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ABSTRACT 

Uncertainties associated with the load effects and dynamic characteristics of wind-excited struc- 
tures have been identified and discussed Based on the available experimental data from laboratory 
and field study measurements the variability of the parameter space categorized as wind environment 
and meteorological data, wind-structure interaction and structural properties has been assessed The 
probabilistic dynamic response of a wind-excited structure has been expressed in terms of uncertain 
parameters. The influence of uncertainty in these parameters has been propagated in accordance with 
the functional relationships that relate them to the structural response. In this study, the propagation 
of uncertainty has been obtained by employing the Second-Moment and Monte Carlo simulation 
techniques. The dynamic response of a chimney subjected to aerodynamic loads is presented to 
illustrate the treatment of uncertainty in the parameter space. The mean and coefficient of variation 
of the peak chimney response, in terms of top deflections and associated base bending moments, 
exhibit close agreement between the Second-Moment and simulation techniques. A sensitivity 
analysis has been conducted which delineates the relative significance of uncertainty in the several 
parameters, related to both load effects and structural characteristics, on the overall uncertainty in 
the aerodynamic response of a chimney. The uncertainty associated with both response components 
suggests a need for further improvement in the modeling of wind-structure interaction, prediction of 
natural frequencies and damping, and reduction in the variability of extreme wind estimates. There 
are immediate applications of the procedures discussed in this paper for a variety of wind-sensitive 
structures. 

INTRODUCTION 

Uncer ta in t ies  associa ted wi th  b o t h  wind loads  an d  s t ruc tura l  character is t ics  i n t roduce  variabil-  
i ty in the d y n a m i c  response  of  wind-exc i ted  s tructures .  T h e  p red ic ted  response  of  s t ructures  
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based on mathematical models with imperfect knowledge tends to be different from reality. In 
this study, analyses based on the imperfect knowledge are carried out to establish uncertainty 
associated with response predictions in a probabilistic framework utilizing different procedures. 

The uncertainties may be broadly classified into four categories. First, there are uncertainties 
originating from physical sources, e.g., inherent uncertainty of the physical property of the object 
such as turbulent fluctuations in the wind field. Other physical sources of uncertainty generally 
arise from measuring devices such as an anemometer, or an accelerometer. These uncertainties 
may be expressed in terms of probabilistic models such as the empirical distributions. Second, 
statistical uncertainties originate from lack of sufficiently large samples of data for establishing 
empirical distribution of the data. Classical statistical methods, in terms of confidence intervals, 
introduce conditional statements which are not conveniently integrated in the analysis of 
propagation of uncertainty or a reliability analysis. Models based on the Bayesian statistics are 
more suitable. For example, the effect of sampling and estimation errors in the evaluation of an 
asymptotic extreme value distribution of the extreme winds may be incorporated utilizing a 
predictive model [1-3]. Third, uncertainty may be introduced due to a lack of knowledge about a 
process itself. Fourth, there are uncertainties due to deliberate simplifications in our modeling 
procedures for operational convenience. These errors may be significantly curtailed through an 
improved understanding of the mechanisms involved in the process being modeled. 

In the context of aerodynamic response of structures, a combination of the aforementioned 
uncertainties arise from variability in the wind environment meteorological data, wind-structure 
interaction and structural properties, e.g., stiffness and damping. The intrinsic complexity of the 
dynamic wind load effects compounded by a lack of understanding of the mechanisms that 
relates them to the far-field wind fluctuations, and a paucity of both experimental and full-scale 
data contribute significant levels of variability in their quantification. Previous studies related to 
the analysis of wind effects on structures have addressed the influence of parametric variability 
in the context of structural reliability, gust factors, and lifetime wind loads [2,4-12]. In this 
study, the influence of parametric uncertainties on the aerodynamic response of structures is 
examined. 

In the following sections, the description of aerodynamic loads and associated probabilistic 
response are discussed in the light of uncertainties. Next, the propagation of uncertainty and the 
influence of parametric uncertainties on the loading and structural response are analyzed. 
Finally, an example is presented to illustrate the influence of uncertainties on the dynamic 
response of a tall reinforced concrete chimney. 

PROBABILISTIC AERODYNAMIC LOADS 

Contrary to the traditional practice of visualizing wind effects as static in nature, the wind 
induces unsteady loads that fluctuate with significant energy. The fluctuations in the approach 
wind field are transformed to unsteady pressures on the outer surface of a building that are a 
function of both position and time. The instantaneous pressure at a point may be decomposed 
into mean and randomly fluctuating components that may be superimposed by a periodic 
contribution from aerodynamic instabilities. The pressure fluctuations over the surface of a 
structure introduce intense localized load fluctuations and collectively impose overall aerodynamic 
loads on the structure. The design of structural cladding is strongly influenced by local pressures, 
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whereas, the structural response is dependent on the integrated effect of pressures over the 
surface. 

The unsteady aerodynamic forces on structures may be attributed to several mechanisms that 
include buffeting, body motion and wake effects. Buffeting primarily results from turbulence or 
the wake of an upstream structure. The wake developed by the instabilities arising from 
fluid-structure interaction introduces significant aerodynamic loads. In addition, aeroelastic 
forces may be introduced by motion of the structure as it oscillates in the air in reaction to the 
external loads. These mechanisms do not always take place in isolation, rather, more than one 
may collectively contribute to the response of a structure. The aerodynamic loads are expressed 
a s  

Aerodynamic loading = F T (t) + F w ( t ) + F l (t)  + F (x ,  2, 5/) (1) 

in which Fx(t ) = forces induced by incident turbulence, Fw(t  ) = forces induced by wake 
fluctuations, F~(t) aerodynamics forces due to interference of upstream and adjacent structures, 
F(x,  k, 5/) = motion-induced loading expressed in terms of respective aerodynamic derivatives. 
A wind-sensitive structure, therefore, admits fluctuating energy present in the loading around its 
characteristic eigenfrequencies and is set to vibrate in rectilinear a n d / o r  torsional modes. 

Despite the recent advances in the knowledge of wind load effects on structures, our 
understanding of the mechanisms that relate the random far-field velocity fluctuations to the 
associated load effects has not developed sufficiently for functional relationships or computa- 
tional schemes to be formulated. Not only is the incident turbulent boundary-layer wind field 
complex, but the near-field flow generated around a structure is further complicated due to 
distortion and amplification of vortical structure of turbulence, the flow separation and possible 
reattachment, the vortex formation, and the wake development. Due to a lack of predictive 
methods that relate the random velocity field to the pressure field, the probabilistic wind load 
description in terms of spectral framework is generally obtained experimentally. One exception 
of the alongwind load effects exists in which, following the strip and quasi-steady theories, the 
fluctuating pressure field is assumed to be linearly related to the fluctuating velocity field 
[13-151. 

One of the experimental approaches utilized to quantify aerodynamic loads involves mapping 
and synthesis of the random pressure field acting on the surface of the structure [16]. A 
covariance integration scheme may be utilized for synthesizing the space-t ime fluctuations of the 
random pressure field in terms of the power spectral density of the point pressure fluctuations as 
well as the co-spectral description between any two locations over the surface of the structure 
which are often nonhomogeneous. This requires measurement of multiple point  pressure fluctua- 
tions. An alternative to mapping and synthesis of random pressure fields based on the point 
pressure measurements is to focus on locally averaged spatial loads through pneumatic manifold- 
ing or sensitive piezopolymer surface transducing techniques [16]. Synthesis of locally averaged 
random fields permits evaluation of the mode-generalized aerodynamic loads. 

Force balance techniques and aeroelastic model tests may be utilized to determine the 
dynamic wind-induced loads on structures directly [17-19]. Both approaches have their short- 
comings [17]. The structural motion may also induce additional loads that may be expressed in 
terms of aerodynamic damping [20-22]. In the case of aeroelastic model tests, motion-induced 
loads are explicitly included in the measurements. 
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PROBABILISTIC DYNAMIC RESPONSE 

The wind-excited response of structures consists of alongwind, acrosswind and torsional 
components. In general, each component  is comprised of a mean and a fluctuating part resulting 
from the several excitation mechanisms discussed in the preceding section. Description of the 
wind loads in each direction as well as associated dynamic response in the respective directions 
for different structural systems may be found in Refs. [13,23,24]. Besides the parametric 
uncertainties associated with aerodynamic loading, uncertainties related to the structural proper- 
ties impart variability in the prediction of the overall response. Uncertainty in the system 
parameters such as mass, stiffness and damping may arise either from spatially random 
variations in the material, its fabrication, or its mathematical idealization. For example, the 
contribution of partition walls and some cladding components of high-rise buildings introduces 
uncertainty in the overall system stiffness estimates. The level of uncertainty associated with 
damping is significant, and introduces marked variability in the wind-excited response. Once the 
spatial randomness in the structural properties becomes sizeable it becomes essential to incorpo- 
rate these uncertain characteristics in the analysis as random variables. In the following sections, 
a discussion of uncertainty in the parameter space and its propagation is presented. 

UNCERTAINTY ANALYSIS 

Uncertainty in the quantification of the wind loads, compounded by the variability in the 
structural parameters is reflected in the dynamic response. These uncertainties are examined here 
systematically under three categories: (a) wind environment and meteorological data, (b) 
parameters reflecting wind-structure interactions, and (c) structural properties. 

Wind environment and meteorological data 

In any design application, the expected maximum response of a wind-sensitive structure is 
estimated based on the extreme wind speed over the lifetime of the structure. The selection of the 
extreme value distribution may be made based on Gumbers  classical method, or statistical 
inference utilizing extreme order statistics [24,25]. The estimation of design wind speed has 
inherent modeling, sampling, and observation errors [2,3,24]. Additional uncertainty is intro- 
duced as a result of adjustment in the averaging period of wind from the fastest-mile wind speed 
to the mean hourly wind speed, the effect of local topography at the anenometer site, and the 
transformation of wind speed from one terrain to another. 

The parameters of the mean wind flow field, e.g., the power law exponent, which represent the 
variation of wind Speed along the height, and the surface drag coefficient used to represent the 
terrain roughness in the logarithmic variation of mean wind exhibit variability that influences the 
description of the mean wind field. The single-point description of wind velocity fluctuations is 
given by the turbulence intensity and the power spectral density function. There are several 
descriptions of the power spectral density functions over a variety of terrains available in the 
literature [24,26]. In general, the spectral forms tend to agree in that they approach the 
Kolmogorov limit at high frequencies; all differ in their treatment of low frequencies [26]. 
Therefore, for the land-based structures generally characterized by a relatively high fundamental 
natural frequency the variability introduced by the choice of the spectral description is relatively 
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small as compared with the compliant structures with intrinsically low natural frequencies. The 
length scale of turbulence that bears functional relationship with the spectral description has 
important influence on the sensitivity of a structural system to wind. It also exhibits variability in 
magnitude, and sensitivity to the methods of estimation. Regarding the multi-point representa- 
tion of random wind field the description of spatial coherence is essential for any functional 
description. The decay model, which is most generally utilized, is described in terms of 
exponential functions and the decay constants used in these formulations are sensitive to the 
terrain features, height above the ground, or the sea surface and the relative distance between the 
points of interest. 

Wind-structure interaction 

The wind-structure interaction parameters may be classified as those related to the random 
pressure field around the structure and the ones that describe the overall integral load effects. In 
the former category, the multiple-point random pressure field is represented by the local pressure 
fluctuations that are described by a spectral relationship and the correlation or a lack of it 
between various locations given by a coherence function. The functional relationships utilized to 
describe these functions and their parameters exhibit variability. The drag and lift force 
coefficients, and Strouhal number each depend upon the cross-section of a member, its aspect 
ratio, surface roughness, turbulence length scale and intensity, and shear in the approach flow. 
For a curvilinear cross-section, the dependence of drag and lift force coefficients and Strouhal 
number upon Reynolds number adds additional variability in their estimated values. The loads 
induced by the structural motion under the action of external loads are generally expressed as 
aerodynamic damping in terms of aerodynamic derivatives, which also exhibit variability. 

The parameters in experimentally derived covariance integration models that represent the 
description of the space-t ime variation of the wind loads are generally assumed to be determinis- 
tic. However, there is a considerable variability in the values of these parameters which leads to 
uncertainty in the overall estimation of the wind loads. The directly measured loads obtained by 
employing force balance or aeroelastic tests include uncertainties stemming from modeling errors 
to measurement errors that introduce variability in the measured loads. Spectral estimates of 
wind loads obtained from wind tunnel measurements at different wind tunnel laboratories 
exhibit significant variability [24]. 

Uncertainty in the aerodynamic loading is also introduced by future surroundings of a 
structure, e.g., a nearby new structure or a topographical variation may significantly modify the 
flow around the structure and the associated loads. 

Structural properties 

Structural properties (for example: mass, stiffness and damping) may exhibit uncertainty in 
their description arising either from spatial random variation in the material, its fabrication, lack 
of knowledge, or its mathematical idealization. These structural properties influence the dynamic 
characteristics of structures, i.e. the natural periods and mode shapes. 

Many previous studies have assumed that structural systems have deterministic mechanical 
characteristics or have implied that the variations in these properties were considerably smaller 
than those associated with the loading. Recently, the dynamic response analysis of systems with 
material uncertainties has received considerable interest. These efforts are focused on the 



210 

development of procedures for the dynamic analysis based on probabilistic methods to imple- 
ment uncertainties in the parameter space. 

A rigorous treatment of the material uncertainty may be accomplished by means of analytical 
and numerical techniques, for example, a perturbation, Second-Moment, stochastic finite ele- 
ment, and Monte Carlo simulation [27,28]. In a simplistic approach for building systems, the 
stiffness and mass matrices may be expressed as 

[ K ] = K * [ K ]  and [ M ] = M * [ / ~ ]  (2) 

in which [~'] and [/~] are deterministic matrices consisting of mean values of the stiffness and 
mass matrices, respectively, K * and M * are random variables with mean values equal to unity 
and coefficients of variation ~2K. and f~M* equal to f~z,j and ~2M, respectively. This formulation 
implies that the mass and stiffness at two adjacent levels are perfectly correlated with equal 
coefficients of variation (COVs). The quality of material utilized in fabrication of structural 
members in buildings is generally the same, which permits equal COVs and perfect correlation 
between the stiffness of members used at different levels. For distributed systems in which the 
material variability exhibits spatial dependence, alternate description of uncertain stiffness and 
mass based on the make-up of the medium being modeled becomes essential. The former 
representation has been utilized by Portillo and Ang [29], Rojiani and Wen [2], and Kareem and 
Hsieh [3]. The natural frequencies of the system are then expressed as 

f, : f * f  (3) 

in which f * = random variable with mean value equal to unity, its coefficient of variation, ~ / . ,  
is expressed in terms of f]K* and ~M* following Rayleigh's method and )~ = mean value of the 
ith natural frequency. The simplistic approach considered here results in deterministic eigenvec- 
tots. A prediction error may be introduced to account for the limitation of this representation. 
For a perturbation analysis, the uncertain stiffness and mass may be expressed as a sum of 
unperturbed mean, or a base value and a small random fluctuation [27]. 

Increasingly, damping is being recognized as an important factor in the design of structures 
that are sensitive to wind excitation. The ability to estimate damping values accurately at the 
design stage, would certainly alleviate a major source of uncertainty from the design of 
wind-sensitive structures. However, the selection of an appropriate damping value is a subject of 
discussion and controversy. Although it is a general consensus that damping values change with 
amplitude, their functional descriptions are rather limited [30]. The methods employed to 
ascertain damping of full-scale structures, and the analysis and interpretation of data introduce 
additional uncertainty. Information available from full-scale measurements for analyzing the 
variability of damping has been assembled by Haviland [31], Jeary [30], and Davenport and 
Hill-Carroll [32]. Haviland [31] reported estimates of the means and coefficients of variation of 
damping values of a wide class of structural systems, e.g. steel and concrete buildings of several 
heights, for different levels of response amplitudes. The log-normal  and gamma distributions 
were shown to provide the best fit to the data. 

The uncertainty associated with damping introduces variability in the response of a system. 
The damping uncertainty may be expressed in terms of the coefficients that appear in the 
modeling of damping, e.g., Rayleigh's damping. Alternatively, uncertainty may be assigned to the 
critical damping ratios. In view of the impracticality of determining damping coefficients and the 
general engineering practice of expressing structural damping in terms of critical damping ratios, 
it is often convenient to assign uncertainty in damping to the critical damping ratios. 
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The probabilistic dynamic response of a wind-excited structure is expressed in terms of 
uncertain parameters associated with structural properties and aerodynamic loading. The uncer- 
tainty in the foregoing parameters has been identified in the previous section and it is 
customarily expressed in terms of the coefficient of variation. The influence of uncertainty in 
these parameters is propagated in accordance with the functional relationships that relate them 
to the structural response. The propagation of uncertainty may be accomplished by employing 
one or a combination of the following approaches: perturbation techniques; stochastic finite 
element methods; Galerkin-based weak-form discretization of stochastic fields; Monte Carlo 
simulation; and Second-Moment approaches (e.g. [27,28,33-36]). In this paper, the propagation 
of uncertainty is carried out in the context of finite element discretization by means of 
Second-Moment and Monte Carlo simulation approaches. In the following, a brief discussion of 
these techniques is presented. 

Second Moment analysis 

The Second-Moment techniques have provided practical and efficient means of analyzing 
probabilistic engineering mechanics problems [37-39]. The attractiveness of these approaches 
rests on the limited statistical information needed to analyze a problem, e.g., only the first two 
statistical moments of a random variable are sufficient for the analysis. The expression for 
response is expanded in terms of the Taylor series; only up to the first- or second-order terms are 
retained. In this case, only the first-order terms are retained, the approximation is referred to as 
the First-Order Second-Moment (FOSM) approach. The coefficient of variation of structural 
response R = g(X], X 2, X3,..., X,,) which is a function of a number  of variables, X,, in the 
First-Order Second-Moment format is given by 

1 ~ ( 0 g  ,) Y'ff"&J(~-~gx~ ) ~ g  Xi'~J~-~xi~xJ (4) + 

i = 1  i4~j \ i xi ~ X j  ~j] ] 

in which Pi: is the correlation between x~ and x j, ~2:: is the COV of variable x:, and Og/Ox i I ~, is 
the derivative of g( .)  evaluated at the mean value of x~. 

Following a random vibration-based modal superposition technique, the mean value of the 
structural response with uncertain mass and stiffness under spatiotemporally varying wind field 
is given by ({ )1: 

--2 - 2  
°x~" = Oni%:" (s) 

(27rf )2r [ Hi(2~rf )12S~( f ) 
= -jo 

df  
(2~r:~)4 (6) 

in which 0n~ = normalized mode shaped with respect to mass matrix, r = 0, 1, 2, and 3 represents 
displacement, velocity, acceleration and jerk components  of response, respectively, and H;(2~rf) 
= transfer function. The integration in the preceding equation for lightly damped systems may 
be carried out by means of the residue theorem if the excitation is idealized as white noise near 
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the resonant frequency. Alternatively, the symbolic manipulation code MACSYMA may be used 
for filtered white noise processes such as wind loads [40]. For the sake of illustration, the mean 
value of the RMS response to idealized white noise excitation is given by the following 
expression 

~r)=(qrfSF,(~)(2qr~) r-4 ) 
, ~ / /  (7) 

where ~ is the damping ratio in the i th mode. The variance of the response estimate expressed in 
the preceding equation is given by 

--2 2 2 _.~_ ~2 Jn °(27r ! ((r_3)SF(~)+~SF(Z))2ofy Var(ox., ) .  = ~ ~niOq}r, Oq} )Or~n ' nt 

in which the parameters have been defined previously. 
The variance of the structural response utilizing the complete spectral approach, eqn. (6), 

involves complex expressions describing the response derivatives with respect to uncertain 
variables. The derivatives involved are given in Appendix A and have been utilized in the 
example presented later in the paper. 

The mean and variance of the peak response based on the Second-Moment format may be 
estimated by the following equation [41] 

( Xn ~ )max = X(Ftd) + x(vta) °x(." (9) 

Ox, r, )2 
Var((Sn(r) )max ) = ~ X (V~d) (10) 

in which 3' = Euler's constant, x(vtd) ) = ~/2 ln(vtd) ,  and v = (1/27r)(oxo(1)/odO)). The coeffi- 
cient of variation of (X~))ma x is given by 

affXn(r)) max 1 o)r(,) ' Ar E OK xi 
( Sn(r ) ) ITIax . . . . . . . .  i=1 Si 

+ EE°x'xjO(x(~r))maxi~-j OX i ~, 0(g(r')max0Sj  axa x, xj} (11) 

0 ( x(r))max 1 ( 00"X2n (') OX2(n r) 0 0"2n(1) ~ 
OX, = 20x, r, ( A ( X i ) - A ' ( X ' ) ) - - ~  +A'(Xi)ox,,--Z, OXi I (12) 

A(x,)=(x(,,ta)+ v__z__). ( J_L_) (13) ' A ' ( X , ) =  x3( td) 

in which the derivatives of the RMS response components with respect to the problem variables 
are given in Appendix A. 
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Monte Carlo simulation 

This approach may be viewed as a synthetic, or computer-generated experiment in which a 
problem is analyzed numerically through a sampling experiment. The simulation procedure is 
generally described in three steps (i) simulation of sufficiently representative samples of random 
variables, (ii) solution of the problem for a large number or realizations aimed at obtaining 
samples of the output process, e.g., the moment  capacity, and (iii) statistical analysis of results. 
The first item requires generating a sequence of sample values of a stochastic variable with a 
prescribed distribution. 

Once all the random variables are generated, then each experiment consists of choosing a set 
of input values performing numerical evaluation of the desired function and thus obtaining a set 
of output quantity, e.g., the structural response. The numerical experiment is repeated n times, 
and the statistics of the output  quantity are calculated from the generated sample output. Like 
other experiments, the foregoing simulation technique unfortunately shares the problems of 
sampling errors. These errors are minimized by making the number  of trials large which in turn 
significantly influences computational effort. The sampling error introduced by limited sample 
size may be improved by means of variance reduction techniques, e.g., importance sampling, 
antithetic variates and stratified sampling [42-44]. These techniques are quite dependent on the 
type of model under study and do not provide an apriori estimate of the variance reduction. 

EXAMPLE 

In this section, the peak response of a chimney to aerodynamic loads is presented to illustrate 
the foregoing treatment of uncertainty in the parameter space. A 598 ft (182 m) tall 
reinforced-concrete chimney was employed in this example. The details of structural dimensions 
and other related information are given in Ref. [3]. The chimney was discretized into 13 elements 
along the height, with a translational and a rotational degree-of-freedom at each node. The 
system stiffness matrix in global coordinates was assembled from the element stiffness matrices 
of the system. The mass matrix was formulated utilizing a consistent mass description. Only the 
first three modes were included in the dynamic analysis. The mean value of the natural 
frequencies in the first three modes were computed to be 0.48, 1.86 and 4.71 Hz. The mean value 
of the structural damping in the fundamental  mode was assumed to vary from 1% of the critical 
to 4% with an increment of 1%. The damping values in the higher modes were estimated 
following Kareem and Hsieh [3]. 

The uncertainty in the design wind speed that corresponds to the lifetime extreme wind speed 
was evaluated from data pertaining to an arbitrarily selected industrial site in the U.S. The 
extreme value Type I, Type II, and Rayleigh distributions were used to model the annual 
maximum wind speed distribution. The data provided the best fit to the Type I extreme value 
distribution based upon a maximum probability plot correlated coefficient (MPPCC) criterion 
[3,24,45]. The estimates of the mean value and the COV for various flow-related parameters were 
made from the experimental and field study data [3]. In Table 1, the parameters of the Type I 
distribution, and the sampling and observational errors for the annual and the lifetime extreme 
wind are given. 

Analysis of the data base suggested values of 0.7 and 0.15 for the mean values, and 0.14 and 
0.27 for the COVs of the drag and RMS acrosswind force coefficients, respectively. The mean 
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T A B L E  1 

Pa rame te r s  in the wind  d i s t r ibu t ion  

Extreme Value Type I 

loca t ion  U = 38.66 
scale A = 3.26 

Annual Extreme Wind Speed 

V = 40.55 m p h  

Lifetime Extreme Wind Speed 

V r = 52.91 m p h  

~ u  = 0.019 
f~A = 0.219 

f2,~ v = 0.129 

~2 v = 0.10 

~2~ = 0.062 

f~vT = 0.101 

~']obs = 0.025 

value and the COV of the Strouhal number were estimated to be 0.2 and 0.11, respectively. The 
computed values of the mean and COV of the acrosswind spectral bandwidth were 0.25 and 0.3, 
respectively. In this study, the chimney diameter and thickness, drag coefficient, Strouhal 
number like mass and stiffness (e__qn. 2) are expressed as a product of a random and a 
deterministic part, e.g., D(z)= D*D(z) in which D* is a random variable with mean value 
equal to unity and COV equal to that of the drag coefficient, and D(z) is the mean value of the 
diameter at height z. The aerodynamic damping, derived on the basis of equivalent amplitude- 
dependent damping, is a function of a number of variables. Thus, the uncertainty in aerodynamic 
damping described in Appendix B was obtained based on the First-Order Second-Moment 
approach 

1 [( 0~a 2) ( ()~a 12~--~2.m _[_ (0~a 121~2 ~-22 _It_ (0~a 2) 
at .  

(~]2--2 2 3(a 2NSa2] 1/2 
+ t 3Oy ] Oy a,,~ + ( (14) 

in which Kao, Oy, and N are aerodynamic coefficient, variance of response, and a constant, 
respectively, and other variables have been defined earlier in the text. The parameter Kao 
depends on the acrosswind force coefficient, hence it was assigned the same uncertainty as that 
of the acrosswind force coefficient. The overall uncertainty in the aerodynamic damping, 
following eqn. (14) was found to be equal to 0.3 [3]. The uncertainty in the stiffness matrix was 
estimated on the basis of uncertainty in the flexural rigidity, EI, of the tubular concrete section. 
The uncertainty of El expressed in terms of COV is given by 

1 3_20s+2_. Os] _ 

1 - Os + ~ Os 

2 2 ]1 /2  (Es 'n2 (Es ) 2 (15) 
+ .0Es+ 
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Variable Mean Cov Distribution 

Wind speed 52.91 0.101 Extreme Value Type I 
Drag coefficient 0.7 0.14 lognormal 
RMS acrosswind force coefficient 0.15 0.27 lognormal 
Strouhal number 0.20 0.11 lognormal 
Spectral bandwidth 0.25 0.30 lognormal 
Aerodynamic damping - 0.30 lognormal 
Natural frequency - 0.17 lognormal 
Structural damping - 0.35 lognormal 
Element of mass matrix 1.0 0.094 normal 
Flexural rigidity - 0.18 normal 
Element of stiffness matrix 1.0 0.27 normal 
Diameter - 0.04 normal 
Thickness - 0.04 normal 
Specific weight of concrete 150 lb/ft 3 0.30 normal 
fc' Compressive stress 4000 psi/3390 psi 0.18 normal 

in concrete 5000 psi/4028 psi 0.15 normal 
E c 4000 psi 3320 ksi 0.09 normal 

5000 psi 5000 psi 0.075 normal 
E s 29200 ksi 0.033 normal 

in which Ps, r, t, Ec, E s and A s represent steel ratio, radius of chimney, thickness of shell, 
modulus of elasticity of concrete and steel, respectively, and area of steel [3]. Due to modeling 
assumptions an additional 10% uncertainty was included that resulted in a total value of 
uncertainty equal to 0.18 [46]. Therefore, the variability of stiffness of an element which is 
proportional to EI was set equal to 0.18. Additional uncertainty of 0.2, arising from idealization, 
neglecting shear deformation and formulation of the stiffness matrix was included that resulted 
in a COV of 0.27 for the overall stiffness matrix. The uncertainty in the mass matrix was 
estimated to be 0.09. Utilizing the COVs of the stiffness and mass matrices and including an 
additional uncertainty of 0.1 to include the influence of possible soil-structure interaction, the 
COV of the natural frequency was computed to be 0.17. Based on the analysis of structural 
damping data related to the reinforced concrete chimneys the COV was found to be 0.35. Due to 
a lack of data the same coefficient of variation was assumed for the damping in the higher 
modes. 

Initially, a total of twenty-five basic variables associated with parameters reflecting the wind 
environment and meteorological data, wind-s t ructure  interactions and structural properties were 
considered. A sensitivity analysis of the contribution of the uncertainty of various variables to 
the overall uncertainty suggested that the number of variables could be reduced to those which 
significantly influence the overall uncertainty in the response. In Table 2, a summary of the mean 
values of the parameters and their COVs and probability distributions are reported. 

The static deflection at the top of the chimney is given by 

N fol~q(zlq~(z) dz 
r t= E (16) 

i=1 (2'Rf/)2 Mi 
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in which 

q(z) = ½pACD(z)D(z)U2(z) 

M,= m(z)q~(z) dz 

U ( Z )  = Uref (Z/Zref )  a 

0A = air density; Co(z) = C~CD(~; D(z) = D*D---~; m(z) = m*m----(~; and f~ = f~*~. Based on 
the FOSM approximation the coefficient of variation of Yst is given by 

a ~ =  a~,y + a~ .  + a 2 .  + 4a~. + 4a2re + -~st2 t Oa I a]a2 + (0"05)2 (17) 

where an additional uncertainty of 0.05 is introduced to incorporate uncertainty due to 
mathematical modeling [46], and f~x = coefficient of variation of variable x. 

The uncertainty associated with the RMS and peak response components was evaluated 
following the full spectral approach (eqn. 6) and the expressions presented in eqns. (9)-(13). 
Expressions for the spectral description of wind loads are described in Appendix B. The 
fluctuating moment at any height on the chimney is composed of the static and dynamic 
components. The static component at height z, is given by 

Mst(za)=f~q(z)(Z-Za)dz  (18) 

The COV of Mst(Za) is given by [ 1 ]1 2 
aMY'(z")= a2e + a2* + 4a2o,+ ~ aa aJ a2~2  Jr (0 .05)  2 (19) 

r Ms t 

In the preceding expression an additional uncertainty of 0.05 has been introduced to account for 
modeling error. The RMS value of the moment and its derivatives is expressed by 

g IHi(2~f) 12Sz( f )df  
{ ° ~  ) ) = E (20) 

i=1 (2reX)aM, 

in which I Hi(2~rf) 12 = system transfer function in the ith mode; Sz(f)  = generalized spectrum 
of wind force in the ith mode for the alongwind, or the acrosswind direction; [T] and 
[M] = system transformation (relates nodal forces to associated bending moment) and mass 
matrices, respectively; {(/),} = ith mode shape; M, = generalized mass in the ith mode; and 
K = number of modes included in the analysis. The COV of the maximum top deflection and 
moment at a level were evaluated following eqns. (9)-(13). The derivatives involved in these 
expressions are documented in Appendix A to facilitate their use in other applications related to 
wind excitation. The foregoing expressions were evaluated on a computer utihzing a Monte Carlo 
integration scheme for expedient computation of the multiple integrals. The FOSM format for 
the correlation between two response components e.g., f and g, which are a function of other 
variables is given by 

c o v [ i ,  g l  = r - - (21) i=ls=a aX, a--Xj O'jxiax'Xj~x~ 

where Ogj is the correlation coefficient between the basic variables X~ and Xj. 
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Mean value of Alongwind response 
damping in the Mean (ft) 
first mode (%) 

Acrosswind response 

COV Mean (ft) COV 

1 0.4029 0.773 0.8142 1.0801 
(0.3165) (0.602) (0.7249) (0.7936) 

2 0.2889 0.695 0.4684 0.8125 
(0.2238) (0.602) (0.4416) (0.7936) 

3 0.2371 0.696 0.3632 0.7677 
(0.1827) (0.612) (0.3469) (0.7936) 

4 0.2076 0.727 0.3065 0.7764 
(0.1582) (0.602) (0.2938) (0.7936) 

The peak alongwind and acrosswind chimney displacements at the top and associated bending 
moments at different levels along the chimney height were simulated utilizing a Monte Carlo 
simulation technique [3]. The computer-generated response estimates were statistically analyzed 
to obtain the means and COVs. The complexity associated with the evaluation of the aerodynamic 
loading, involving a double integration for each sample value, and the subsequent estimation of 
the response including the first three modes in each orthogonal direction involved significant 
computational effort. On an AS9000 computer, six hours of CPU time were required to generate 
14,000 samples of data. The results were not influenced by the sample size, once the number of 
simulated values reached 10,000. The sampling error introduced by limited sample size may be 
improved without increasing the sample size by utilizing variance reduction techniques, e.g., 
importance sampling, antithetic variates, conditional expectations and stratified sampling [5,42]. 

The top displacement and base moment statistics, derived from the FOSM and simulation 
techniques, in terms of mean values and their COVs are presented in Tables 3 and 4. The 
numbers given in parentheses are generated by employing a Monte Carlo simulation scheme. The 
results exhibit a good agreement. These estimates of uncertainty in the response may provide a 
useful input to establish a limit-state design procedure, or reliability analysis of structures to 
ensure their safety and serviceability. 

TABLE 4 

Base bending moment 

Mean values of Alongwind moment 

damping in the Mean Value (lb-ft) COV 
first mode (%) 

Acrosswind moment 

Mean Value (lb-ft) COV 

1 0.1011906 × 109 0.774 0.2051884 × 109 1.073 
(0.9946820 × 108) (0.749) (0.18122762 × 10 9) (0.823) 

2 0.7255618 x 108 0.695 0.1182936 x 109 0.8038 
(0.6619817 x 108) (0.744) (0.1103972 x 109) (0.823) 

3 0.5977762 × 108 0.716 0.9188896 x 108 0.761 
(0.5588672 x 108) (0.744) (0.8649999 x 10 s) (0.823) 

4 0.5215667 x 108 0.728 0.7761918 x 108 0.773 
(0.4973306 x 108) (0.745) (0.73471448 × 10 s) (0.823) 
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TABLE 5 

Uncer ta in ty  in momen t  at the node 8 due to the uncer ta int ies  in various parameters  for the wind velocity of 40 m p h  at 
the reference height 

Parameter  X i ~2x, ~st ~'~al ~ac 
D 0.04 0.04 0.095 0.157 
M 0.094 0.0 0.128 0.125 
E1 0.18 0.0 0.125 0.122 
~s 0.35 0.0 0.129 0.369 
f * 0.17 0.0 0.521 0.172 
C o 0.14 0.14 0.164 0.0 
a 0.10 0.119 0.117 0.083 
C. 0.15 0.0 0.098 0.0 
k 0.11 0.0 0.102 0.0 
C L 0.27 0.0 0.0 0.282 
S 0.11 0.0 0.0 0.213 
B 0.30 0.0 0.0 0.103 
~a 0.30 0.0 0.0 0.153 
V o 0.066 0.132 0.183 0.101 

overall  - 0.230 0.597 0.575 

A sensitivity analysis was carried out in which the influence of uncertainty of each parameter 
to the overall uncertainties of the resistance and the load effects were analyzed. The computed 
values of uncertainty in the several moment  components at node 8 for the reference-height 
velocity of 40 mph (64 k m / h )  are given in Table 5. These results suggest that the uncertainty of 
the alongwind fluctuating moment  at the node 8 is very sensitive to the uncertainties in the 
natural frequency, damping value and the wind velocity. The uncertainty of the acrosswind 
fluctuating moment  at the node 8 is sensitive to the lift force coefficient, Strouhal number, wind 
velocity, natural frequency and structural damping. These results suggest that significantly more 
information is needed to reduce part of the uncertainties associated with both aerodynamic load 
effects and structural characteristics. 

The influence of different approaches utilized to incorporate uncertainty associated with the 
variability in the design wind speed estimation on the overall uncertainty is also evaluated. Three 
different approaches are considered which are referred to as a complete-FOSM approach, a 
modified-FOSM approach and a predictive model. In the complete-FOSM approach the 
aerodynamic load effects are computed on the basis of the mean lifetime extreme wind speed. 
The uncertainty in the wind speed estimate, which includes errors associated with the variability 
of the wind speed, sampling error and observational error, is estimated based on the statistical 
analysis of wind data according to the selected wind distribution. In the modified-FOSM 
approximation the uncertainty in the load effects is estimated for a range of wind speeds and the 
overall uncertainty is obtained through the convolution of the conditional uncertainties with the 
PDF of the lifetime wind speed as indicated by the following equation 

fo~2~ I v fob(v) dv a s = (22) 

in which f~, Iv = conditional coefficient of variation of the load effects for a given wind speed 
and fvT(v)--PDF of the lifetime wind speed. The introduction of the wind speed distribution 
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Node Modified FOSM model Complete FOSM model Predictive model 

Type I Type II Rayleigh Type I Type II Rayleigh Type I Type II Rayleigh 

8 0.395 0.428 0.387 0.397 0.405 0.382 0.387 0.397 0.376 
10 0.386 0.418 0.378 0.385 0.395 0.375 0.379 0.389 0.369 
12 0.382 0.414 0.374 0.380 0.391 0.373 0.375 0.385 0.366 
base 0.385 0.417 0.377 0.383 0.394 0.375 0.378 0.388 0.368 

• /, = ((M~, + MaX) 2 + M.2~} ~/2 

identifies only the error associated with the variability of wind, hence the sampling and 
observational errors need to be included. In the predictive approach, the sampling and observa- 
tional errors are included by treating the parameters of the lifetime extreme winds as random 
variables [1-3]. Therefore, the modified PDF of the lifetime extreme wind is given by 

f~T(v) = f f  f~ ]A.B(O [a, b)fAs(a, b) da db (23) 

in which foT ]A,B(Ol a, b ) =  PDF of the lifetime extreme wind speed for given values of the 
parameters A = a and B = b, and fAB(a, b)=joint probability density function of random 
variables A and B. Generally, f4B(a, b) is assumed to be a bivariate normal  density function, 
however, the statistics of A and B may be estimated from the wind data at the site. The 
predictive distribution model provides a useful alternative to the conventional confidence 
interval method for incorporating sampling and estimation errors. The integration in the 
preceding equation may be efficiently carried out by employing a fast probability integration 
scheme based on the first-order reliability method [39]. The uncertainty in the bending moment  
at the base and a few other nodes obtained from these three approaches is compared in Table 6. 
In addition to the Type I extreme wind distribution, Type II and Rayleigh distributions were also 
included to study the influence of different distributions on the uncertainty associated with 
aerodynamic load effects. The results suggest that different procedures for the propagation of 
uncertainty associated with the variability in wind do not significantly influence the estimates of 
uncertainty in aerodynamic load effects for Type I and Rayleigh distributions. Conversely, for 
the extreme value Type II distribution, the uncertainty analysis is influenced by the procedure 
used to incorporate uncertainty associated with wind [3]. 

CONCLUDING REMARKS 

The uncertainties associated with the load effects and dynamic  characteristics of wind-excited 
structures have been identified and discussed. Based on the available experimental data from 
laboratory and field study measurements the variability of the various parameters categorized as 
wind environment and meteorological data, wind-s t ruc ture  interaction and structural properties 
has been assessed. The probabilistic dynamic response of a wind-excited structure has been 
expressed in terms of uncertain parameters. The influence of uncertainty in these parameters has 
been propagated in accordance with the functional relationships that relate them to the structural 
response. In this study the propagation of uncertainty has been obtained by employing the 
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Second-Moment and Monte Carlo simulation techniques. The random vibration based approach 
utilized in this study is applicable to other wind-sensitive structures. 

The dynamic response of a chimney subjected to wind loads is presented to illustrate the 
treatment of uncertainty in the parameter space. The uncertainty of response exhibits close 
agreement between the Second-Moment and simulation approaches. The simulation approach 
provided a basis for the validation of the Second-Moment approximation which is computa- 
tionally efficient for this class of problems. A sensitivity analysis helped to delineate the relative 
significance of uncertainty in the several parameters, related to both load effects and structural 
characteristics, on the overall uncertainty in the aerodynamic response of the chimney. The 
analysis also suggests that the overall uncertainty in the dynamic response is insensitive to the 
procedure utilized in propagating uncertainty associated with the wind speed. The COVs for 
both components of response suggest a need for further improvement in the modeling of 
wind-structure interaction, prediction of natural frequencies and damping, and a reduction in 
the variability of extreme wind estimates. 

ACKNOWLEDGEMENTS 

Financial assistance for the research was provided by the National Science Foundation Grants 
CEE-8019392 and ECE-8352223. Their support is gratefully acknowledged. The author is 
grateful to J. Hsieh and W-J. Sun for their assistance in developing the computer programs. 

REFERENCES 

1 D. Veneziano, A theory of reliability which includes statistical uncertainty, in: 2nd Int. Conf. on Applications of 
Probability and Statistics to Soil and Structural Engineering, Aachen, Germany, Sept. 1975. 

2 K.B. Rojiani and Y.K. Wen, Reliability of steel buildings under winds, J. Struct. Div., ASCE, 107 (ST1) (Jan. 1981) 
203-221. 

3 A. Kareem and J. Hsieh, Reliability of concrete chimneys under winds, University of Houston, Dept. of Civil 
Engineering Report, UHCE 83-4, Houston, TX, May 1983. 

4 A.G. Davenport, The relationships of reliability to wind loading, J. Wind Eng. Ind. Aerodyn., 13 (1-3) (1983) 
3-27. 

5 A. Kareem, Wei-Joe Sun and J. Hsieh, Reliability analysis of structures under dynamic wind loading, in: Proc. 
Fifth U.S. Natl. Conf. on Wind Engineering, Lubbock, TX, Nov. 1985. 

6 G.I. SchuEller, H. Hirtz and G. Booz, The effect of uncertainties in wind load estimation on reliability assessments, 
J. Wind Eng. Ind. Aerodyn., 14 (1983) 15-26. 

7 B.J. Vickery, On the reliability of gust loading factors, Proc. Tech. Meeting Wind Loads, NBS, Washington, DC 
1970. 

8 E. Simiu and J.R. Shaver, Wind loading and reliability-based design, in: Wind Engineering, Proc. Fifth Int. Conf., 
Fort Collins, CO, July 1979, Vol. 2, Pergamon Press, New York, NY, 1980. 

9 J. Kanda, Reliability of gust response prediction considering height dependent turbulence parameters, J. Wind 
Eng. Ind. Aerodyn., 14 (1-3) (1983) 455-466. 

10 G.C. Hart, J.D. Ragget, S. Huang and S. Dow, Structural design using a wind tunnel test program and risk 
analysis, J. Wind Eng. Ind. Aerodyn., 14 (1-3) (1983) 27-36. 

11 A. Kareem and J. Hsieh, Reliability of dynamic wind loads on compliant offshore structures, in: Proc. of 
Probabilistic Mechanics and Structural Reliability, ASCE, NY, 1984. 

12 Y-K. Wen, Wind direction and structural reliability: II, J. Struct. Eng., 110 (1984). 
13 A.G. Davenport, Gust loading factors, J. Struct. Div., ASCE, 98 (ST3) (June 1967) 11-34. 



221 

14 A. Kareem, Synthesis of fluctuating along wind loads on buildings, J. Eng. Mech., ASCE, 112 (1) (Jan. 1986) 
121-125. 

15 H. Kawaii, Pressure fluctuations on square prisms--Applicability of strip and quasi-steady theories, J. Wind Eng. 
Ind. Aerodyn., 13 (1983) 197-208. 

16 A. Kareem, Mapping and synthesis of random pressure fields, Dept. of Civil Eng. University of Houston, Research 
Report No. UHCE 86-16, Houston, TX, 1986. 

17 T. Reinhold and A. Kareem, Winds loads and response predictions using force balance techniques, in: Proc. Third 
Conf. on Dynamic Response of Structures, ASCE, New York, NY, 1986. 

18 T. Tschanz and A.G. Davenport, The base balance technique for the determination of dynamic wind loads, J. 
Wind Eng. Ind. Aerodyn., 13 (1-3) (1983) 429-439. 

19 A. Kareem, Fluctuating wind loads on buildings, J. Eng. Mech. Div., ASCE, 108 (EM6) (Dec. 1982) 1086-1102. 
20 A. Kareem, Acrosswind response of buildings, J. Struct. Div., ASCE, 108(ST4) (1982) 869-887. 
21 R.I. Basu and B.J. Vickery, Acrosswind vibrations of structures of circular cross-section, Part II: Development of a 

model for full-scale applications, J. Wind Eng. Ind. Aerodyn., 12 (May 1983) 75-97. 
22 A. Kareem, Discussion of "Wind-induced lock-in excitation of tall structures", by Kwok, K.C.S., Melbourne, 

W.H., J. Struct. Div. ASCE, 107 (ST1) (Jan. 1981), J. Struct. Div., ASCE, 107 (ST10) (Oct. 1981) 2047-2048: 
23 A. Kareem, Lateral-torsional motion of tall buildings to wind loads, J. Struct. Eng., ASCE, 111(11) (1985) 

2479-2496. 
24 E. Simiu and R.H. Scanlan, Wind Effects on Structures: An Introduction to Wind Engineering, Wiley and Sons, 

New York, NY, 1986. 
25 J. Pickands, Statistical inference using extreme order statistics, Ann. Statist., 3 (1975). 
26 A. Kareem, Structure of wind field over the ocean, in: Proceedings Intemational Workshop on Offshore Winds 

and Icing, Halifax, Nova Scotia, Oct. 1985. 
27 A. Kareem and Wei-Joe Sun, Probabilistic response of structures with parametric uncertainties, in: Proc. Fifth Int. 

Conf. on Applications of Statistics and Probability in Soil and Structural Engineering, Vancouver, Canada, May 
25-29, 1987. 

28 E. Vanmarcke, M. Shinozuka, S. Nakagiri, G.I. Schu~ller and M. Grigoriu, Random fields and stochastic finite 
elements, Structural Safety, 3 (3, 4) (1986) 143-155. 

29 G.M. Portillo and A. H-S. Ang, Evaluation of safety of reinforced concrete buildings to earthquake, Structural 
Research Series No. 433, University of Illinois, Urbana, IL, Oct. 1976. 

30 A.P. Jeary, Damping in tall buildings--a mechanism and a predictor, Earthquake Eng. Struct. Dyn. 14 (1986). 
31 R. Haviland, A study of the uncertainties in the fundamental translational periods and damping values for real 

buildings, MIT, Research Report No. 5, Pub. No. R76-12, Department of Civil Engineering, Cambridge, MA, 
1976. 

32 A.G. Davenport and P. Hill-Carroll, Damping in tall buildings; its variability and treatment in design, Building 
Motion in Wind, Proceedings of a Session, ASCE Convention, Seattle, Washington, 1986. 

33 K. Handa and K. Anderson, Applications of finite element methods in the statistical analysis of structures, In: 
Proc. 3rd Int. Conf. on Structural Safety and Reliability, Trondheim, Norway, 1981. 

34 T. Hisada and S. Nakagiri, Role of the stochastic finite element method in structural safety and reliability, in: 
Proc. 4th Int. Conf. on Structural Safety and Reliability, Kobe, Japan, May 1985. 

35 M. Shinozuka and G. Dasgupta, Stochastic finite element methods in dynamics, Proc. Third Conf. on the Dynamic 
Response of Structures, ASCE, New York, NY, 1986. 

36 E. Vanmarcke and M. Grigoriu, Stochastic finite element analysis of simple beams, J. Eng. Mech., ASCE, 109(5) 
(Oct. 1983) 1203-1214. 

37 O. Ditlevsen, Uncertainty Modeling with Applications to Multidimensional Civil Engineering Systems, McGraw- 
Hill, New York, NY, 1981. 

38 A.H. Ang and W.H. Tang, Probability Concepts in Engineering Planning and Design, John Wiley, New York, NY, 
Vols. I and II, 1984. 

39 H.O. Madsen, S. Krenk and N.C. Lind, Methods of Structural Safety, Prentice Hall, Englewood Cliffs, N J, 1986. 
40 R. Pavell, MACSYMA: Capabilities and applications to problems in engineering and sciences, Application of 

Computer Algebra, Kluwer Academic Publishers, Boston, MA, 1985. 
41 A.G. Davenport, Note on the distribution of the largest value of a random function with application to gust 

loading, Proc. Inst. Civ. Eng., 28 (June 1964). 
42 R.Y. Rubenstein, Simulation and Monte Carlo Method, Wiley Interscience, New York, NY, 1981. 



222 

43 A. Law and W. Kelton, Simulation, Modeling and Analysis, McGraw-Hill, New York, NY, 1982. 
44 J.E. Handschin, Monte Carlo techniques or prediction and filtering of nonlinear stochastic processes, Automatica, 

6(3) (1970). 
45 J.J. Filliben, The probability plot correlation coefficient test for normality, Technometrics, 17(2) (1975). 
46 A.H. Ang, and C.A. Cornell, Reliability basis of structural safety and design, J. Struct. Eng., ASCE, 100(ST9) 

(1974) 1755-1769. 
47 Wei-Joe Sun and A. Kareem, Coupled lateral-torsional response of MDOF systems to nonstationary random 

excitation, Department of Civil Engineering, University of Houston, Report No. UHCE 86-2, 1981-also Proceed- 
ings U.S. National Conference on Earthquake Engineering, Charleston, South Carolina, 1986. 

APPENDIX A 

Response derivatives 

The derivatives of RMS response components  with respect to the uncer ta in  parameters  are 
presented in this appendix.  The f luctuat ing response m a y  be ob ta ined  utilizing the mode-dis-  
p lacement  approach 
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APPENDIX B 

The spectral descriptions of the alongwind and acrosswind forcing functions based on the 
covariance integration formulation are utilized in this study [3,13,21] and are given by the 
following: 

I0"f0" Sr,( f )  = Sq(Z1, Z2; f )~ i (Z l )* i (Z2)  dz I dz 2 (B.1) 

Alongwind 

Sq(Z 1, Z2; f ) =  PzCD(zl)CD(z2)D(z~)D(z2)U(zl)U(zz)Cou(Zl,  z2; f )  

Co,,(Zl, z2; f ) =  R u(Zl, z2; f )S , , ( z , ,  f ) S u ( z  2, f )  

41¢x 2 
S,(z ,  f )  = Su( f )  - f ( l  + x2) 4/3 Ure' 

(~,z,  z2,~) 
R , ( z  1, z2; f ) = e x p  - ½[U(z , )+  U(z2) ] 

in which K = surface coefficient, C~ = constant, 
expressions for S , ( f ) ,  and Ru(z 1, zz; f )  are available in the literature. 

(B.2) 

x = Lf/Vre f and L = length scale. Alternate 
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Acrosswind 

Sq(zl, z2; f ) =  

Sp(z, f ) =  ½OCL(z)D(z)UZ(z) I---~ e x p [ 1 - ( - -  
L¢cr B 

¢Sp(z1, f)Sp(zx, f)Rp(z1, z2; f) 
l-f/f ') 2 ] B  (B.3) 

in which r = 21z 1 - z 2 I / [D(Zl)  + D ( z 2 ) ] ;  fs = S(z)U(z)/D(z); S(z) = Strouhal number, CL(Z ) 
= local RMS lift coefficient. The aerodynamic damping in the acrosswind direction are given by 
Basu and Vickery [21] as follows: 

, a  

in which M e is the equivalent modal mass per unit length, and C 1 and C2 are functions of the 
mode shape and aerodynamic parameters. The contribution of lateral turbulence to the across- 
wind loads was not included in this study. 


