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ABSTRACT 

The estimation of the extreme of non-Gaussian load effects for design applications has 

often been treated tacitly by invoking a conventional peak factor based on Gaussian 

processes. This assumption breaks down when the loading process exhibits strong non-

Gaussianity, where a conventional peak factor yields relatively nonconservative estimates 

due to failure to include long tail regions inherent to non-Gaussian processes. In order to 

realistically capture the salient characteristics of non-Gaussian load effects and reflect these 

in the estimates of their extremes, this study examines the peak factor for non-Gaussian 

processes, which can be used for estimating the expected value of the positive and negative 

extremes of non-Gaussian load effects. The efficacy of previously introduced analytical 

expressions for the peak factor of non-Gaussian processes based on a moment-based 

Hermite model is evaluated and the variance of the estimates in terms of standard deviation 

is derived. In addition, some improvements to the estimation of the peak factor and its 

standard deviation are discussed. Examples including immediate applications to other areas 

illustrate the effectiveness of this model-based peak factor approach.  
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INTRODUCTION 

The assurance of the safety and reliability of structures requires accurate estimation of 

the extremes of the externally applied load effects due to winds, waves and earthquakes. If 

the statistical description of input and/or output in a system differs significantly from 

Gaussian, conventional methodologies with implicit assumptions of Gaussianity may no 

longer be valid, requiring a non-Gaussian estimation framework. This is particularly 

important when considering the extremes, which are sensitive to the tail regions of the 

probabilistic description of non-Gaussian processes, e.g., pressure fluctuations in separated 

flow regions (Kareem et al. 1995). 

Customarily, in the area of wind effects on structures, peak factors for Gaussian 

processes (Davenport 1964) have been widely used in most codes and standards to estimate 

the expected extremes of wind loads and the related response for design applications, e.g., 

acceleration response of tall buildings [Fig. 1(a)]. However, this factor generally yields 

nonconservative values when applied to non-Gaussian processes, e.g., a time history of 

wind pressure fluctuations around low-rise buildings [Fig. 1(b)]. To overcome this 

shortcoming, Kareem and Zhao (1994) proposed an analytical form of a univariate non-

Gaussian peak factor. Despite its usefulness in predicting extremes of non-Gaussian 

processes, some ambiguity remains regarding robustness of its application. This ambiguity 

may be due to a lack of consistent descriptions of some of the parameters involved, which 
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may be partially due to the fact that the factor was derived based on various background 

theoretical considerations (Rice 1944, 1945; Cartwright and Longuet-Higgins 1956; 

Davenport 1964; Grigoriu 1984; Winterstein 1985, 1988). This has led to a few studies that 

have inadvertently utilized this formulation with incorrect interpretation of the formula 

which led to potentially misleading conclusions. This has prompted the writing of this 

paper for correctness and consistency in the use of the approach (Pillai and Tamura 2007; 

Binh et al. 2008). 

In this study, a non-Gaussian peak factor by Kareem and Zhao (1994) is revisited to 

clarify its background and suggest a corrected expression and demonstrate its effectiveness 

with additional refinements. In addition, the standard deviation of the non-Gaussian peak 

factor estimate is derived, which due to large variability in the peak value estimates is 

believed to be of higher significance than that of its counterpart in Gaussian processes. 

 

THEORETICAL BACKGROUND 

The theoretical background involved in the derivation of the non-Gaussian peak factor 

expression (Kareem and Zhao 1994) is briefly reviewed for the sake of completeness. Note 

that for consistency, the random variable x represents unconditioned data, whereas y 

denotes its standardized (normalized) version derived as   /
x

y x x   , where ,
x

x   = 

mean and standard deviation of a process x, respectively. In addition, kurtosis (γ4) is here 

defined as ‘normalized 4
th

 central moment of a process – 3’ so that γ4 reduces to zero for 

Gaussian processes, i.e., ‘excess kurtosis’. Finally, this study focuses on the softening 

process for which kurtosis of a standardized process is larger than zero: γ4 > 0. 
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Conventional peak factor for Gaussian processes 

A well-known conventional peak factor for Gaussian processes (Davenport 1964) was 

derived based on the distribution of the maxima (positive and negative) of the standardized 

Gaussian processes (Cartwright and Longuet-Higgins 1956) in conjunction with the 

cumulative distribution function (CDF) of the extreme and an expression for the expected 

number of maxima N  due to Rice (Rice 1944, 1945) (e.g., Appendix I). Using the 

probability density function (PDF) of the extreme (Eq. 1), the expected extreme, i.e., peak 

factor (gG), and its standard deviation (
G

g
 ) were derived (Davenport 1964): 

 

2

0
( ) e x p , e x p

2
e x t

d y
p y v T

d y


 

 
    

 

 (1) 

 
0

( ) e x p ,

6
G

G g
g y d

 
    

 



      (2) 

where pext(y) = PDF of the extreme of a standardized process y; ν0 = 
2 0

/m m ; mi = i
th

 

spectral moment (= 
0

( )
i

y
n S n d n



 ); Sy(n) = one-sided power spectral density (PSD) of y; n 

= frequency in Hertz; T = duration of y in second; β = 
0

2 ln ( )T ; γ = Euler’s constant (≈ 

0.5772). In this derivation, some assumptions were invoked: 1) the total number of maxima 

is large; 2) the threshold level of the extreme is large; and 3) a Poisson based approximation 

that the crossings over a level are assumed to be independent of each other. The preceding 

first two conditions are satisfied in most cases when sufficient data points are available. 

The Poisson approximation, however, can be argued as, among others, Vanmarcke (1975) 
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has pointed out that this assumption may become conservative, especially for very narrow-

band processes in which  clustering effects may occur and the independence assumption 

may no longer be valid due to the near periodic nature of the process along with a dominant 

frequency. Other work, based on extensive simulations of narrow-band, broad-band and 

band-limited PSDs (Gupta and Trifunac 1998a, b), however, has shown that overall, the 

Poisson assumption yielded better results than those that considered clustering effects. 

Therefore, a conventional peak factor formula based on the Poisson assumption may still be 

a reasonable choice as it is usually conservative  and has been widely adopted in most 

international codes and standards (Michaelov et al. 2001; ASCE 7-05; Huang and Chen 

2008). 

 

Translation process model for non-Gaussian load effects 

Grigoriu (1984) introduced an effective model to overcome the difficulty of handling 

non-Gaussian processes utilizing a translation process that is derived from the underlying 

Gaussian process by a univariate, nonlinear transformation expressed: 

( )

x

x x
y g u




   (3) 

where g(u) = a nonlinear function of u that is assumed to increase monotonically; u = a 

Gaussian random variable. In this manner, the mean upcrossing rate of level y of a 

translation process Y(t), i.e., νnG(y), may be expressed as (Grigoriu 1984): 

2
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0
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 

 (4) 
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where subscript nG = non-Gaussian;  [ ] = Gaussian distribution; m0, m2 = spectral 

moments of a process y based on its one-sided PSD Sy(n) (thus m0 becomes unity due to the 

characteristics of a standardized process y). Accordingly, the CDF of the extreme in a non-

Gaussian process may be obtained from (Grigoriu 1984): 

,
( ) e x p [ ( ) ]

ex t n G n G
P y y T   (5) 

This CDF falls in the family of extreme distributions type I, known as Gumbel distribution 

(e.g., Ang and Tang 2006). Note that these Eqs. (4, 5) are indeed the same expressions used 

in the derivation of conventional peak factor (Cartwright and Longuet-Higgins 1956; 

Davenport 1964) except that a new random variable u is utilized instead in the translation 

process model. 

 

Moment-based Hermite model 

The key point of a moment-based Hermite model proposed by Winterstein (1985) is to 

analytically describe a nonlinear function g(u) in the translation process (Eq. 3) so that the 

PDF of a process y becomes available in analytical form. This model consists of a cubic 

polynomial with coefficients, h3 & h4 (Eq. 6a), where the coefficients were redefined in a 

later publication for more accurate modeling (Winterstein 1988). The softening process (γ4 

> 0), being of greater interest, is briefly documented here. 

   
2 3

3 4
( ) 1 3y g u u h u h u u       (6a) 

1 / 3 1 / 3
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   
 (6b) 
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where γ3, γ4 = skewness and excess kurtosis of a process y, respectively; u(y) = solution of 

Eq. (6a) for a random variable u; h3, h4, κ = coefficients of moment-based Hermite model 

(Winterstein 1988): 
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 (7b) 

It is obvious that the nonlinear function g(u) and/or u(y) only depends on two high-

order central moments, γ3 & γ4, which can be directly obtained from a standardized process 

y when the time history is available. With the Hermite model, the PDF of a standardized 

non-Gaussian process y can also be expressed as (Grigoriu 1984): 

2
1 ( ) ( )

( ) e x p
22

Y

u y d u y
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d y

 
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 

 (8) 

Assuming that u(y) is differentiable, the derivative du(y)/dy above is analytically derived 

from Eq. (6b): 
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 (9) 

 

NON-GAUSSIAN PEAK FACTOR 

Kareem and Zhao (1994) proposed an analytical expression for a peak factor (gnG) for a 

non-Gaussian process, which was based on the concepts of a translation process (Grigoriu 

1984), a moment-based Hermite model (Winterstein 1985, 1988) and the framework of the 

Gaussian peak factor (Davenport 1964) briefly reviewed earlier. Note that the original 
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formula in Kareem and Zhao (1994) has been subsequently utilized in later publications by 

the authors, Kareem et al. (1995), Gurley et al. (1997), and Kareem et al. (1998). The 

results lacked consistency as some parameters were defined differently and a few minor 

variations in both the expressions and attendant variables have been noted. A slightly 

different formula has also been presented in Chen and Huang (2009). In addition, it is noted 

in the literature that some studies have offered improvements to address issues concerning 

bandedness of the process and conservativeness of the results (Pillai and Tamura 2007; 

Binh et al. 2008). This is based on the misunderstanding in the formulation by Kareem and 

Zhao (1994) in which both issues were encompassed (Kwon and Kareem 2009). Thus, for 

the sake of clarification and casting a consistent description, the non-Gaussian peak factor 

is presented here with proper description of variables to preclude any further 

misinterpretation of the expression proposed originally in Kareem and Zhao (1994). A brief 

derivation of the following expression can be found in Appendix I: 

   

2

2 3 2

3 42 3

1 .9 8 3 5 .4 4
2 1 3 1
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g h h
 

        
   

       
                  

        

 (10) 

where β, γ, ν0, mi defined in Eq. (2); γ3, γ4, h3, h4, κ defined in Eqs. (6) and (7). Accordingly, 

if the process is Gaussian the preceding equation reduces to the conventional peak factor 

for Gaussian processes given in Eq. (2) [γ3 & γ4 reduce to zero that leads h3 & h4 to zero 

and κ = 1 (Eq. 7b)]. In this manner, the conventional Gaussian peak factor in Eq. (2) may 

be viewed as a special case of the non-Gaussian peak factor in Eq. (10). 

It is worth noting that the coefficients in Eq. (10) are computed based on the 

standardized process y only. For reference, strictly speaking, the spectral moments (mi) 
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should be obtained from a process u (translation pair of a process y). Utilizing the spectral 

moments of a process y, however, is much more convenient in practical applications. It has 

been verified by several researchers (Grigoriu 1984; Tognarelli 1998; Sadek and Simiu 

2002) that the error level was rather small, and thus can be neglected.  

Finally, recalling that the gnG is indeed the estimated extreme in a process y, the extreme 

of a process x should be calculated from the following expression. 

( )

( )

e x t n G x

e x t n G x

p o s it iv e e x tr e m e

n e g a tiv e e x tr e m e

x x g

x x g





  


  

 (11) 

Note that Eq. (10) is formulated for the positive extremes. For negative extremes that are 

often observed in a time history of negative wind pressure fluctuations on the roof of low-

rise buildings or sides of high-rise buildings, one of the following three options is available: 

a) change sign of data (i.e., data multiplied by -1); b) change sign of γ3 (i.e., -γ3); c) change 

sign of h3 (i.e., -h3). Thus, if both positive and negative extremes within a given process are 

of great interest, the non-Gaussian peak factor should be calculated twice: one for the 

positive extreme and the other for estimation of the negative extreme by invoking one of 

three options given above. Note that since the non-Gaussian peak factor formula in Eq. (10) 

always yields a positive value, a negative sign (-) is necessary to evaluate the negative 

extreme with the factor gnG in Eq. (11). 

As alluded to earlier, this peak factor formula is developed based on a combination of 

theoretical considerations and thus inevitably inherits their assumptions and limitations. 

Some comments are worth noting: 1) The peak factor formula is intended for a univariate 

case, i.e., single random variable. 2) The Hermite model (Winterstein 1988) was intended 

for mild non-stationary processes, thus the non-Gaussian peak factor may exhibit 



 

 10 

conservative values in the case of strong non-Gaussianity. This topic is discussed further in 

a later chapter. 3) Only one extreme is computed at a time, i.e., non-Gaussian peak factors 

for positive and negative extremes for a given process are different from each other; This is 

necessitated as the formulation (Eq. 10) is based on models for Gaussian processes (e.g., 

Cartwright and Longuet-Higgins 1956; Davenport 1964), which do not require the 

evaluation of the two extremes due to the symmetric nature of Gaussian processes about the 

mean.  Longer  and relatively shorter tails, i.e., statistically asymmetric nature, however, are 

usually noted in the case of non-Gaussian processes. 4) The non-Gaussian peak factor is 

obtained from a single time history; thus the reliability of extreme value estimates depends 

on the level to which the given data set encapsulates the statistical features of the non-

Gaussian process.  

 

STANDARD DEVIATION OF NON-GAUSSIAN PEAK FACTOR 

In the case of Gaussian processes it is generally acceptable to assume that the extreme 

is equal to the expected value of the extreme since the variability of the extreme value 

distribution is rather small (Davenport 1964). For non-Gaussian processes, however, this 

variability is rather large due to either a positive or negative tail. In addition, the observed 

peak may differ significantly from its expected extreme value (e.g., Sadek and Simiu 2002). 

This motivated the derivation of a closed-form expression for the standard deviation of the 

non-Gaussian peak factor (
n G

g
 ). The level of 

n G
g

  may provide guidance towards 

establishing a procedure for estimating extremes for non-Gaussian processes. Following the 
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framework for the Gaussian processes by Davenport (1964), 
n G

g
  has been derived in this 

study (Appendix I): 

2

2 2 2

3 4 32 2

1 / 2

4 3 42

1 2 .6 9 6 .5 8
6 .5 8 9 1 .6 4 5 .3 2

6

2 .6 6 2 .6 6
6 1 .6 4 1 2 1 .6 4

n G
g

h h h

h h h


  

  


 

  
       

 

   
       

    

 (12) 

Similar to the features of non-Gaussian peak factors given in Eq. (10), the standard 

deviation also reduces to / 6   for Gaussian processes as h3, h4 = 0 and κ = 1, which is 

identically equal to the expression for the conventional case (Eq. 2).  

Accordingly, the standard deviation of the expected extreme in a process x is calculated 

from the following expression: 

,
n G

x e x t g x
     (13) 

 

IMPROVEMENTS OF NON-GAUSSIAN PEAK FACTOR ESTIMATION 

Although the revised non-Gaussian peak factor formulation given in Eq. (10) is based 

on a consistent theoretical background, one problem remains that it may yield conservative 

values when the process exhibits strong non-Gaussianity, e.g., relatively large skewness 

and/or kurtosis. This is due to the nature of moment-based Hermite models (Winterstein 

1988), which were derived based on the assumption of small deviations from Gaussianity. 

In order to overcome this shortcoming, improvements have been suggested in the following 

two approaches. 
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Modified Hermite Model 

In Tognarelli et al. (1997), a modified Hermite model was presented that facilitated an 

improvement in the evaluation of a non-Gaussian process y by the Hermite model of 

polynomial coefficients (h3 & h4) in the following equations: 

 

 

3 3 2

3 3 3 4 3 4 3

4 4 4 2 2 2 2 3 2

4 3 4 3 4 3 4 4 3 4 4

8 1 0 8 3 6 6

3 6 0 3 3 4 8 2 2 3 2 6 0 2 5 2 1 2 9 6 5 7 6 2 4 3

h h h h h h

h h h h h h h h h h

 

 

   

         

 (14) 

These equations were designed simply to obtain nonlinear solutions of h3 & h4 by setting γ3 

& γ4 to be equal to those of the standardized process y.  These new estimates of h3 & h4 

were then used to solve Eq. (14) to compute gnG (Eq. 10) and 
n G

g
  (Eq. 12) in lieu of their 

original expressions in Eq. (7b). This has been demonstrated to improve the accuracy of the 

Hermite model and its estimation of the PDF of a standardized process y. Additional details 

are available in Gurley and Kareem (1997). Note that a similar technique was applied by 

Ditlevsen et al. (1996) to investigate the central limit convergence of the integrals of non-

Gaussian fields. 

 

Revised Hermite Model 

Winterstein et al. (1994) proposed new simple expressions for h3 & h4 based on optimal 

results that minimize the lack-of-fit errors for skewness and kurtosis of the Hermite model 

in the earlier publication (Winterstein 1988). These expressions are intended for application 

in the ranges γ3 & γ4: 0 < γ4 < 12; 0 ≤ γ3
2
 < (2γ4)/3, which may include most cases of 

practical interest (Winterstein and Kashef 2000): 
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 (15) 

In comparison with the modified Hermite model, this form may facilitate use in 

practical applications due to its closed-form expressions instead of solving coupled 

nonlinear equations in Eq. (14) provided its performance is equivalent to the modified 

Hermite model. Fig. 2 illustrates the overall procedure to estimate extremes based on the 

non-Gaussian peak factor framework with these improvements. 

 

Limitation on Improvement Technique 

Although these techniques are designed to improve the Hermite model, in certain cases 

they may violate the underlying assumption of the model as well as that of the translation 

process, i.e., monotonic increase of the g-function (Eq. 3) so that the transformation 

between the non-Gaussian variable y and the Gaussian variable u has a one-to-one 

relationship (Grigoriu 1984; Winterstein 1998; Ditlevesen et al. 1996; Tognarelli et al. 

1997; Tognarelli 1998). In such a case, it may be necessary to use the non-Gaussian peak 

factor and its deviation without employing these improvement schemes. An advanced 

approach to overcome this violation may be numerical optimization of the model 

parameters (e.g., γ3, γ4) in light of a constraint condition (e.g., Tognarelli 1998). Details 

about the limitation and the validity of the Hermite model can be found in Tognarelli 

(1998). Note, however, that this violation is not observed in the following examples.  
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PARAMETRIC STUDY ON NON-GAUSSIAN PEAK FACTOR 

To investigate the efficacy of the non-Gaussian peak factor (Eq. 10), its standard 

deviation (Eq. 12) and the two improvements (Eqs. 14, 15) are used with several examples 

involving time histories from data obtained from full-scale monitoring and wind tunnel 

tests. For brevity, the following abbreviations have been employed throughout these 

examples: HM = Hermite Model in Eqs. (6, 7); MHM = Modified Hermite Model in Eqs. 

(6, 7a, 14); RHM = Revised Hermite Model in Eqs. (6, 7a, 15).  

 

Measured pressure fluctuations on a full-scale low-rise building 

The first example involves measured pressure fluctuations on a full-scale low-rise 

building (Thomas et al. 1995) as shown in Fig. 3(a). These fluctuations exhibit quite a large 

departure from Gaussian (Table 1). In Fig 3(b) the histogram of the probability density 

functions (PDF) of the data and the respective distributions based on HM, MHM, RHM, 

and a Gaussian fit is shown with a zoomed lower tail region in the inset. Fig. 3(c) similarly 

shows the histogram of the cumulative density functions (CDF) of the data again with the 

respective distributions based on HM, MHM, RHM, and a Gaussian fit with a zoomed 

lower tail region shown in the inset. Overall, the PDFs and CDFs based on the MHM and 

RHM show a better fit to the histogram than the Gaussian fit and the HM. If this data were 

treated as Gaussian, the Gaussian peak factor and its standard deviation are respectively, 

4.017 and 0.332, which are quite a bit smaller than the corresponding values of gnG  and 

n G
g

   given by the non-Gaussian models (Table 1). This observation reinforces that the 

conventional Gaussian peak factor cannot capture strong non-Gaussian features and 
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therefore, Gaussianity should not be tacitly assumed. As an example, the PDFs of the 

standardized data and its negative extreme with estimates based on RHM are shown in Fig. 

3(d). The vertical lines in the extreme distribution serve as markers to indicate mean (gnG) 

and standard deviation (
n G

g
 ). For further validation purposes, the RHM-based extreme 

PDF [Fig. 3(d)] as well as its peak factor (gnG = 7.793 in Table 1) are utilized to estimate 

the standard deviation of the peak factor, i.e., numerical integration of Eq. (25). This  yields 

1.147 for the standard deviation, which shows good agreement with the approximated result 

given by Eq. (12), 1.212 (Table 1).  

The extreme, i.e., the largest maximum (or minimum) can also be directly observed 

from a single given data set, which can be used as a reference value to compare with the 

model-based peak factor. Depending on the characteristics of the data being analyzed, 

however, the extreme value estimates obtained through these models show a small 

deviation around the observed values due to their random nature. This is not necessarily a 

shortcoming of the model-based extreme estimation. Instead, this deviation may be due to 

use of a single time history to directly observe the extreme since it may not generally be 

possible in practical situations to obtain a large number of data sets for estimating extremes. 

The data driven models, e.g., based on MHM or RHM, offer not only stable and reliable 

estimates of the extreme, but also lend versatility for other applications such as simulation, 

fatigue estimates, structural reliability analysis etc. (Table 1).  
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Time histories of TLP sway and wind pressure in the roof of low-rise building model 

Two types of measured standardized time histories are considered here. They include 

the sway response of a tension leg platform (TLP) with mild non-Gaussian response [Fig. 

4(a); Table 2] and wind pressure fluctuations on the roof of a low-rise building scale model 

in a wind tunnel test [Fig. 4(b); Table 2]. Both examples are used for estimating negative 

extremes. In the case of TLP sway response, all three models (HM, MHM and RHM) lead 

to almost the same results as the data is only slightly non-Gaussian. Accordingly, HM may 

be an acceptable option in this case. MHM & RHM, however, show better PDF matches in 

view of the statistics of the data (Table 2) and are believed to be more accurate in 

estimating both gnG and 
n G

g
 . On the contrary, the wind pressure coefficients in a wind 

tunnel test (TPU: Aerodynamic database of low-rise buildings) in Fig. 4(b) exhibits strong 

non-Gaussianity, which results in discrepancies between HM and MHM/RHM based 

estimates. The observed trends are similar to the previous example. 

 

Comparison with windPRESSURE (NIST) 

windPRESSURE, a software package (NIST 2005; Main and Fritz 2006), is designed to 

facilitate more widespread use of the database assisted design approach for low-rise 

buildings. The aerodynamic database contains measured pressure time histories for a fairly 

large number of gable-roofed building models with a range of dimensions tested at BLWT 

Laboratory (Ho et al. 2003). This standalone MATLAB-based software also invokes the 

translation process model to estimate the extremes (Grigoriu 1984; Gioffrè et al. 2000; 

Sadek and Simiu 2002). Internal force time series (e.g., bending moment) obtained from the 
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wind pressure data in conjunction with influence functions of the structure are fitted to a 

Gamma distribution (for longer tail) and a Gaussian distribution (for shorter tail). The CDF 

of the extreme value is estimated by invoking the mapping procedure, in which its PDF 

(derived from the CDF) is utilized to estimate the expected extreme value (Sadek and Simiu 

2002).  

Accordingly, comparison with windPRESSURE results offers another data set for 

verifications and insights on the analytical non-Gaussian peak factor approach employed in 

this study. Here, one sample of the pressure database (NIST 2005) is utilized for the 

following building: W = 120 ft, L = 187.5 ft, H = 18 ft, R = 5ft, Open Country. 

windPRESSURE not only offers provision to save a selected number of time histories of 

the computed bending moments, but also shows extremes graphically, which is made 

possible by the MATLAB's zooming features (The Mathworks, Inc.). Thus, two time 

histories of bending moments in frame 1, which can be treated as a univariate problem, 

from windPRESSURE are utilized for the comparison of estimated mean extreme values 

based on non-Gaussian peak factor and windPRESSURE (Table 3). Two cases are 

considered: Case 1) at left knee, wind direction A = 15 (Fig. 5a); Case 2) at ridge, wind 

direction C = 165 (Fig. 5b). Overall, estimated extremes by the non-Gaussian peak factor 

using MHM or RHM show good agreement with those from windPRESSURE. HM yields 

relatively conservative extremes, but good agreement in Case 2 where its non-Gaussianity 

is regarded as mild, i.e., very small γ3 & γ4. This agrees with the underlying assumption of 

HM, as observed in the example of TLP sway response earlier (Table 2). Note that one 

discrepancy is observed in the negative extreme (or realistically a lower extreme) of Case 1, 

as the windPRESSURE approach uses a Gaussian distribution to estimate this extreme. To 
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investigate this in detail, the PDF and CDF together with a Gaussian fit and the models are 

shown in Figs. 6(a) and (b), respectively. The insets are zoomed in on the lower tail region 

of the data. It is noted that MHM and RHM exhibit very good agreements with the given 

data in terms of both the PDF and CDF, even in the short tail region (left-side tail). The 

Gaussian fit has a rather conservative tail shape (Fig. 6). Accordingly, this leads to 

estimating larger extreme values than those by MHM/RHM. This can also be noted through 

a comparison of peak factors observed by the three models: 3.88 (HM), 2.42 (MHM) and 

2.42 (RHM). HM shows rather conservative tail shape compared to those of MHM and 

RHM in the lower tail region.  

It is worth noting that although both this study and windPRESSURE employ the 

concept of the translation process (Grigoriu 1984), the analytical non-Gaussian peak factor 

and its standard deviation expression offer a more convenient format than the 

windPRESSURE procedure. windPRESSURE employs the Gamma and Gaussian 

distributions to establish the PDF of the process y, where the distribution parameters are  

estimated via the probability plot correlation coefficient method (Sadek and Simiu 2002; 

Tieleman et al. 2007). This study employs a moment-based Hermite model with improved 

schemes (MHM or RHM) to analytically obtain the PDF of a standardized process y. The 

PDF approximation with up to the fourth moment derived from the example data shows 

good agreement and expedience. Furthermore, windPRESSURE utilizes a point-to-point 

mapping procedure to estimate the CDF of the extremes, thus requiring iterations to 

generate the overall CDF. In addition, the PDF of the extremes is obtained from the 

numerical differentiation of the CDF. Consequently, the mean extreme value and its 

standard deviation are derived from the PDF by way of numerical integration. The model-
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based approach in this study, however, can directly derive analytical forms of the CDF and 

PDF of the extremes, which leads to a closed-form description of gnG and 
n G

g
 , thus 

offering a more intuitive and convenient manner to estimate the expected values of the non-

Gaussian extremes and their standard deviations in practical applications, i.e., simply using 

the closed-form expressions for gnG and 
n G

g
  without following the procedure employed in 

windPRESSURE. Both approaches are effective in their predictions of the extremes, 

selection between the two may become a matter of personal choice, though for design 

applications closed-form expression may be more attractive. 

 

APPLICATIONS OF NON-GAUSSIAN PEAK FACTOR FRAMEWORK 

Mean Extreme Estimation for Linear Sum of multivariate non-Gaussian processes 

The formulation of the non-Gaussian peak factor and its standard deviation in this study 

is based on the univariate, i.e., single random variable. If a non-Gaussian process Z consists 

of a linear sum of n-variate non-Gaussian processes Xi, i.e., Z = Xi (i = 1 ~ n), the 

expected extreme of the process Z (
e x t

Z ), may be estimated by following this expression 

(quadratic combination):  

2

1 1 1 1

E [ ]
i j

n n n n

ex t i i i ij i j x x

i i i j

Z X g g g σ σ 

   

 
   

 
     (16) 

where, E[ ] = the expectation symbol; ij = correlation coefficient between Xi and Xj, which 

becomes unity when i = j; gi = non-Gaussian peak factor of a standardized process of Xi, 

which can be obtained from Eq. (10); 
i

x
  = standard deviation of process Xi. If Xi and Xj (i 
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 j) are uncorrelated then ij is zero and the second term (square root term) reduces to the 

SRSS (square root of the sum of the squares) combination rule with regard to gi and σi. A 

similar treatment can be noted in the widely established gust loading factor approach that 

combines the background and resonant components of response (e.g., Zhou and Kareem 

2001; Kareem and Zhou 2003). As an example of this application, the formula in Eq. (16) 

may be applied for the estimation of peak normal stress in terms of wind load combinations 

in low- and mid-rise buildings (Tamura et al. 2003). 

 

Application to non-exceedance probability level 

If the extreme distribution of a non-Gaussian process can be assumed to be an extreme 

value type I (Gumbel) distribution, e.g., wind pressure around low-rise buildings (e.g., 

Sadek and Simiu 2002; Tieleman et al. 2007), then the probability level of non-exceedance 

can be easily estimated from the following procedure. 

The Gumbel distribution consists of two parameters, which can be obtained by one of 

the estimation schemes: 

  e x p e x p
e

e

x
F x





   
    

  

 (17) 

where, F(xe) = CDF of the extreme variable xe;  and  = location and scale parameters, 

respectively. The method of moments when the sample mean and its standard deviation are 

available yields the following values for the parameters: 

,
6 /

x e x t

e x t
x

  

  



  

 (18) 
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where, γ = Euler’s constant (≈ 0.5772); 
ex t

x  and x,ext = sample mean and standard deviation 

of the extreme, respectively, which can be obtained from Eqs. (11) and (13) in terms of the 

non-Gaussian peak factor derived in Eq. (10) and its standard deviation in Eq. (12). A 

typical design approach based on the mean extreme value has the non-exceedance 

probability level equal to 0.57 (57 %). Please note that the extreme value for an arbitrary 

non-exceedance probability level can be computed from Eq. (17):   

  ln ln ( )
e e

x F x      (19) 

To verify this application, an example data set involving measured pressure on a full-

scale low-rise building (Thomas et al. 1995) is utilized. The CDF from the Gumbel 

distribution was obtained using the method of moments (Eqs. 17, 18) based on RHM and 

data in Table 1 and the analytical CDF based on Hermite model (Eq. 22). The CDFs show 

very close agreement (Fig. 7).  

 

Non-Gaussian simulation 

Assuming that a sample of non-Gaussian data is available, the moment-based Hermite 

model with suggested improvements can be used to simulate a univariate non-Gaussian 

process. A simple simulation scheme, a class of modified direct transformation (Gurley et 

al. 1996), is utilized here to demonstrate the simulation procedure (Fig. 8) As alluded to 

earlier, a moment-based Hermite model can analytically transform a standardized non-

Gaussian process (y) into a Gaussian process (u) (Eq. 6a). Once the Gaussian process u is 

available, a Gaussian simulation scheme may be utilized such as the spectral representation 

method (SRM) (Shinozuka and Deodatis 1991) with known power spectral density [Suu()], 
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which can be obtained from the Gaussian process u via FFT (fast Fourier transform), to 

generate a random sample (us). Finally, a realization of the simulated non-Gaussian process 

(ys) can be obtained from us in terms of Eq. (6b). 

Theoretically, extremes can also be estimated from data, if numerous data sets are 

available, by taking a negative or positive peak of interest from each data set. With the 

peaks, one can estimate the expected extreme value by simply averaging, or by constructing 

a PDF. In this approach, the analytical PDF (Eq. 8) based on RHM is compared to the PDF 

based on the peaks obtained from the above simulation scheme with the objective of 

investigating the efficacy of the analytical PDF as well as the accuracy of the simulation 

scheme. Figure 9 shows the analytical PDF and three extreme PDFs obtained from 10, 100 

and 1000 simulated data sets, which are based on a measured pressure data on a full-scale 

low-rise building (Thomas et al. 1995). It is obvious that larger the number of peaks, the 

more accurate the PDF is and the closer it is to the analytical PDF. Although 1000 peaks 

still lack the number of points needed to accurately describe the PDF, especially in the tails, 

the observed trend shows good agreement with the analytical PDF. 

 

CONCLUDING REMARKS 

Extremes of non-Gaussian processes associated with winds or other natural events such 

as wave & seismic load effects may not be accurately estimated by a conventional peak 

factor typically used for Gaussian processes. This has been observed routinely in the field 

of wind/structural engineering, e.g., wind pressures and corresponding internal forces in 

low-rise buildings, where damage to roof by excursion in pressure has often been observed. 
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To address this for practical design perspectives, this study presents a revised non-Gaussian 

peak factor and its standard deviation along with additional improvement to methods for 

estimating extremes for univariate non-Gaussian processes. Accordingly, the conventional 

peak factor for Gaussian processes becomes a special case of the non-Gaussian when the 

terms related to non-Gaussianity are reduced to the Gaussian case. From several examples 

with given time histories, the efficacy of the model-based analytical peak factor approach in 

terms of respective improvements (MHM or RHM) for non-Gaussian cases is demonstrated. 

In practical applications, it may be desirable to use RHM as it involves minimum 

computational effort, whereas MHM necessitates the iterative solution of coupled nonlinear 

equations.  

The extreme value estimates derived simply from data analysis may not be as robust 

and reliable as those derived from a data-driven model such as moment-based Hermite 

models. Furthermore, these models not only provide the expected value of the extreme, but 

also the attendant standard deviation and PDF with additional immediate applications in 

areas such as simulation, fatigue estimates and reliability analysis. 
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APPENDIX I. FORMULATION OF NON-GAUSSIAN PEAK FACTOR AND ITS 

STANDARD DEVIATION 

The non-Gaussian peak factor and its standard deviation (Eqs. 10, 12) can be derived 

following the framework for Gaussian processes by Davenport (1964) by introducing the 

translation process model. For completeness, brief formulation including the translation 

process model is introduced here.  

In terms of the distribution of the maxima of the standardized Gaussian process y 

proposed by Cartwright and Longuet-Higgins (1956), with the assumptions that the 

threshold of the extreme level and the total number of maxima are large, the PDF of the 

maxima can be approximated:  

2

2

m a x

( )
( ) 1 e x p

2

u y
p y 

 
   

 

 (20) 

where 2

2

0 4
1 /( )m m m    is a descriptor of the bandwidth; mi = in Eq. (2); u = a Gaussian 

random variable in the translation process model (e.g., Eqs. 3, 4). Invoking the assumption 

of the Poisson approximation, the CDF of the extremes may be expressed as (e.g., Eq. 5): 

 m ax
( ) ex p ( )

ex t
P y N p y    (21) 

where, N = the total number of maxima. For practical purpose, Davenport (1964) utilized N 

as Rice’s expression of N  instead (Rice 1944, 1945), where N  is the expected number of 

maxima per second (= 
4 2

/m m ). Accordingly, N is approximated as N T  (T = duration in 

second); thus Eq. (21) can be rewritten as follows: 
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 
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    

  

 (22) 

As such, the bandwidth term multiplied by N, i.e., 2
1N   , is reduced to a new form ν0T 

(= 
2 0

/m m T ), where v0 has often been referred to as the mean zero upcrossing rate since it 

has the same analytical form as half of the expected number of zeros per second (Rice 1944, 

1945). By introducing a new variable ψ here, the PDF of extremes can be recast: 

 

2

0

( )
( ) e x p , e x p

2
e x t

d u y
p y T

d y


  

 
    

 

 (23) 

In this manner, u(y) can also be expressed as a function of ψ in Eq. (23) by invoking an 

asymptotic expansion that retains O(ψ
-1

) or greater terms as ν0T is usually large: 

0

ln ( )
( ) 2 ln ( ) 2 ln ( )u y T


  


     (24) 

where 
0

2 ln ( )T   in Eq. (2). In terms of the PDF of the extreme (Eq. 23), the expected 

value of extremes and their standard deviation can be obtained, which leads to the non-

Gaussian peak factor (Eq. 10) and its standard deviation (Eq. 12). 
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 (25) 

Note that y is a cubic polynomial function of u (Eq. 6a) in the Hermite model and u(y) here 

is treated as a function of ψ in Eq. (24), thus y(ψ) also becomes a function of ψ. This 
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mathematical manipulation, i.e., changing y integration to ψ integration, is for the sake of 

convenience in the analytical integration shown in Eq. (25).  



 

 32 

FIGURE CAPTIONS: 

Fig. 1. (a) PDFs and time histories of acceleration response of a tall building; (b) PDFs and 

traces of surface pressure on the roof and side of a low-rise building 

Fig. 2. Procedure to estimate extremes of non-Gaussian processes through a peak factor 

framework 

Fig. 3. (a) measured full-scale wind pressure data on a low-rise building; (b), (c) PDFs and 

CDFs of data, Gaussian fit and three models; (d) PDFs of data and its extremes using RHM 

[vertical lines: mean (gnG) and standard deviation (
n G

g
 ) of extreme PDF] 

Fig. 4. Standardized time histories (a) TLP sway response; (b) wind pressure coefficients 

from wind tunnel test (TPU) 

Fig. 5. Time histories of bending moments in test model (NIST): (a) moment at left knee of 

frame 1, wind direction A = 15; (b) moment at ridge of frame 1, wind direction C = 165 

Fig. 6. Case 1 in the NIST example: (a), (b) PDFs and CDFs of data, Gaussian fit and three 

models, respectively 

Fig. 7. Comparison of Gumbel distribution and analytical CDF 

Fig. 8. Procedure of modified direct transformation in non-Gaussian simulation 

Fig. 9. Comparison of extreme PDFs obtained from analytical PDF (Eq. 8) and simulations 
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(a) 

 

(b) 

Fig. 1. (a) PDFs and time histories of acceleration response of a tall building; (b) PDFs and 

traces of surface pressure on the roof and side of a low-rise building 
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Fig. 2. Procedure to estimate extremes of non-Gaussian processes through a peak factor 

framework 
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(a) 

 

(b) 

Fig. 3. (continued) 
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(c) 

 

(d) 

Fig. 3. (a) measured full-scale wind pressure data on a low-rise building; (b), (c) PDFs and 

CDFs of data, Gaussian fit and three models; (d) PDFs of data and its extremes using RHM 

[vertical lines: mean (gnG) and standard deviation (
n G

g
 ) of extreme PDF] 
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(a) 

 

(b) 

Fig. 4. Standardized time histories (a) TLP sway response; (b) wind pressure coefficients 

from wind tunnel test (TPU) 
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(a) 

 

(b) 

Fig. 5. Time histories of bending moments in test model (NIST): (a) moment at left knee of 

frame 1, wind direction A = 15; (b) moment at ridge of frame 1, wind direction C = 165 
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(a) 

 

(b) 

Fig. 6. Case 1 in the NIST example: (a), (b) PDFs and CDFs of data, Gaussian fit and three 

models, respectively 
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Fig. 7. Comparison of Gumbel distribution and analytical CDF 

 

 

 

 

Fig. 8. Procedure of modified direct transformation in non-Gaussian simulation 
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Fig. 9. Comparison of extreme PDFs obtained from analytical PDF (Eq. 8) and simulations  

 

 

 

Table 1. Statistical values, peak factors and standard deviations from data and model-

based approach (full-scale wind pressure coefficients) 

 σy γ3 γ4 gng n G
g

  

data 1.0000 -0.9869 2.3281 8.390
a 

–
 

HM 0.9970 -0.9804 3.3526 8.982 1.627 

MHM 0.9997 -0.9828 2.2765 7.845 1.233 

RHM 0.9999 -0.9966 2.2758 7.793 1.212 
      a 

observed negative extreme from standardized data
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Table 2. Statistical values, peak factors and standard deviations from data and model-based 

approach [TLP sway response and wind pressure coefficients (TPU)] 

  σy γ3 γ4 gng n G
g

  

TLP 

Sway 

data 1.0000 -0.2008 0.2976 4.147
a
 –

 

HM 0.9996 -0.1967 0.3311 4.585 0.614 

MHM 0.9997 -0.1976 0.2827 4.513 0.587 

RHM 0.9997 -0.1987 0.2853 4.518 0.588 

TPU 

data 

data 1.0000 -1.4856 3.9705 6.985
a 

–
 

HM 0.9768 -1.4571 5.1291 8.355 1.975 

MHM 0.9971 -1.4454 3.5492 7.148 1.422 

RHM 0.9971 -1.4725 3.5921 7.149 1.410 
a 
observed negative extremes from standardized data 

 

Table 3. Comparison of estimated extremes by model-based approach and 

windPRESSURE 

 Standardized process 
Original process 

Pos. extreme
c
 Neg. extreme

c
 

  σy γ3 γ4 peak std. peak std. 

Case 1
a 

data 1.0000 0.7639 0.9506 42.09
d 

–
 

4.62
d 

–
 

HM 0.9922 0.7400 1.3625 46.56 4.77 -0.42 2.43 

MHM 0.9988 0.7510 0.8675 42.47 3.30 5.89 0.56 

RHM 0.9988 0.7548 0.9107 42.38 3.27 5.87 0.56 

Case 2
b 

data 1.0000 -0.1428 0.1223 0.55
d 

–
 

-1.35
d 

–
 

HM 1.0000 -0.1426 0.1490 0.58 0.076 -1.39 0.102 

MHM 0.9999 -0.1425 0.1185 0.56 0.072 -1.38 0.099 

RHM 1.0000 -0.1431 0.1253 0.56 0.073 -1.38 0.099 
a
 Frame 1, Response 1 : moment at left knee, wind direction A = 15 

b
 Frame 1, Response 3 : moment at ridge, wind direction C = 165 

c
 Estimated extremes and corresponding standard deviations of bending moments [units in lb-ft] 

d
 Results from windPRESSURE (Main and Fritz 2006) 

 


