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The time domain solution of the equations of motion of structures subjected to a stochastic wind
field is often obtained by a step-by-step integration approach. The loading is described by
simulated time histories of the aerodynamic force. Recently, autoregressive and moving average
(ARMA) recursive models have been utilized to simulate the time series of wind loads. Based on the
system dynamic characteristics, the time-integration schemes require that the time increment
should not exceed a prescribed value. This study focuses on the development of procedures to
simulate realizations of wind loading with small time increments which are required by the
time-integration schemes. An ARMA algorithm based on a three-stage-matching method and a
scheme which combines ARMA and digital interpolation filters are presented to efficiently
simulate realizations of wind loads at the prescribed time increments.

INTRODUCTION

The time domain analysis of structures subjected to
stochastic wind loading requires simulation of the discrete
time histories of wind loading. The simulated time series
are required to match single-point power spectral density
functions and multiple-point correlation structures.
Among the various simulation techniques, ARMA
(autoregressive and moving average) modelling offers a
computationally efficient scheme and requires minimum
computer storage (e.g., Spanos and Mignolet'4). A
structure subjected to wind is generally discretized into a
number of sections to describe wind loads effectively by
taking into account the spatio-temporal characteristics of
the wind velocity field. The correlated wind field at
different sections is described by a multi-variate ARMA
system, The coeflicient matrices may be determined by the
maximum entropy method (MEM). However, for the
multi-variate ARMA models MEM requires solving a
large number of nonlinear equations. Many other
techniques have been developed to reduce this computa-
tional effort. A typical example is the two-stage-matching
method for developing ARMA models (e.g., Samaras et
al.'® and Spanos and Schultz'®). While most of the
previous studies have focused on matching a univariate or
a multivariate ARMA model to a prescribed spectral
description of wind field, little attention has been paid to
the requirement of time-integration schemes concerning
the choice of the time increment. This requirement is
primarily the time increment used in the integration
scheme, which is often quite small to ensure that the
energy content of the highest frequency component that is
likely to excite the structure is accurately described. This
paper focuses on the development of ARMA models for
the wind field and its load effects with particular emphasis
on the efficient simulation techniques to generate time
series with small time steps.
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WIND FLUCTUATIONS AND LOAD EFFECTS

The wind velocity field is characterized by a multi-
dimensional multi-variate random process. However, in
the applications dealing with the digital simulation of
wind field and its interaction with engineering structures
the description of wind is often limited to the longitudinal
field. This simplification is justified at this time due to a
lack of quantitative models that describe the flow field in
the separated flow regions. In the longitudinal direction,
the quasi-steady and strip theories are successfully
utilized to model wind. The longitudinal wind velocity at
a location r=(x,z) is described by a mean and a
fluctuating component

U(t,r)=U(z)+u(t,r) i

The mean longitudinal wind velocity is described by a
logarithmic law or a power law (Simiu and Scanlan!?).
The latter has been widely used in many design codes
because of its simplicity.

In order to formulate the total fluctuating wind loading
on a structure, it is necessary to formulate expressions for
the single or multiple-point statistics of the wind velocity
field. At the simplest level, a power spectral density
represents the frequency content of wind fluctuations at
any location. There are several descriptions of the power
spectra available in the literature over a variety of
terrains. In general, the spectral forms tend to agree in
that they approach the Kolmogorov limit at high
frequency, but all the spectra differ in their treatment of
the low frequencies (Kareem®). The spectral descriptions
due to Davenport? and Harris® are most commonly used
for land-based structures, while for offshore applications
spectrum due to Kareem? is more suitable. These spectra
will be utilized to derive the ARMA models for the
simulation of the wind field.

The next level of the wind velocity field description
involves multiple-point statistics, i.e., the cross-spectral



density function, which is given by
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where C, and C, are generally equal to 10 and 16,
respectively (Davenport?).

The wind load effects on structures can be simulated
either by generating a space-time structure of the wind
field or by directly generating fluctuating loads induced
by wind fluctuations. In the first approach the wind
velocity fluctuations are simulated at the centroid of
various sections of the discretized structure. The wind is
assumed to be fully correlated on each section and the
corresponding wind force on the ith section is given by

v(r,r’;f)=e)(p{

F=0.5p4,C,[U,(t)-D:()]* 4)

in which p, 4,, C, denote air density, the ith sectional area
and drag coefficient, respectively, U;(t) denotes wind
velocity at the centroid of the ith section, and D,(t) is the
structural velocity. The assumption of full-correlation of
wind velocity field on each section may overestimate the
total wind load. However, for compliant offshore
structures, e.g., temsion leg platform (Li’), the low
frequency parts of the fluctuating wind field are of interest
which are nearly fully-correlated over a small section.

Alternatively, the fluctuating wind force may be
directly estimated by ignoring the quadratic and the
structural velocity terms in the previous equations. In this
formulation, the integration of wind force expressed over
a section incorporates the lack of correlation (Davenport?
and Kareem?®). The power spectral density of the wind
force acting on the ith section and the cross-spectral
density function between the ith and jth wind forces are
expressed as

G, (f)=4p*C3UZG, (SIL(S) (5)

and
G, (f)=/Gr NGy, (NS 6)

in which G, (f) is the spectral density function of wind
fluctuation and y;(f) is defined in equation (3), and

4 .
L(f)=m [exp(—7,C,)+7.C.—1]

x [exp(—7,C.)+7.C.—1] 7
where
(2)
1+
_YeD, _Y¢B. N _\¢D/
Y= g, Y= T, = 1+C,B
c.D

in which B and D are the width and height of a section. In
this approach, a vector of time series of wind loading,
F(n At) is directly generated by a multi-variate ARMA
model matched to the wind force spectral description.
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ARMA MODELLING

An ARMA model of orders P and Q is defined as a linear
filter that permits simulation of the wind velocity or force
y(At) (of order M) by its past time histories and the past
and present white noise processes:

P Q
y(nA+ Y Ayln—r]A=} Be,_, (®)
r=0

r=1

in which A, and B, are AR and MA coefficient matrices,
and ¢,_, is a vector containing white noise with a zero
mean and a unit variance. The coefficient matrices are
determined from the specified spectral description of the
random field to be simulated. A desirable feature of
ARMA modelling is that the model orders and the error
are small, since the total order translates into the number
of multiplications and additions at each discrete time
interval during the simulation procedure.

The transfer function of an ARMA model is given by

H(f)=[1+ i A, exp(—2nfr At)jl_‘

r=1
Q
X [ Y B, exp(—2nfr At)] 9)
r=0
Accordingly, the spectral density function is expressed as
G(f)=28(NA*(f) Ar (10)

in which * denotes complex conjugation.
The model error can be defined as

/.
J |Cij(f)—Gij(f)| df
0

(1

i

€= 7.
J‘ G (NI df

0

where f, is the Nyquist frequency.

The transfer functions of ARMA models are
characterized by zeros and poles. The versatility of an
ARMA process is demonstrated by the fact that. a
stationary time series can often be described by an ARMA
model involving fewer parameters than an MA or AR
process individually. A low-order ARMA model could
produce a small error if the coefficients are suitably
selected. The application of the maximum entropy
method to determine the coefficient matrices of a
multivariate ARMA model requires the solution of a large
number of nonlinear equations. Therefore, alternative
techniques have been developed to circumvent this
difficulty. One of these approaches is the two-
stage-matching method, by which an ARMA model is
developed based on a prior AR model. There are a
number of different approaches to the two-stage-
matching method, e.g. Samaras et al.'® and Spanos and
Shultz'3.

The basic concept involves an AR model with order P’
that is first matched to the covariance matrices C,,(r At)

(r=0,1,..., P"). Then the covariance functions between
y(n At) and e,, C,,(m At), are obtained by the AR model,
C,.(mAt)=0 for m>0
C,.(mAf)=Bg for m=0
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and
C,.(mAnN=-73 ACI[r+m)A]  form<0 (12)
r=1

The ARMA model of order P and Q is formulated by
matching a given C,,(r At) and C,(m At) obtained from
the AR model, e.g., Auto/Cross-Correlation Matching
Procedure,

min(m,P)

C,(—mAt)+ Z AC, [(r—m) At]=B, (13)
r=1
and

P Q
C,(—mA)+ Y AC, [r—m)Ad= Y B,Cyl(m—r)Ar]
r=1 r=1

(14)
(m=0,1,2,...,0Q)

However, for some target spectral descriptions straightfor-
ward evaluation of the initial AR model poses difficulties.
Alternatively, the derivation of ARMA models may be based
on a moving average (MA) linear system which does not
introduce the difficulties experienced in the previous
approach (Spanos and Mignolet'4). In this manner, an
ARMA model can be formulated by the solution of a
number of linear equations. Computationally, this
procedure is very convenient (Spanos and Mignolet'*).

In the two-stage matching method involving the initial
AR model, the ARMA model coeflicients with given P and Q
are not unique, since they depend on the prior AR order P'.
There are three parameters to be selected: P, P, and Q and
the time increment At. Samaras et al.'® used the following
relationship between these parameters,

P=0

Optimal model orders may only be obtained from a larger
number of combinations of the above parameters. In the
present study, an interactive computer algorithm was
developed to study the effects of various combinations of the
parameters on the model accuracy. The model errors in
terms of P, P, Q and At were evaluated by means of an
example of fluctuating wind velocities at two locations
(x=0, z, =300 {t and z, =60 ft) described by the Harris and
Davenport wind spectra. Figures 1(a) and (b) illustrate the
effect of P’ on the model error for given values of P+ Q and
At. In these figures G, , and G, , denote the spectral density
function of the wind velocity at section 1 and cross-spectral
density function between velocities at sections 1 and 2,
respectively. It is noted in these figures that an increase in P/
is generally favourable to the model accuracy. Since P’ does
not appear in the time simulation procedure, a large value of
P’ may not influence the final simulation scheme. On the
other hand, a large value of P’ could require very extensive
computational effort in the initial development of the
ARMA model. An empirical relation based on the present
study suggests

and P>2P+Q+2 (15)

P=3(P+Q) (16)
One further remark is appropriate here. For a fixed P+ Q,a
selection of P and Q can affect the model error, as shown in
Fig. 2. For the wind field, it is recommended based on this
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Additionally, the time increment, At, also influences the
model error. Approximately, the ARMA model involves a
window of time period (P+ Q) At. A decrease in At could
increase the model errors, as shown in Figs 1(a)and (b). It is
also noted in Figs 1(a), (b) and Fig. 2 that the shape of the
wind spectral density function can significantly affect the
model accuracy. For example, an ARMA model used to
match the wind spectrum with a finite value at zero
frequency, such as the Harris spectrum, has higher accuracy
than an ARMA model for the wind spectrum with a zero
value at the zero frequency, such as the Davenport spectrum.
It is important to note that the ARMA matching is also
sensitive to the accuracy of the correlation functions derived
from the given spectral density functions.

Typical examples of the comparisons between the target
spectra and the estimated spectra are shown in Fig. 3, and
the comparisons of the coherence functions are shown in
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Fig. 4. It is noted that an ARMA model can be matched to
the Harris wind spectrum with almost no discernible error in
the entire frequency range. The difficulty in matching the
Davenport wind spectrum is primarily due to the
representation of the sharp drop in the spectral ordinates
near the zero frequency.

In most of the above examples, the time series were
simulated for large At (> 2 sec), in which the spectral density
of the wind velocity at the Nyquist frequency still has
significant energy. However, it is generally required to have a
much smaller Ar due to the following reasons: (1) The
natural frequency of the highest mode of interest may be
high; (2) The structure may be subjected to other
environmental loads, such as wave loads, earthquakes, etc.,
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Harris Estimated by ARMA

ARMA for Harris: P'=30, PeQx5, 8=0.53%

— 9000 |
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‘% 3000
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Fig. 3. Comparisons of wind spectra density functions
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Fig. 4. Coherence function

Table 1. Wind and wind loading conditions
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which have high frequencies, hence, the time series of wind
loads must have a small time increment to be consistent with
the time series of other loads; (3) Depending on the
numerical scheme, the accuracy and stability during the
time-integration procedure may require that the time
increment does not exceed a prescribed maximum value. If
the required time increment is 0.5 sec, then the Nyquist
frequency would be 1 Hz, but generally a significant portion
of wind energy is less than 0.1 Hz. Also the coherence
function is often significant only within a small portion of the
entire frequency range. Therefore, it becomes quite difficult
to match an ARMA model to wind fields with small At. In
the following sections, the discussion focuses on two
methodologies developed in this study to alleviate such
difficulties: a three-stage-matching method and interpola-
tion models.

THREE-STAGE MATCHING METHOD

A three-stage-matching method is proposed that involves
the introduction of a suitable parameter « which transforms
the target process y(Ant) into z(n At)

Z(n At)=y(n At)— ay[(n—1) Ar] (18)

Utilizing the backshift operator B, the preceding equation
reduces to

z(n At)=(1—aB)y(n At) (19)

The (i,j)th element of the spectral density matrix of z(t)
becomes

G, (=M1 +a2—-2cos(21rfAt)]szU(f) (20)

If a=1, then equation (19) is similar to the seasonal
difference method in the Box-Jenkins approach (Box and
Jenkins'). However, a = 1 leads to a zero spectral ordinate in
equation (20), and it is not invertible. Hence, a is selected
such that 0<a <1 which ensures a slow decrease in the
spectral ordinates of z(n At) with an increase in frequency.
For the Harris wind spectrum, it is recommended to use
2=0.94~0098.

WIND PARAMETERS
Spectrum

Mean wind velocity at 32.8fthigh . ... ...............
Power exponent . . .. .. .. ... ... .. ...
Length scale ... ... ... ... ... ... ... .. .. .....
Wind surface stress coefficient . . ... ................
Decay Parameter (horizontal and vertical) . ... ..........
Air density . ... ... . ... e

WIND DATA ON EACH SECTION

No. 2 (ft) U (ft/s) C, (ft3/s?)

t 540 77.34 287.1

2 420 71.01 168.2

3 300 63.33 1256

4 180 5223 98.17

5 60 36.64 76.01
WIND FORCE DATA ON EACH SECTION

No. C, W (ft) H (f) Mean (kN)

1 S 12 100 120 81.83

2 1.2 100 120 68.98

3 1.2 100 120 54.87

4 1.2 100 120 38.77

5 1.2 100 120 18.37

................................ Harris
................................ 29.84 ft/sec
................................ 0.34
................................ 4000 ft
................................ 0.05
................................ 10, 16
................................ 0.0019 Slug/ft?
168.2 125.6 98.17 76.01
287.1 162.7 1184 87.74
162.7 287.1 154.8 105.9
1184 154.8 287.1 1449
87.74 105.9 1449 287.1
C kN?)
855.8 566.2 3949 265.6 142.5
566.2 705.8 4443 284.6 147.5
3949 4443 544.6 3122 153.0
265.6 284.6 3122 373.3 170.6
142.5 147.5 153.0 170.6 158.3
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Fig. 5. Spectra before and after pre-transformation

An example of wind loads acting on a tall building with
the lowest natural frequency equal to 0.2 Hz (the wind and
the wind force data are listed in Table 1) is used to illustrate
this approach. The building face is divided into five
segments. It is required to have the wind load simulated at
an interval of at least 0.5 sec. Figure 5 demonstrates the
spectral densities of the wind loads at the 5th level before and
after the transformation given in equation (18) with
a=0.955. It is noted in this figure that the wind load spectral
ordinates are negligible within the frequency range
0.1 ~ 1 Hz. However, after the transformation, the spectrum
covers the entire frequency range up to the Nyquist
frequency and decays slowly with the frequency.

z(n At) can be matched by an ARMA model utilizing the
two-stage-matching procedure discussed in the preceding
section,

. Q
z(n At)+ pz Az[(n—r)Af]=Y Be,_, 1
r=1 r=0

which, after substitution in equation (19), takes the form of
equation (8), in which

P=P+1 (22)
and
a O -0
0 « -0
A =Ai—| . (23)
: -0
0 -
A =Al—aAi_, forr>1 (24)

In this example, an ARMA (4, 4) model from a prior AR
(30) model has been matched for z(n At). Subsequently,
ARMA model (5, 4) for y(n At) is formulated. The spectral
density and the coherence functions of the target wind loads
and those represented by the ARMA model are plotted in
Fig. 6(a), (b), (c) and Fig. 7, and the errors are listed in
Table 2. For convenience the frequency range is divided into
0~0.1 Hz, 0.1 ~0.45 Hz and 0.45~ 1 Hz, in which different
coordinate resolutions are used (Fig. 6(a), (b) and (c)). The
input coherence function is negligible for f>0.1 Hz, so
Table 2 only provides the spectral and cross-spectral density
errors below 0.1 Hz, and spectral density errors beyond
0.1 Hz. These figures and the table demonstrate the closeness
between the target and estimated spectral functions,
especially at high frequencies. However, there are some
discrepancies in the cross-spectral density function for the
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Table 2. Errors in ARMA (5,4) by three-stage matching method

Error in matrix of spectral and cross-spectral density terms (in the
frequency range less than 0.1 Hz

4% 10% 22% 36% 57%
10% 4% 12% 25% 47%
22% 12% 5% 14% 34%
36% 25% 14% 5% 20%
57% 47% 34% 20% 8%
Errors in spectral density functions (in the frequency range 0.1 ~ 1.0 Hz)

0.77% 0.84% 0.9% 1.5% 0.74%




Table 3. ARMA (5,4) parameters from the three-stage matching method
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i,

AR 1: —1.861E +00 1.567E—02 8.654E—02 5.829E—-02 —~9.774E - 02
3.506E —02 —1.945E+00 —5.626E—03 3.056E —02 —7.826E—02
5.986E —02 2425E-03 —2.018E+00 —6.049E - 02 —1.817E-02
1.962E —02 1.142E-02 —3.216E—-02 —2.046E + 00 3.362E -02

—1.194E-01 -1.116E-01 —3.511E-02 1.626E —01 —9.064E — 01

AR 2: 3.408E — 0t ~5.021E~01 —1.454E—01 ~1.273E—~01 5.610E - 02

—5.657E~02 4977E—01 ~1.129E—02 —6.951E—02 417TIE—02
—8.566E —02 —1.485E—-02 5.923E-01 7.397E-02 —3.346E-03
—3.574E—02 —2314E-02 3.919E—-02 6.159E — 01 —3811E—02

1.463E—01 1.437E—01 2.691E — 02 —2.744E 01 —9.627E—01

AR 3: 1.037E+00 4.606E —02 2.415E—02 5.706E — 02 7.461E —02
1.736E—02 9.835E—01 3.286E—02 3.630E —02 6.252E—02

—7.594E ~04 1.907E - 02 1.006E + 00 3.036E—02 2.743E 02
9.173E-03 9.556E—03 1.616E—-02 1.033E+00 —6.762E-03
3.923E—02 3.686E —02 3.704E — 02 3.642E—02 5.578E—01

AR 4: —5.641E—-01 —1.126E—-02 5.298E—02 3.113E-02 4.929E —04
6.292E —03 —6.028E—01 —1.956E 02 1.166E —02 2.109E -03
3.735E-02 —~7907E-03 —6.603E—01 —6.065E—-02 5.562E—-03
1.213E-02 4995E—-03 —3.210E-02 —6.484E —01 4.069E —03

—8.558E—02 —9.055E-02 —-3.232E-02 1.187E—01 6.625E - 01

AR §: 4998E 02 ~5.613E-04 —1.874E—-02 —1.942E-02 —3.608E—-02

—1.732E-03 6.871E—02 3.224E—-03 —9.120E-03 —3.026E—-02
—1.016E—02 1.080E —03 8.152E—02 1.612E—02 —1.230E-02
—5.147E-03 —2.830E-03 8.528E—-03 8.296E -02 7.507E—-03

1.786E —02 2.051E-02 2.852E-03 —4.282E-02 —3.433E-0t

MA 0: 2.059E +03 0.000E + 00 0.000E + 00 0.000E + 00 0.000E + 00
7.329E +01 1.751E+03 0.000E + 00 0.000E + 00 0.000E + 00
1.657E+01 4.978E +01 1.419E+03 0.000E + 00 0.000E +00
5.622E+00 9.280E + 00 3.121E+01 1.029E +03 0.000E + 00
1.986E + 00 2.349E + 00 4.274E+00 1.339E+01 5461E+02

MA 1: ~—3.808E + 01 1.167E+02 1471E+02 6.942E + 01 —4.629E +01
1.380E+02 —1.723E+02 5491E+01 4.589E + 01 —3.521E+01
1.383E+02 4.528E+01 —-2.102E+02 —1.894E+01 1.124E+00
4.603E + 01 2.678E+01 —1.857E+01 —1.464E +02 4.407E +01

—2498E +02 —1911E+02 —3.619E+01 1.928E+02 5.074E + 02

MA 2: —1.687E+03 4.780E + 01 4.962E +01 —4.818E+00 —5.726E+01
1.950E 401 —1.430E+03 2.448E +01 1.153E +00 —4.713E401
5.141E+01 —1.594E+ 01 —1.202E+03 —6.039E +00 —1.083E+01
1.389E 4+ 00 —3.534E+00 —2933E+01 —8.825E+02 3.502E +01

—1.605E +02 —1.169E +02 —5.054E +01 5.421E+01 —8.957E +01

MA 3: —5.044E +01 —1.186E+01 —5.798E + 01 —4.161E + 01 —2.986E+01

—1.442E+01 2.726E +01 —1.607E—01 —2.288E+01 —2.646E +01
—4.623E+01 —8.831E-01 4.845E +01 2.366E + 01 —1.305E+01
—2473E+01 —1.168E+01 2.045E +01 2.546E +01 3.016E +00

7.154E +01 6.920E +01 1.088E + 00 —8.873E+01 —3.137E+02

MA 4: 1.388E+02 —1.754E-01 —1.366E + 01 —5457TE+00 3.182E-01
6.956E +01 1.251E+02 1.200E + 00 —2.963E+00 —3.071E-0t

~1.229E-01 3.641E+00 1.112E+02 7.163E+00 —1.914E +00

—4.173E+00 —1.182E+00 8.053E+00 8.039E +01 —3.280E+00

2.856E+01 2.628E +01 6.430E +00 —2.047E + 01 —4471E+01
10! loads are not important, it is possible to obtain a very low
Y U e AG) order ARMA model, e.g, ARMA (3,1) for the above
il e example (Fig. 8). The ARMA (3, 1) parameters are given in
T 10° Table 4. The three-stage matching method involves selecting
< the parameter « in addition to P, P and Q. However, it does
3 10 modify the shape of the spectral density functions which
E 107 facilitates a convenient modelling, but it cannot modify the
= . Load-5th level shape of the coherence function. This would result in some
Zé;. 10 error in the cross-spectral density function, which is
05 particularly amplified for largely spaced locations which
Load-3rd level generally exhibit a low level of correlation (Table 2). This

4 lasaada 1 L A L I 2 2

00 01 02 03 04 05 06 07 08 09 10
Frequency

Fig. 8. - Target and estimated spectra of wind loads

largely spaced points with low correlation. The parameters
of the ARMA (5, 4) model are listed in Table 3.

The ARMA model formulated by the three-stage-
matching method is especially suitable for the representation
of the high frequency spectra. If the low frequency wind

method can be applied to most of the wind spectra, such as
the Harris or Kareem spectra (Kareem®). For some wind
spectra, such as the Davenport spectrum, which has a zero
ordinate at the zero frequency, this method is not suitable.

INTERPOLATION MODELS

A more general method to simulate time series of wind field
involves a combination of an ARMA model and an
interpolation model. Let the time increment in the ARMA
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Table 4. ARMA (3, I) parameters

AR 1: —1.352E+00 7.275E~02 —2921E—-(2 —7.118E~02 —4.768E —01
5.600E — 02 — 1.429E +00 4.438E—02 —5.852E—02 —4.940E — 01
—1.360E~02 2.944E 02 —~1.425E+00 2.486E —02 —4.381E-01
—1.759E—02 —1.993E—02 1.466E —02 —1.421E+00 —9.103E—02
—6.720E-03 ~9.808E—~03 —1.237E-02 6.504E — 04 —1.568E +00
AR 2: 2.026E —01 —2.060E—01 1.218E—02 1.017E—01 8.039E—01
—-1.535E-01 3.250E—-01 —1.501E—-01 6.933E 02 8.331E-01
4.814E-03 —9.851E—02 2.981E—01 —1.158E—01 7.182E —01
2.318E-02 2.154E-~02 —6.489E —02 2.555E-01 5.695E—-02
9.353E—03 1.396E — 02 1.518E—02 —2252E—02 4.269E —01
AR 3: 1.626E—-01 1.314E-001 1.566E—02 —3.167E-02 —3312E-01
9.621E —02 1.163E-01 1.038E-01 —1.219E-02 —3433E-01
8.128E—03 6.785E-02 1.390E-01 8.892E—02 —2.844E-01
—5.933E-03 —2.143E-03 4915E-02 1.769E—01 3.041E-02
—2.750E-03 —4.317E-03 —~3.087E—-03 2.124E-02 1.486E—01
MA 0: 2.054E+03 0.000E + 00 0.000E + 00 0.000E +00 0.000E + 00
: 7.004E + 01 1.748E + 03 0.000E +00 0.000E + 00 0.000E + 00
1.541E+01 4.795E +01 1.416E +03 0.000E +00 0.000E +00
5.248E +00 8.766E +00 3.001E+01 1.027E+03 0.000E + 00
2.040E + 00 2.304E + 00 4.085E+00 1.285E +01 5473E+02
MA 1: 1.029E + 03 2.052E +02 ~2.441E+01 —6.921E+01 —2.536E+02
2.143E +02 7.526E +02 1.185E+02 —5.187E+01 —2.630E+02
—3.099E +00 1.201E+02 6.456E +02 6.166E + 01 —2293E+02
—2.926E+01 —2.075E+01 6.490E +01 5.044E + 02 —2.538E+01
—1.201E+01 —1472E+01 -1.219E+01 1.676E + 01 1.461E +02
Note: P'=15, a=0.97

Table 5. Interpolation model coefficients frequency is less than 1/2At, and zeros in the frequency

range 1/2At~1 .

B=1: 093356 —0.14420 6.2752E-02 —2.3873E-02 ang / /20t
022612 —86026E—02  3.7436E~02  —3.7824E ~03 The interpolation techniques may be classified as
p=2 8'75059 —0.1940 8.6363E-02  —2.8541E-02 linear, polynomial or trigonometric. Frequently, a
49518 —0.1636 7.2851E—-02 —1.8829E--02 . . ? X h . .
piecewise linear 1nte1:polatlon of the discrete data is
p=3. Q418 0636 e e utilized. Although this method is the simplest, it may
73 o 3' o "02 B 5'7824E —03 introduce large error in the spectral density function. The

0.22612 —8.6026E —02 .7436E — -5 - iali ion i ; :

B=4: 003356 —0.14420 §9753F —09  —23873F — 02 polynomial interpolation is the next level of interpolation.

Note: Ar=2sec and ot=0.5sec. The first line is for causal:
r=0, —1, —2, —3, and the second line is for noncausal: r=1,2,3,4

model be At, such that the corresponding Nyquist frequency
is a little larger than the frequency beyond which the wind
fluctuations has insignificant dynamic effects. Suppose that
the time-integration scheme for the solution of the dynamic
system requires a much smaller time increment Jt, where
At/étis aninteger S. It is required to formulate the time series
y[(nS+B)ot] from y(nAr) in which f<S. There are a
number of interpolation methods available (e.g., Oppenheim
and Schafer!®). It is important that the interpolation
should not introduce energy at higher a frequency and at
the same time be computationally efficient. Recently, new
techniques and their applications in various fields have
been developed (Li’). Their details will be reported
elsewhere. Here some concepts relevant to wind
engineering are introduced. The interpolation following
an ARMA model has to satisfy the following requirement:

Local interpolation: y[(nS+ f)6t] is simulated from
ymAt)withm=n—Q; ,n—Q; +1,...,n,...,n+0Qf,in
which Q; and Q; are small integer numbers. The
conventional global interpolation involving the total time
series is not suitable for the present application.
Stability: The interpolation is said to be stable if a
bounded time series after interpolation still remains
bounded.

Accuracy: The spectral density functions represented by
y[(nS + B)ot] are the same as those of y(n At) when the
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For example, Li’ developed a cubic polynomial
interpolation which results in a process continuous at its
first-order time derivative and involves three multiplica-
tions and additions at each discrete time interval. The
trigonometric interpolation utilized by Saunders and
Collings'! and further developed in this study is found to
be the most suitable choice for wind engineering
applications. In the following a basic concept of the
trigonometric interpolation developed in this study is
provided.

The discrete time series can be viewed as a process,
y¥(t), consisting of numerous pulses:

W)= 3 yinAt) At —n At) (25)

n= -

in which 8(t — n At) is the Dirac delta function. Its Fourier
transform is written as

YA() =j - _i y(n At) Atd(t — n At) exp(—j2nft) dt
= i y(n At) exp(—j2nfn At) At (26)

The preceding equation shows that Y(f) is cyclic with
the interval 1/At, and Y#(f)=Y2(1/At— f) in which the
overbar represents the conjugate. Similarly, the time
series with a time increment J¢ can be viewed as a pulse
process y*(t), and the corresponding Fourier transform-



ation becomes

Y¥(f)= i y(mdt) exp(—j2nfmdt)dt 27
Define a transfer function H(f) which satisfies
_Y¥
=y, (28)

For the ideal case, H(f)=1for f<1/2At and H(f)=0for
12At< f<1/2At. In the following, a procedure is
developed to carry out in the time domain the
transformation described in the preceding equation.

The interpolation model developed here is based on the
convolution of a finite and infinite wave form. Let the
frequency range —1/26t~1/26t be discretized into SQ'
frequency points with the frequency increment
Af=1/2(2Q/ At), in which 2Q” is called the interpolation
model order. Within the frequency range — 1/2At ~ 1/2At,
H(f) is described as

H(mAf)=1 for —Q'<m< Q! (29)

at the frequency +1/2At, H(f) is equal to 1/2 to account
for the transient from 1 to 0:

H(mAf)=%
and beyond the frequencies + 1/2At, H(f) is given by

for m=+(Q'+1) (30)

H(m Af)=0
(31)
for 0'+1<m<SQ' and —Q'—1>m>—S5Q'+1

A discrete Fourier transformation of H(m Af) leads to:

s’ mr
h(rot)= Y H(mAf)exp <j7z ———,> / 2S¢ (32)
m=-SQ'+1 SQ

in which r=0,1,2,...,80". If h(r At) is used as the
convolution kernel for interpolation:

sQ’

yimél= 3

r=-SQ'+1

h(rot)y*[(m—r)ot]  (33)

then taking the discrete inverse Fourier transformation of
h(rdt) leads to

sQ’

A= Y

r=—-8SQ'+1

h(rét) exp(—j2=nfrot) (34)

Obviously, at the frequency m Af with m as an integer
number, we have

H(m Af)=H(m Af) (35)
and when f is between [m Af~ (m+ 1) Af ], H(f) exhibits
oscillatory signature about the ideal transfer function
H(f). However, the oscillations decrease with an increase
in the order Q'. As an example, Fig. 9(a) and (b) demonstrate
comparisons of an ideal transfer function, with the
transfer function given by Saunders and Collings'!, the
conventional approach representing truncated trigono-
metric functions and the present study. It is noted that
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Fig. 9(a). Transfer functions of interpolation models
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Fig. 9(b). Transfer functions of interpolation models

with the same interpolation model order, the transfer
function represented by the interpolation form intro-
duced by the present study is closer to the ideal transfer
function. Further improvement is possible by utilizing a
higher order filter.

Considering that y2(mdt)=0 for mét #n At in which n
is an arbitrary integer number, equation (33) can be
rewritten as

1

ye(Sn+p)or}= Y

r=—-Q'+1

h, y*[(n+r) At)/S (36)

in which hg, is a rearrangement of h(rdt). Virtually the
interpolation is carried out at each time interval (Sn + §)dt
by 2Q' multiplications and additions,

Q!

yI(Sn+pyorl= ¥

r=—-Q'+1

hg y[(n+r) At] (37

An example of this interpolation model is considered
here. A fluctuating component of wind velocity according
‘to the Davenport spectrum is simulated by an ARMA
model with Az =2 sec, and is further interpolated to form
the wind velocity with 5t=0.5sec. This interpolation is
performed by the above described interpolation model of
order 8 (Table 5). In order to validate the interpolation
model, the discrete time series before interpolation is
taken from a continuous time function instead of an
ARMA model. In Fig. 10, the continuous time function
and the discrete time series before and after the
interpolation are plotted. It is noted in this figure that the
continuous function and the time series simulated by
interpolation are almost coincident.
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Fig. 10. Continuous, discrete and interpolated wind velocities

CONCLUDING REMARKS

The simulation of wind velocity and wind force fields can
be performed by ARMA models. The ARMA representa-
tion of such processes is possible by a number of matching
procedures of which the two-stage-matching procedures
is most widely used. However, the nature of the dynamic
systems and the numerical schemes utilized for solving the
dynamic response often require a small time increment,
which renders a straightforward application of ARMA
models difficult.

A three-stage-matching method is developed in which a
multivariate ARMA model utilizing small time in-
crements can be matched to a target wind spectrum. A
salient feature of this method is that despite the low order
of the model the simulated and target spectral density
functions are in good agreement for typical wind
engineering applications involving wind sensitive struc-
tures. A more general technique utilizing the interpolation
approach is presented. First, the time series is generated
from an ARMA model with relatively widely spaced time
increments selected according to the maximum frequency
of interest. Then, by using the interpolation technique

58 Probabilistic Engineering Mechanics, 1990, Vol. 5, No. 2

intermediate values at desired time increments are
obtained. The interpolation procedure must ensure that
the interpolation does not introduce significant spectral
contents of high frequency. In this research a digital filter
utilizing trigonometric interpolation is developed based
on a discrete convolution of finite and infinite waveforms.
The two-stage-approach involving the generation of time
series by the ARMA model at a convenient time
increment and a subsequent interpolation to a desired
time increment offers a computationally efficient
simulation scheme for processes which otherwise pose
difficulty in utilizing straightforward ARMA models.
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APPENDIX A: WIND SPECTRA

For the sake of completeness the two commonly used
wind spectral distributions discussed in this paper are
given here. Further details can be found among others, in
Davenport?, Harris® and Simiu and Scanlan'?.

The wind spectrum due to Davenport? is given by

f6uf)_ 4
kU (2+x%)*°

(A.1)

in which y=fL/U,, and L is the length scale equal to
1200 m. The Harris spectrum is described by

fGlf)___ 47
Ul @+

in which y=fL/U,, and L=1800 meters.
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