—8.6356E—03 1.B579E—04 —2.0881E-01 5.4426E~02 —1.7070E-01 - (39}
—71.1677E-03 —3.35787E~03 1.0566E—02 —1.88R7E~01 --1.0079E—01
—4.2952E~03 2.5064E—03 1.1647E-(2 —8.7350E-03 —2.6607E-0I

Response Variance (sq ft)

[1.6637E—03 1.4049E—03 9.6998E—04 4.9782E—-04 1.356BE~04] ...... (60}
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AprPENDIX lll. NoOTATION

The following symbols are used in this paper:

A, B, = coefficient matrices of filter in Eq. 2;
B = backward shift operator;
C .= damping matrix {n X r);
C* = loading matrix, Eq. 1 (n X n};
C.(n,m) = correlation matrix of displacement response;
C,(n,m) = cross-comelation matrix of displacemnent response and in-
put;
. = npatural frequency;
H(NH,H(f) = transfer functions defined in Eq. 15;
K; = stiffness matrix (n X n);
K* = loading matrix, Eq. 1 (n X n);
M = mass matrix {n X n),
M* = loading matrix, Eq. 1 {(n X n);
X,X,X = displacement velocity and acceleration, vectors;
Y,Y,Y = loading vectors, Eq. 1;
W, = vector of white noises;
o; = constants;
3,6 = constants in Newmark-B method;
Ar = discrete time interval;
(B} = AR operator; and
W(B) = MA operator.
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