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The time domain solution of the equations of motion of structures subjected to a stochastic wind 
field is often obtained by a step-by-step integration approach. The loading is described by 
simulated time histories of the aerodynamic force. Recently, autoregressive and moving average 
(ARMA) recursive models have been utilized to simulate the time series of wind loads. Based on the 
system dynamic characteristics, the time-integration schemes require that the time increment 
should not exceed a prescribed value. This study focuses on the development of procedures to 
simulate realizations of wind loading with small time increments which are required by the 
time-integration schemes. An ARMA algorithm based on a three-stage-matching method and a 
scheme which combines ARMA and digital interpolation filters are presented to efficiently 
simulate realizations of wind loads at the prescribed time increments. 

INTRODUCTION 

The time domain analysis of structures subjected to 
stochastic wind loading requires simulation of the discrete 
time histories of wind loading. The simulated time series 
are required to match single-point power spectral density 
functions and multiple-point correlation structures. 
Among the various simulation techniques, ARMA 
(autoregressive and moving average) modelling offers a 
computationally efficient scheme and requires minimum 
computer storage (e.g., Spanos and Mignolet14). A 
structure subjected to wind is generally discretized into a 
number of sections to describe wind loads effectively by 
taking into account the spatio-temporal characteristics of 
the wind velocity field. The correlated wind field at 
different sections is described by a multi-variate ARMA 
system. The coefficient matrices may be determined by the 
maximum entropy method (MEM). However, for the 
multi-variate ARMA models MEM requires solving a 
large number of nonlinear equations. Many other 
techniques have been developed to reduce this computa- 
tional effort. A typical example is the two-stage-matching 
method for developing ARMA models (e.g., Samaras et 
al? ° and Spanos and Schultz13). While most of the 
previous studies have focused on matching a univariate or 
a multivariate ARMA model to a prescribed spectral 
description of wind field, little attention has been paid to 
the requirement of time-integration schemes concerning 
the choice of the time increment. This requirement is 
primarily the time increment used in the integration 
scheme, which is often quite small to ensure that the 
energy content of the highest frequency component that is 
likely to excite the structure is accurately described. This 
paper focuses on the development of ARMA models for 
the wind field and its load effects with particular emphasis 
on the efficient simulation techniques to generate time 
series with small time steps. 
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WIND FLUCTUATIONS AND LOAD EFFECTS 

The wind velocity field is characterized by a multi- 
dimensional multi-variate random process. However, in 
the applications dealing with the digital simulation of 
wind field and its interaction with engineering structures 
the description of wind is often limited to the longitudinal 
field. This simplification is justified at this time due to a 
lack of quantitative models that describe the flow field in 
the separated flow regions. In the longitudinal direction, 
the quasi-steady and strip theories are successfully 
utilized to model wind. The longitudinal wind velocity at 
a location r=(x,z) is described by a mean and a 
fluctuating component 

U(t, r) = U(z) + u(t, r) (1) 

The mean longitudinal wind velocity is described by a 
logarithmic law or a power law (Simiu and Seanlan12). 
The latter has been widely used in many design codes 
because of its simplicity. 

In order to formulate the total fluctuating wind loading 
on a structure, it is necessary to formulate expressions for 
the single or multiple-point statistics of the wind velocity 
field. At the simplest level, a power spectral density 
represents the frequency content of wind fluctuations at 
any location. There are several descriptions of the power 
spectra available in the literature over a variety of 
terrains. In general, the spectral forms tend to agree in 
that they approach the Kolmogorov limit at high 
frequency, but all the spectra differ in their treatment of 
the low frequencies (Kareem6). The spectral descriptions 
due to Davenport 2 and Harris 3 are most commonly used 
for land-based structures, while for offshore applications 
spectrum due to Kareem 5 is more suitable. These spectra 
will be utilized to derive the ARMA models for the 
simulation of the wind field. 

The next level of the wind velocity field description 
involves multiple-point statistics, i.e., the cross-spectral 



density function, which is given by 

G.(r, r'; f ) =  x/(G.(r, f)G.(r', f)y(r, r'; f )  

( f r p 2 l  X X'~2 .a_ C2{z _ z ' ~ 2 1 1 / 2 " )  

7tr ,  r ; j ) = e x p ~  ½[rJ(z)+IT(z') ; 

(2) 

(3) 

where Ch and C~ are generally equal to 10 and 16, 
respectively (Davenport2). 

The wind load effects on structures can be simulated 
either by generating a space-time structure of the wind 
field or by directly generating fluctuating loads induced 
by wind fluctuations. In the first approach the wind 
velocity fluctuations are simulated at the centroid of 
various sections of the discretized structure. The wind is 
assumed to be fully correlated on each section and the 
corresponding wind force on the ith section is given by 

(4) F i = 0.5pA~Cd[U~(t )-/)~(t )] 2 

in which p, A~, C° denote air density, the ith sectional area 
and drag coefficient, respectively, U~(t) denotes wind 
velocity at the centroid of the ith section, and/)~(t) is the 
structural velocity. The assumption of full-correlation of 
wind velocity field on each section may overestimate the 
total wind load. However, for compliant offshore 
structures, e.g., tension leg platform (LIT), the low 
frequency parts of the fluctuating wind field are of interest 
which are nearly fully-correlated over a small section. 

Alternatively, the fluctuating wind force may be 
directly estimated by ignoring the quadratic and the 
structural velocity terms in the previous equations. In this 
formulation, the integration of wind force expressed over 
a section incorporates the lack of correlation (Davenport 2 
and KareemS). The power spectral density of the wind 
force acting on the ith section and the cross-spectral 
density function between the ith and jth wind forces are 
expressed as 

(5) Gr.( f  ) = 4p2C~ 0/2 Gu,,(f)L(f) 

and 

Gr,,(f ) = xfGr,,(f)Or.(f)Yii(f) (6) 

in which G,,,(f) is the spectral density function of wind 
fluctuation and Yi~(f) is defined in equation (3), and 

4 
L( f )  = (yx~=CxC=) 2 [exp(-  yxC~) + y~Cx- 1] 

× [exp(-  ~C=) + y~C.- 1] (7) 

where 

/ ['CxB'~ 2 

in which B and D are the width and height of a section. In 
this approach, a vector of time series of wind loading, 
F(n At) is directly generated by a multi-variate ARMA 
model matched to the wind force spectral description. 
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ARMA MODELLING 

An ARMA model of orders P and Q is defined as a linear 
filter that permits simulation of the wind velocity or force 
y(At) (of order M) by its past time histories and the past 
and present white noise processes: 

e Q 
y(nAt)+ ~ A , y [ n - r ] A t ] =  Z B,e._, (8) 

r = l  r = O  

in which A, and B, are AR and MA coefficient matrices, 
and 8._, is a vector containing white noise with a zero 
mean and a unit variance. The coefficient matrices are 
determined from the specified spectral description of the 
random field to be simulated. A desirable feature of 
ARMA modelling is that the model orders and the error 
are small, since the total order translates into the number 
of multiplications and additions at each discrete time 
interval during the simulation procedure. 

The transfer function of an ARMA model is given by 

f l ( f )  = I + A, exp( -  2nfr At 
r = 1  

(9) 

Accordingly, the spectral density function is expressed as 

~;(f) = 21~(f)l~*(f) At (10) 

in which * denotes complex conjugation. 
The model error can be defined as 

e = S°r" I~;u(f ) -  Gu(f)l df  

" f~" IGo(f)l df  

(11) 

where f .  is the Nyquist frequency. 
The transfer functions of ARMA models are 

characterized by zeros and poles. The versatility of an 
ARMA process is demonstrated by the fact t ha~a  
stationary time series can often be described by an AR~A 
model involving fewer parameters than an MA or AR 
process individually. A low-order ARMA model could 
produce a small error if the coefficients are suitably 
selected. The application of the maximum entropy 
method to determine the coefficient matrices of a 
multivariate ARMA model requires the solution of a large 
number of nonlinear equations. Therefore, alternative 
techniques have been developed to circumvent this 
difficulty. One of these approaches is the two- 
stage-matching method, by which an ARMA model is 
developed based on a prior AR model. There are a 
number of different approaches to the two-stage- 
matching method, e.g. Samaras et al. 1° and Spanos and 
Shultzl 3. 

The basic concept involves an AR model with order P' 
that is first matched to the covariance matrices Cyy(r At) 
(r=O, 1 . . . . .  P'). Then the covariance functions between 
y(n At) and 8 n, Cy~(m At), are obtained by the AR model, 

Cy,(m At) = 0 for m > 0 

C,,(m A,) = n~ for m = 0 
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and 

Cy~(m At) = - ~ A,Cry[(r + m) At] 
r = l  

for m<O (12) 

The ARMA model of order P and Q is formulated by 
matching a given C , ( r  At) and Cy,(m At) obtained from 
the AR model, e.g., Auto/Cross-Correlation Matching 
Procedure, 

rnin(m,P) 
Cr~(-mAt)+ ~ A,C,,[(r-m)At]=Bm (13) 

r=1 

and 

/, Q 
C~y(-m At)+ ~ A,C, [ ( r -m)  At] = ~ B,Cr,[(m-r) At] 

r = l  r = l  

(14) 
(m = 0, 1,2 . . . . .  Q) 

However, for some target spectral descriptions straightfor- 
ward evaluation of the initial AR model poses difficulties. 
Alternatively, the derivation of ARMA models may be based 
on a moving average (MA) linear system which does not 
introduce the difficulties experienced in the previous 
approach (Spanos and Mignolet~4). In this manner, an 
ARMA model can be formulated by the solution of a 
number of linear equations. Computationally, this 
procedure is very convenient (Spanos and Mignolet14). 

In the two-stage matching method involving the initial 
AR model, the ARMA model coefficients with given P and Q 
are not unique, since they depend on the prior AR order P'. 
There are three parameters to be selected: P', P, and Q and 
the time increment At. Samaras et al) ° used the following 
relationship between these parameters, 

P=Q and P'>~P+Q+2 (15) 

Optimal model orders may only be obtained from a larger 
number of combinations of the above parameters. In the 
present study, an interactive computer algorithm was 
developed to study the effects of various combinations of the 
parameters on the model accuracy. The model errors in 
terms of P', P, Q and At were evaluated by means of an 
example of fluctuating wind velocities at two locations 
(x = 0, z~ = 300 ft and z 2 = 60 ft) described by the Harris and 
Davenport wind spectra. Figures l(a) and (b) illustrate the 
effect of P' on the model error for given values of P + Q and 
At. In these figures G l, and G,2 denote the spectral density 
function of the wind velocity at section 1 and ~oss-spectral 
density function between velocities at sections 1 and 2, 
respectively. It is noted in these figures that an increase in P' 
is generally favourable to the model accuracy. Since P' does 
not appear in the time simulation procedure, a large value of 
P' may not influence the final simulation scheme. On the 
other hand, a large value of P' could require very extensive 
computational effort in the initial development of the 
ARMA model. An empirical relation based on the present 
study suggests 

P' = 3(P + Q) (16) 

One further remark is appropriate here. For a fixed P + Q, a 
selection of P and Q can affect the model error, as shown in 
Fig. 2. For the wind field, it is recommended based on this 

7 - a ' A t  = 5 w~'t" 

I A I  = 4 s c c t  

' I 

o . . . i  . . . .  , . . . .  i . . . .  1 . . . .  • . . . .  , . . . .  t . . . .  i . . . .  ) . . . .  i ~ . .  
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study to use 

P>~Q (17) 

Additionally, the time increment, At, also influences the 
model error. Approximately, the ARMA model involves a 
window of time period (P+Q)At. A decrease in At could 
increase the model errors, as shown in Figs 1 (a) and 0a). It is 
also noted in Figs l(a), (b) and Fig. 2 that the shape oftbe 
wind spectral density function can significantly affect the 
model accuracy. For example, an ARMA model used t o  
match the wind spectrum with a finite value at zero 
frequency, such as the Harris spectrum, has higher accuracy 
than an ARMA model for the wind spectrum with a zero 
value at the zero frequency, such as the Davenport spectrum. 
It is important to note that the ARMA matching is also 
sensitive to the accuracy of the correlation functions derived 
from the given spectral density functions. 

Typical examples of the comparisons between the target 
spectra and the estimated spectra are shown in Fig. 3, and 
the comparisons of the coherence functions are shown in 
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Fig. 4. It is noted that an ARMA model can be matched to 
the Harris wind spectrum with almost no discernible error in 
the entire frequency range. The difficulty in matching the 
Davenport wind spectrum is primarily due to the 
representation of the sharp drop in the spectral ordinates 
near the zero frequency. 

In most of the above examples, the time series were 
simulated for large At (/> 2 sec), in which the spectral density 
of the wind velocity at the Nyquist frequency still has 
significant energy. However, it is generally required to have a 
much smaller At due to the following reasons: (1) The 
natural frequency of the highest mode of interest may be 
high; (2) The structure may be subjected to other 
environmental loads, such as wave loads, earthquakes, etc., 

[ . I Targel 
12(100 ~gHarns [ . . . . . .  Estimated by ARMA 

d I 
90(10 [ ' ~  I ARMA for Harris: P'-30, P-Q~=5. e-0.53% 

• .~ ~ I ARMA for Davenport: P'=30. P=6, O,4, e=,2.6% 
= -  ~ I A t  = 3 . 5  s e c  

,~" a0oo 
0 Davenpor~ 

0 .00  0 .02  0 .04  0 .06  0 .0g  0. I 0 0 .12  0 .14 
Frequency (Hz) 

Fig. 3. Comparisons of wind spectra density functions 
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Fig. 4. Coherence function 
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which have high frequencies, hence, the time series of wind 
loads must have a small time increment to be consistent with 
the time series of other loads; (3) Depending on the 
numerical scheme, the accuracy and stability during the 
time-integration procedure may require that the time 
increment does not exceed a prescribed maximum value. If 
the required time increment is 0.5 sec, then the Nyquist 
frequency would be 1 Hz, but generally a significant portion 
of wind energy is less than 0.1 Hz. Also the coherence 
function is often significant only within a small portion ofthe 
entire frequency range. Therefore, it becomes quite difficult 
to match an ARMA model to wind fields with small At. In 
the following sections, the discussion focuses on two 
methodologies developed in this study to alleviate such 
difficulties: a three-stage-matching method and interpola- 
tion models. 

THREE-STAGE M A T C H I N G  M E T H O D  

A three-stage-matching method is proposed that involves 
the introduction of a suitable parameter ct which transforms 
the target process y(Ant) into z(n At) 

z(n At) = y(n A t ) -  ~ty[(n- 1) At] (18) 

Utilizing the backshift operator B, the preceding equation 
reduces to 

z(n At) = (1 - ~B)y(n At) (19) 

The (i,j)th element of the spectral density matrix of z(t) 
becomes 

G=,~(f)=[l +~2-2cos(2nf At)]2Gy,j(f) (20) 

If ~t=l,  then equation (19) is similar to the seasonal 
difference method in the Box-Jenkins approach (Box and 
Jenkins 1). However, ~ = 1 leads to a zero spectral ordinate in 
equation (20), and it is not invertible. Hence, ~ is selected 
such that 0 <  ~t < 1 which ensures a slow decrease in the 
spectral ordinates of z(n At) with an increase in frequency. 
For the Harris wind spectrum, it is recommended to use 

=0.94,--0.98. 

Table 1. Wind and wind loading conditions 

WIND PARAMETERS 
Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Harris 
Mean wind velocity at 32.8 ft high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29.84 ft/sec 
Power exponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.34 
Length scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4000 ft 
Wind surface stress coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.05 
Decay Parameter (horizontal and vertical) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10, 16 
Air density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.0019 Slug/ft a 

WIND DATA ON EACH SECTION 
No. z fit) U fit/s) C, (ft2/s 2) 
1 540 77.34 287.1 168.2 125.6 
2 420 71.01 168.2 287.1 162.7 
3 300 63.33 125.6 162.7 287.1 
4 180 52.23 98.17 118.4 154.8 
5 60 36.64 76.01 87.74 105.9 

WIND FORCE DATA ON EACH SECTION 
No. C~ W fit) H fit) Mean (kN) C F kN 2) 
1 1.2 100 120 81.83 855.8 566.2 
2 1.2 100 120 68.98 566.2 705.8 
3 1.2 100 120 54.87 394.9 444.3 
4 1.2 100 120 38.77 265.6 284.6 
5 1.2 100 120 18.37 142.5 147.5 

98.17 76.01 
118.4 87.74 
154.8 105.9 
287.1 144.9 
144.9 287.1 

394.9 265.6 142.5 
444.3 284.6 147.5 
544.6 312.2 153.0 
312.2 373.3 170.6 
153.0 170.6 158.3 
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Fig. 5. Spectra before and after pre-transformation 

An example Of wind loads acting on a tall building with 
the lowest natural frequency equal to 0.2 Hz (the wind and 
the wind force data are listed in Table 1) is used to illustrate 
this approach. The building face is divided into five 
segments. It is required to have the wind load simulated at 
an interval of at least 0.5 see. Figure 5 demonstrates the 
spectral densities of the wind loads at the 5th level before and 
after the transformation given in equation (18) with 
~t--- 0.955. It is noted in this figure that the wind load spectral 
ordinates are negligible within the frequency range 
0.1 ~ 1 Hz. However, after the transformation, the spectrum 
covers the entire frequency range up to the Nyquist 
frequency and decays slowly with the frequency. 

z(n At) can be matched by an ARMA model utilizing the 
two-stage-matching procedure discussed in the preceding 
section, 

pz (2 
z(nAt)+ ~ A~z[(n-r)At]= ~ B,z._, (21) 

r =  I PrO 

which, after substitution in equation (19), takes the form of 
equation (8), in which 

P = P: + 1 (22) 

and 

!] (~ - . -  

A x = A ~ -  ! . . . .  

L0 . . . . . .  

(23) 

A, = A, ~ - ~A~_ 1 for r > 1 (24) 

In this example, an ARMA (4, 4) model from a prior AR 
(30) model has been matched for z(n At). Subsequently, 
ARMA model (5, 4) for y(n At) is formulated. The spectral 
density and the coherence functions of the target wind loads 
and those represented by the ARMA model are plotted in 
Fig. 6(a), (b), (c) and Fig. 7, and the errors are listed in 
Table 2. For convenience the frequency range is divided into 
0,-,0.1 Hz, 0.1 ~0.45 Hz and 0.45 ~ 1 Hz, in which different 
coordinate resolutions are used (Fig. 6(a), (b) and (c)). The 
input coherence function is negligible for f > 0 . 1  Hz, so 
Table 2 only provides the spectral and cross-spectral density 
errors below 0.1 Hz, and spectral density errors beyond 
0.1 Hz. These figures and the table demonstrate the closeness 
between the target and estimated spectral functions, 
especially at high frequencies. However, there are some 
discrepancies in the cross-spectral density function for the 
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Fig. 6. Target and estimated wind load spectra on the 5th 
floor level. (a) 0.0-0.1 H:," (b) 0.1-0.45 Hz; (c) 0.45-1.0 Hz 
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Table 2, Errors in A R M A  (5.4) by three-stage matching method 

Error in matrix of spectral and cross-spectral density terms (in the 
frequency range less than 0.1 H z  

4 %  1 0 %  2 2 %  3 6 %  5 7 %  
1 0 %  4 %  1 2 %  2 5 %  4 7 %  
2 2 %  1 2 %  5 %  1 4 %  3 4 %  
3 6 %  2 5 %  1 4 %  5 %  2 0 %  
5 7 %  4 7 %  3 4 %  2 0 %  8 %  

Errors in spectral density functions (in the frequency range 0.1 ~ 1.0 Hz)  

0 . 7 7 %  0 . 8 4 %  0 . 9 %  1 . 5 %  0 . 7 4 %  
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Table 3. ARMA (5.4) parameters from the three-stage matchm 0 method 
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AR 1: - 1.861E+00 1.567E-02 8.654E-02 5.829E-02 - 9 . 7 7 4 E - 0 2  
3.506E-02 - 1.945E +00  - 5.626E-03 3.056E-02 - 7 .826E-02 
5.986E - 02 2.425E - 03 - 2.018E + 00 - 6.049E - 02 - 1.817E - 02 
1.962E-02 1.142E-02 - 3 .216E-02 - 2.046E +00  3.362E-02 

- 1.194E-01 - 1.116E-01 - 3 .511E-02 1.626E- 01 - 9 .064E- 01 
AR 2: 3.408E-01 -5.021E - 0 1  - 1.454E-01 - 1.273E-01 5.610E-02 

- 5 .657E-02 4.977E - 01 - 1.129E- 02 - 6 .951E-  02 4.171E - 02 
- 8 .566E-02 - 1.485E- 02 5.923E- 01 7.397E- 02 - 3.346E - 03 
- 3 . 5 7 4 E - 0 2  - 2 . 3 1 4 E - 0 2  3 .919E-02 6.159E-01 - 3 . 8 1 1 E - 0 2  

1.463E-01 1.437E- 01 2 .691E-  02 - 2.744E - 01 - 9.627E - 01 
AR 3: 1.037E +00 4 .606E-  02 2.415E-02 5.706E-02 7.461E-02 

1.736E-02 9.835E-01 3.286E-02 3.630E-02 6 .252E-02 
- 7.594E - 04 1.907E - 02 1.006E + 00 3.036E - 02 2.743 E - 02 

9 .173E-03 9.556E-03 1.616E-02 1.033E +00 - 6 . 7 6 2 E - 0 3  
3.923E-02 3.686E- 02 3.704E - 02 3.642E- 02 5.578E - 01 

AR 4: - 5.641E-01 - 1.126E-02 5.298E- 02 3.113E - 0 2  4.929E - 0 4  
6.292E-03 - 6.028E-01 - 1.956E-02 1.166E-02 2.109E-03 
3.735E- 02 - 7.907E-03 - 6.603E-01 - 6.065E - 0 2  5.562E - 03 
1 . 2 1 3 E -  02 4 .995E-03 - 3.210E-02 - 6.484E-01 4.069E - 0 3  

- 8 .558E-02 - 9 . 0 5 5 E - 0 2  - 3.232E-02 1.187E-01 6 .625E-0!  
AR 5: 4 .998E-02 - 5 .613E-04 - 1.874E-02 - 1.942E-02 - 3 . 6 0 8 E - 0 2  

- 1.732E - 03 6.871E - 02 3.224E - 03 - 9.120E - 03 - 3.026E - 02 
- 1 .016E - 02 1.080E - 03 8 .152E - 02 1.612 E - 02 - 1.230E - 02 
- 5.147E - 03 - 2.830E - 03 8.528 E - 03 8.296E - 02 7.507 E - 03 

1.786E-02 2 .051E-02 2.852E-03 - 4 . 2 8 2 E - 0 2  - 3 .433E-0!  
MA 0: 2.059E + 03 0.000E + 00 0.000E + 00 O.000E + O0 O.000E + 00 

7.329E + 01 1.751E + 03 0.000E + 00 O.000E + 00 0.000E + 00 
1.657E + 01 4.978E + 01 1.419E + 03 0.000E + 00 0.000E + 00 
5.622E + 00 9.280E + 00 3.121E + 01 1.029E + 03 0.000E + 00 
1.986E + 00 2.349E + 00 4.274E + 00 1.339E + 01 5.461E + 02 

MA 1: - 3.808E +01 1.167E +02 1.471E +02 6.942E +01 -4.629E +01 
1.380E + 02 - 1.723E +02 5.49 IE +01 4.589E +01 - 3.521E +01 
1.383E+02 4.528E+01 - 2 . 1 0 2 E + 0 2  -1 .894E+01  1.124E+00 
4.603E + 01 2.678E + 01 - 1.857E + 01 - 1.464E + 02 4.407E + 01 

- 2.498E +02 - 1.911E +02 - 3.619E +01 1.928E +02 5.074E +02 
M A  2: - 1.687E +03 4.780E +01 4.962E +01 - 4 . 8 1 8 E + 0 0  - 5.726E +01 

1.950E + 01 - 1.430E + 03 2.448E + 01 1.153E + 00 - 4.713E + 01 
5.141E + 01 - 1.594E + 01 - 1.202E + 03 - 6.039E + 00 - ! .083E + 01 
1.389E + 00 - 3.534E + 00 - 2.933E + 01 - 8.825E + 02 3.502E + 01 

- 1.605E+02 - 1.169E+02 -5 .054E+01  5.421E+01 -8 .957E+01  
MA 3: - 5.044E +01 - 1.186E +01 - 5.798E +01 -4.161E +01 - 2.986E +01 

- 1.442E +01 2.726E +01 - 1.607E - 0 1  - 2.288E +01 - 2.646E +01 
- 4.623 E + 01 - 8.831E - 01 4.845E + 01 2.366E + 0l - 1.305E + 01 
- 2.473E + 01 - 1.168E + 01 2.045E + 01 2.546E + 01 3.016E + 00 

7.154E +01 6.920E +01 1.088E +00  - 8.873E +01 - 3.137E +02 
MA 4: 1.388E +02 - 1.754E-01 - 1.366E +01 - 5.457E +00 3.182E - 0 1  

6.956E+01 1.251E+02 1.200E+00 - 2 . 9 6 3 E + 0 0  - 3 . 0 7 1 E - 0 1  
- 1.229E - 0 1  3.641E +00  1.112E +02 7.163E +00 - 1.914E +00 
- 4 . 1 7 3 E + 0 0  - 1 . 1 8 2 E + 0 0  8.053E+00 8.039E+01 - 3 . 2 8 0 E + 0 0  

2.856E + 01 2.628E + 01 6.430E + 00 - 2.047E + 01 - 4.471E + 01 
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Fig. 8. , Target and estimated spectra of wind loads 

l Target 

L . . . . . .  by ARMA(3.1~ 

Load-3rd level 

1.0 

l a rge ly  s p a c e d  p o i n t s  w i t h  l o w  c o r r e l a t i o n .  T h e  p a r a m e t e r s  

o f  t he  A R M A  (5, 4)  m o d e l  a r e  l is ted in T a b l e  3. 

T h e  A R M A  m o d e l  f o r m u l a t e d  b y  t h e  t h r e e - s t a g e -  

m a t c h i n g  m e t h o d  is espec ia l ly  s u i t a b l e  fo r  t h e  r e p r e s e n t a t i o n  

o f  t he  h i g h  f r e q u e n c y  spec t r a .  I f  t h e  l o w  f r e q u e n c y  w i n d  

l o a d s  a r e  n o t  i m p o r t a n t ,  it is p o s s i b l e  t o  o b t a i n  a ve ry  l o w  

o r d e r  A R M A  m o d e l ,  e.g.,  A R M A  (3, 1) f o r  t he  a b o v e  

e x a m p l e  (Fig.  8). T h e  A R M A  (3, 1) p a r a m e t e r s  a r e  g iven  in 

T a b l e  4. T h e  t h r e e - s t a g e  m a t c h i n g  m e t h o d  i n v o l v e s  se lec t ing  

the  p a r a m e t e r  0t in  a d d i t i o n  t o  P ' ,  P a n d  Q. H o w e v e r ,  it d o e s  

m o d i f y  the  s h a p e  o f  t he  s p e c t r a l  d e n s i t y  f u n c t i o n s  w h i c h  

faci l i ta tes  a c o n v e n i e n t  m o d e l l i n g ,  b u t  it c a n n o t  m o d i f y  the  

s h a p e  o f  t he  c o h e r e n c e  f u n c t i o n .  T h i s  w o u l d  r e su l t  in s o m e  

e r r o r  in the  c r o s s - s p e c t r a l  d e n s i t y  f u n c t i o n ,  w h i c h  is 

p a r t i c u l a r l y  a m p l i f i e d  fo r  l a rge ly  s p a c e d  l o c a t i o n s  w h i c h  

gene ra l l y  exh ib i t  a l o w  level o f  c o r r e l a t i o n  ( Tab l e  2). T h i s  

m e t h o d  c a n  b e  a p p l i e d  to  m o s t  o f  t he  w i n d  s p e c t r a ,  s u c h  as  

t he  H a r r i s  o r  K a r e e m  s p e c t r a  ( K a r e e m 6 ) .  F o r  s o m e  w i n d  

s p e c t r a ,  s u c h  as  t he  D a v e n p o r t  s p e c t r u m ,  w h i c h  h a s  a z e r o  

o r d i n a t e  a t  t he  z e r o  f r e q u e n c y ,  th i s  m e t h o d  is n o t  su i t ab le .  

I N T E R P O L A T I O N  M O D E L S  

A m o r e  g e n e r a l  m e t h o d  to  s i m u l a t e  t ime  ser ies  o f  w i n d  field 

i n v o l v e s  a c o m b i n a t i o n  o f  a n  A R M A  m o d e l  a n d  a n  

i n t e r p o l a t i o n  m o d e l .  Le t  t h e  t i m e  i n c r e m e n t  in  t he  A R M A  
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Table 4. ARMA (3, 1) parameters 

AR 1: - 1.352E+00 7.275E-02 -2 .921E-02  -7 .118E-02  -4 .768E-01 
5.600E - 02 - 1.429E + 00 4.438E - 02 - 5.852E - 02 - 4.940E - 01 

- 1.360E - 02 2.944E - 02 - 1.425E + 00 2.486E - 02 - 4.381E - 01 
- 1.759E-02 - 1.993E-02 1.466E-02 - 1.421E +00 -9 .103E-02  
- 6.720E-03 - 9.808E- 03 - 1.237E-02 6.504E- 04 - 1.568E +00 

AR 2: 2.026E-01 - 2.060E-01 1.218E-02 1.017E-01 8.039E-01 
- 1.535E-01 3.250E-01 - 1.501E-01 6.933E - 0 2  8.331E -01 

4.814E- 03 - 9.851E- 02 2.981E-01 - 1.158E- 01 7.182E -01 
2.318E-02 2.154E- 02 - 6.489E- 02 2.555E - 01 5.695E-02 
9.353E - 03 1.396E- 02 1.5 t 8E-02  - 2.252E - 02 4.269E- 01 

AR 3: 1.626E-01 1.314E-001 1.566E-02 -3 .167E-02  -3 .312E-01 
9.621E - 02 1.163E - 01 1.038E - 01 - 1.219E - 02 - 3.433E - 01 
8.128E-03 6.785E- 02 1.390E- 01 8.892E- 02 - 2.844E- 01 

- 5.933E- 03 - 2.143E-03 4.915E- 02 1.769E-01 3.041E - 02 
- 2.750E- 03 -4 .317E-03  - 3.087E- 03 2.124E- 02 1.486E- 01 

MA 0: 2.054E + 03 0.000E + 00 0.000E + 00 0.000E + 00 O.000E + 00 
7.004E + 01 1.748E + 03 0.000E + O0 O.000E + 00 0.000E + 00 
1.541E+01 4.795E+01 1.416E+03 0.000E +00 0.O00E +00 
5.248E +00 8.766E +00 3.001E + 01 1.027E +03 0.000E +00 
2.040E + 00 2.304E + 00 4.085E + 00 1.285E + O1 5.473E + 02 

MA 1: 1.029E + 03 2.052E + 02 - 2.441E + 01 - 6.921E + 01 - 2.536E + 02 
2.143E +02 7.526E +02 1.185E +02 - 5.187E +01 - 2.630E +02 

-3.099E+00 1.201E+02 6.456E+02 6.166E+01 -2.293E+02 
- 2.926E + 01 - 2.075E + 01 6.490E + 01 5.044E + 02 - 2.538E + 01 
- 1.201E +01 - 1.472E +01 - 1.219E +01 1.676E + 01 1.461E + 02 

Note: P '=  15, ~t=0.97 

Table 5. Interpolation model coefficients 

0.93356 -0.14420 6.2752E-02 -2 .3873E-02 /?=t:  0.22612 - 8.6026E - 02 3.7436E - 02 - 5.7824E - 03 

0.75059 -0.1940 8.6363E-02 -2 .8541E-02 
fl=2 0.49518 -0.1636 7.285 I E - 0 2  - 1.8829E-02 

0.49518 -0.1636 7.2851E-02 - 1.8829E-02 /~=3: 0.75059 -0.1940 8.6373E-02 -2 .8541E-02 

0.22612 - 8.6026E - 02 3.7436E - 02 - 5.7824E - 03 
fl=4: 0.03356 -0.14420 6.2752E-02 -2 .3873E-02 

Note: At=2sec and 6t=0.5sec. The first line is for causal: 
r = 0, - 1, - 2, - 3, and the second line is for noncausal: r = 1, 2, 3, 4 

m o d e l  be  At, such tha t  the co r r e spond ing  N y q u i s t  f requency  
is a little larger  t han  the f requency  b e y o n d  which  the wind 
f luctuat ions  has  insignificant d y n a m i c  effects. Suppose  tha t  
the t ime- in tegra t ion  scheme for the  so lu t ion  o f  the d y n a m i c  
system requires  a m u c h  smal ler  t ime  inc rement  fit, where  
Atilt  is an  in teger  S. I t  is r equ i red  to  fo rmula t e  the  t ime series 
y[(nS+fl)ft] f rom y(n At) in which  / / < S .  The re  are  a 
n u m b e r  of  in terpola t ion  me thods  avai lable (e.g., O p p e n h e i m  
a n d  Schafer16).  I t  is i m p o r t a n t  tha t  the  i n t e r p o l a t i o n  
s h o u l d  n o t  i n t r o d u c e  e n e r g y  at  h i g h e r  a f r e q u e n c y  a n d  a t  
the  s a m e  t i m e  be  c o m p u t a t i o n a l l y  efficient.  Recen t ly ,  n e w  
t e c h n i q u e s  a n d  the i r  a p p l i c a t i o n s  in v a r i o u s  fields h a v e  
been  d e v e l o p e d  (LIT). T h e i r  de ta i l s  will  be  r e p o r t e d  
e l sewhere .  H e r e  s o m e  c o n c e p t s  r e l evan t  to  w i n d  
e n g i n e e r i n g  a re  i n t r o d u c e d .  T h e  i n t e r p o l a t i o n  f o l l o w i n g  
an  A R M A  m o d e l  has  to  sat isfy t he  f o l l o w i n g  r e q u i r e m e n t :  

L o c a l  i n t e r p o l a t i o n :  y[(nS+fl) f t]  is s i m u l a t e d  f r o m  
y(m At)  w i th  m = n -  Qj- ,  n - Qi- + 1 . . . . .  n . . . . .  n + QT,  in 
wh ich  Q;- a n d  Q~" a re  smal l  i n t ege r  n u m b e r s .  T h e  
c o n v e n t i o n a l  g l o b a l  i n t e r p o l a t i o n  i n v o l v i n g  the  t o t a l  t i m e  
series is n o t  su i t ab le  for  the  p r e sen t  a p p l i c a t i o n .  
S tab i l i ty :  T h e  i n t e r p o l a t i o n  is sa id  to  be  s tab le  if a 
b o u n d e d  t i m e  series af ter  i n t e r p o l a t i o n  still r e m a i n s  
b o u n d e d .  
A c c u r a c y :  T h e  spec t ra l  dens i ty  f u n c t i o n s  r e p r e s e n t e d  by 
y[(nS+[3)ft] a re  the  s a m e  as t h o s e  o f  y(n At)  w h e n  the  

f r e q u e n c y  is less t h a n  1/2At,  a n d  ze ros  in the  f r e q u e n c y  
r ange  1/2At ~ 1~2ft. 

T h e  i n t e r p o l a t i o n  t e c h n i q u e s  m a y  be  classif ied as 
l inear ,  p o l y n o m i a l  o r  t r i g o n o m e t r i c .  F r e q u e n t l y ,  a 
p iecewise  l inear  i n t e r p o l a t i o n  o f  the  d i sc re te  d a t a  is 
ut i l ized.  A l t h o u g h  this  m e t h o d  is the  s imples t ,  it m a y  
i n t r o d u c e  l a rge  e r r o r  in the  spec t ra l  dens i ty  func t ion .  T h e  
p o l y n o m i a l  i n t e r p o l a t i o n  is the  n e x t  level  o f  i n t e r p o l a t i o n .  
F o r  e x a m p l e ,  Li  T d e v e l o p e d  a cub ic  p o l y n o m i a l  
i n t e r p o l a t i o n  wh ich  resul ts  in a p rocess  c o n t i n u o u s  at  i ts 
f i r s t -o rde r  t ime  d e r i v a t i v e  a n d  invo lves  th ree  m u l t i p l i c a -  
t ions  a n d  a d d i t i o n s  a t  e a c h  d iscre te  t i m e  in te rva l .  T h e  
t r i g o n o m e t r i c  i n t e r p o l a t i o n  ut i l ized by S a u n d e r s  a n d  
Co l l i ngs  11 a n d  fu r the r  d e v e l o p e d  in this  s t udy  is f o u n d  to  
be  the  m o s t  su i t ab le  c h o i c e  for  w i n d  e n g i n e e r i n g  
app l i c a t i ons .  I n  the  fo l l owing  a bas ic  c o n c e p t  o f  the  
t r i g o n o m e t r i c  i n t e r p o l a t i o n  d e v e l o p e d  in this  s t udy  is 
p r o v i d e d .  

T h e  d iscre te  t i m e  series can  be v i ewed  as a p rocess ,  
yA'(t), cons i s t i ng  o f  n u m e r o u s  pulses :  

yat(t)= ~ y(n At)  A t f ( t - n  At)  (25)  
n = - o o  

in wh ich  f ( t - n  At)  is the  D i r a c  de l t a  func t ion .  I ts  F o u r i e r  
t r a n s f o r m  is wr i t t en  as 

yat ( f ) = y(n At)  Att~( t - n At)  e x p ( - j 2 n f t )  dt 
- - o o  n =  - - o 0  

= ~ y(n At)  e x p ( - j 2 g f n  At)  At (26) 
n =  - - o 0  

T h e  p r e c e d i n g  e q u a t i o n  s h o w s  tha t  Y ~ ( f )  is cycl ic  wi th  
the  i n t e rva l  l/At, a n d  Y ~ ( f ) =  Y~U(1/At- f )  in wh ich  the  
o v e r b a r  r ep re sen t s  the  c o n j u g a t e .  S imi la r ly ,  the  t ime  
ser ies  w i th  a t i m e  i n c r e m e n t  f t  c a n  be  v i ewed  as a pulse  
p roce s s  y~(t) ,  a n d  the  c o r r e s p o n d i n g  F o u r i e r  t r a n s f o r m -  
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ation becomes 

Y~t(f)= ~ y(mft)exp(-j21rfmtSt)tSt (27) 
7/I  = - - 0 0  

Define a transfer function H(f) which satisfies 

y6,(f) (28) H(f) = ya,(f) 

Foi: the ideal case, H(f) = 1 for f < 1/2At and H(f) = 0 for 
1/2At<f<l/2At. In the following, a procedure is 
developed to carry out in the time domain the 
transformation described in the preceding equation. 

The interpolation model developed here is based on the 
convolution of a finite and infinite wave form. Let the 
frequency range -1/26t. , .  1/26t be discretized into SQ ~ 
frequency points with the frequency increment 
Af = 1/2(2Q/At), in which 2Q ~ is called the interpolation 
model order. Within the frequency range - 1/2At,,. 1/2At, 
H(f) is described as 

H(m Af) = 1 for - QI ~< m ~< QI (29) 

at the frequency + 1/2At, H(f) is equal to 1/2 to account 
for the transient from 1 to 0: 

H(mAf)=½ for m= _+(QI+ 1) (30) 

and beyond the frequencies + 1/2At, H(f) is given by 

H(m Af)=0  
(31) 

forQ~+l<m<<.SQ x and - Q i - l > m > ~ - S Q t + l  

A discrete Fourier transformation of H(m Af) leads to: 

s o  
h(r6t) = ~ H(m Af) exp n (2SQ ) (32) 

m= -SQ~+ 1 

in which r = 0 , 1 , 2  . . . . .  SQ ~. If h(rAt) is used as the 
convolution kernel for interpolation: 

5(2 ~ 

y~'[m3t] = ~ h(r&)y~[(m- r)tSt] (33) 
r = - S Q l + l  

then taking the discrete inverse Fourier transformation of 
h(r6t) leads to 

R ( f )  = ~ h(r3t) exp(-j2rtfr6t) (34) 
r= -SQ~+ 1 

Obviously, at the frequency m Af with m as an integer 
number, we have 

/4(m A f )  = H(m A f )  (35) 

and when f is between [m Af~ (m + 1) A f ] , / t ( f )  exhibits 
oscillatory signature about the ideal transfer function 
H(f). However, the oscillations decrease with an increase 
in the order QI. As an example, Fig. 9(a) and (b) demonstrate 
comparisons of an ideal transfer function, with the 
transfer function given by Saunders and Collings 11, the 
conventional approach representing truncated trigono- 
metric functions and the present study. It is noted that 
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Fig. 9(b). Transfer functions of interpolation models 

with the same interpolation model order, the transfer 
function represented by the interpolation form intro- 
duced by the present study is closer to the ideal transfer 
function. Further improvement is possible by utilizing a 
higher order filter. 

Considering that ym(m3t) = 0 for mist v~ n At in which n 
is an arbitrary integer number, equation (33) can be 
rewritten as 

QI 

y~ta(Sn+fl)6t]= ~ hB, y~[(n+r)At]/S (36) 
r=  - Q Z + l  

in which hp, is a rearrangement of h(r6t). Virtually the 
interpolation is carried out at each time interval (Sn + fl)tSt 
by 2Q t multiplications and additions, 

O' 

y[(Sn + [3)&] = Z h~,y[(n + r) At] (37) 
r=  - Q t + l  

An example of this interpolation model is considered 
here. A fluctuating component of wind velocity according 

t o  the Davenport spectrum is simulated by an ARMA 
model with At = 2 sec, and is further interpolated to form 
the wind velocity with 6t =0.5 sec. This interpolation is 
performed by the above described interpolation model of 
order 8 (Table 5). In order to validate the interpolation 
model, the discrete time series before interpolation is 
taken from a continuous time function instead of an 
ARMA model. In Fig. 10, the continuous time function 
and the discrete time series before and after the 
interpolation are plotted. It is noted in this figure that the 
continuous function and the time series simulated by 
interpolation axe almost coincident. 
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Fig. 10. Continuous, discrete and interpolated wind velocities 

CONCLUDING REMARKS 

The simulation of wind velocity and wind force fields can 
be performed by ARMA models. The ARMA representa- 
tion of such processes is possible by a number of matching 
procedures of which the two-stage-matching procedures 
is most widely used. However, the nature of the dynamic 
systems and the numerical schemes utilized for solving the 
dynamic response often require a small time increment, 
which renders a straightforward application of ARMA 
models difficult. 

A three-stage-matching method is developed in which a 
multivariate ARMA model utilizing small time in- 
crements can be matched to a target wind spectrum. A 
salient feature of this method is that despite the low order 
of the model the simulated and target spectral density 
functions are in good agreement for typical wind 
engineering applications involving wind sensitive struc- 
tures. A more general technique utilizing the interpolation 
approach is presented. First, the time series is generated 
from an ARMA model with relatively widely spaced time 
increments selected according to the maximum frequency 
of interest. Then, by using the interpolation technique 

intermediate values at desired time increments are 
obtained. The interpolation procedure must ensure that 
the interpolation does not introduce significant spectral 
contents of high frequency. In this research a digital filter 
utilizing trigonometric interpolation is developed based 
on a discrete convolution of finite and infinite waveforms. 
The two-stage-approach involving the generation of time 
series by the ARMA model at a convenient time 
increment and a subsequent interpolation to a desired 
time increment offers a computationally efficient 
simulation scheme for processes which otherwise pose 
difficulty in utilizing straightforward ARMA models. 
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APPENDIX A: WIND SPECTRA 

For the sake of completeness the two commonly used 
wind spectral distributions discussed in this paper are 
given here. Further details can be found among others, in 
Davenport z, Harris 3 and Simiu and Scanlan 12. 

The wind spectrum due to Davenport 2 is given by 

fG=(f) 4Z 2 (A.1) 
x U 2 o  = (2 + X2) 4/3 

in which z=fL/Ulo and L is the length scale equal to 
1200 m. The Harris spectrum is described by 

fG=(f)  4Z 2 

x U 2 o  ( 2 + Z 2 )  s/6 

in which Z =fL/Ulo and L = 1800 meters. 

Probabilistic Engineering Mechanics, 1990, Vol. 5, No.  2 59 


