
Conditional Simulation of a Gust-Front Wind Field 

Lijuan Wanga, Ahsan Kareema 

 
aNatHaz Modeling Laboratory, University of Notre Dame, Notre Dame, Indiana, USA 

kareem@nd.edu; lwang@nd.edu  

ABSTRACT: Measurements in wind engineering are often influenced by the limited number of 
sensors or difficulty of monitoring at inaccessible locations that impacts the collection of desired 
information. This gap in information can be filled through the simulation of missing information 
conditional upon the measured records. This study utilizes a time-frequency framework with a 
focus on the conditional simulation of non-stationary/non-Gaussian random processes. In this 
context, an effective tool for stochastic interpolation of non-stationary stochastic processes is 
presented with application to non-stationary gust-front wind field. The proposed method allows 
characterization of the non-stationary stochastic processes in terms of time-frequency dependent 
spatial correlation functions and facilitates the conditional simulation of non-stationary space-
time random fields with evolving correlation structure known a priori. Numerical examples 
concerning the conditional simulation of gust-front wind velocities are presented to generate time 
series at locations in between measurements consistent with the derived information about the 
evolutionary characteristics of temporal fluctuations in velocity. 

KEYWORDS: Conditional Simulation; Kriging; Hermite Transform; Fourier, Hilbert and 
Wavelet Transforms; Downburst; Thunderstorm. 

1 INTRODUCTION 
 
In the analysis of the wind load effects on structures, the simulation of wind velocity conditional 
upon the availability of measured records is often required due to the limited number of 
instruments or difficulty in monitoring at inaccessible locations. Generally, the conditional 
simulation can be performed utilizing Kriging method or the Conditional Probability Density 
Function (CPDF) method. The Kriging method was developed by Krige [1] in solving the ore 
evaluation problem. Vanmarcke et al. [2] first applied the Kriging method to conditional 
simulation problems in earthquake engineering. Hoshiya and Maruyama [3] modified the 
conditional simulation method based on Kriging method by taking into account the 
corresponding error covariance matrix. Utilizing the orthogonality property between the best 
estimator and the corresponding error, the modification represents a significant improvement that 
has made the Kriging method theoretically much cleaner and computationally more efficient. 
The CPDF method was proposed by Kameda and Morikawa [4] to solve the conditional 
simulation problems involving earthquake related stochastic processes. In this probabilistic 
framework, a closed form solution for joint probability density functions for Fourier coefficients 
is derived through cross-spectral density functions based on Gaussian assumption. A recent study 
by Shinozuka and Zhang [5] has concluded that the two methods are equivalent when the 
underlying stochastic process is a one-dimensional uni-variate stationary Gaussian process with 
zero-mean. Both methods are valid when the underlying stochastic process is a stationary 
Gaussian process. However, in many cases the assumption of Gaussian distribution may not be 
appropriate. For example, regions under separated flows that exhibit non-Gaussian features in the 
pressure fluctuations are characterized by high skewness and kurtosis.  
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To address the conditional simulation problem for non-Gaussian random fields, Elishakoff et 
al. [6] presented a method adopting the iterative procedure proposed by Yamazaki and 
Shinozuka [7] to generate samples of unconditional non-Gaussian fields. By constructing a 
mapping between Gaussian fields and non-Gaussian fields, the existing conditional simulation 
technique for Gaussian random fields is effectively employed for non-Gaussian random fields. 
The correlation distortion based transformation mapping error is utilized as a criterion for 
convergence of the iterative procedure. Hoshiya et al. [8] developed a theoretical formulation 
based on the conditional probability density function with the transformation of non-Gaussian 
random variables into Gaussian variables, considering examples of log-normal, exponential, 
Rayleigh, Gumbel and uniform distributions. Using the forward modified Hermite transform as a 
mapping scheme between Gaussian and non-Gaussian processes with desired values of skewness 
and kurtosis, Gurley and Kareem [9] introduced “spectral correction” method for conditional 
simulation of non-Gaussian processes to replace missing or damaged records. The simulation 
accurately maintained the correlation between multiple locations as well as the appropriate 
spectral and probabilistic contents of the processes at each location. 

Despite the increasing attention the conditional simulation schemes have received in recent 
years, very limited studies have been devoted to the simulation of non-stationary fields. In 
general both the statistical moments and the frequency content of such non-stationary processes 
evolve in time, which makes conditional simulation of such random processes even more 
challenging. Heredia-Zavoni and Stanta-Cruz [10] mapped the non-stationary random fields to a 
domain where the conditional simulation is performed for stationary, space-time fields. They 
used a stochastic model for one dimensional earthquake ground motion [11] by analyzing 
evolutionary spectral density and cross-correlation structure of a class of non-stationary random 
fields in terms of envelop and frequency modulation functions. Morikawa and Kameda [12] 
introduced group delay time spectra to represent the properties of non-stationary processes in the 
numerical generation of conditional random fields containing non-stationary time series. These 
methods were straightforward extensions of those for the stationary processes based on Fourier 
coefficients/spectra.  

In recognition of the recent developments in the time-frequency analysis tools, this study 
seeks to utilize time-frequency analysis tools to model the time-dependent characteristics 
involved in the conditional simulation of non-stationary random fields.  Wavelet transform, a 
mathematical tool to represent non-stationary processes as a liner superposition of wavelet basis 
function has formed the basis of this study. An evolutionary cross-correlation structure of non-
stationary random fields in terms of wavelet coefficients is constructed which effectively 
facilitates the extension of the Kriging method from stationary random to non-stationary random 
fields. A framework of generating interpolating stochastic processes for the conditional 
simulation of non-stationary space-time random fields is proposed. A numerical example related 
to the conditional simulation of gust-front wind velocities is presented to demonstrate the 
accuracy and efficacy of the proposed method. 

2 THEORETICAL BACKGROUND 
 
The problem of conditional non-stationary space-time random processes can be formulated as 
follows. Consider  as non-stationary space-time processes, whose several realizations 

have been recorded at locations
),( txU

),( txu i ix )1,...,2,1( −= ni . The conditional processes 
 are to be estimated at some other locations of )),(|,( txutxU ij ),...,;1,...,2,1( Nnjni =−=
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interest. The proposed iterative conditional simulation method employs collectively a Kriging 
method and Hermite and wavelet transforms, which are briefly described in the following.  

2.1 Kriging Method 

The Kriging estimate of unknown realization , denoted as , is interpolated 
linearly in terms of  known realizations as follows: 
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The Kriging weights inλ  can be determined using Lagrangian technique.  By minimizing the 
estimation variance 
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which subjects to the unbiased estimator condition 
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where E is the ensemble average; correlation function between  and ，ijR iU jU inλ is thus 
evaluated as follows 
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At the same time, the errors for a stochastic process with zero mean are unconditionally 
simulated using modal decomposition method on the basis of the covariance matrix (Hoshiya 
1995) for the stochastic variates  
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which is established according to the following relations: 
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Finally, the conditionally simulated values are obtained as  
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Due to the underlying assumption of  as a stationary Gaussian random process for the 
Kriging method, it is necessary to introduce modified Hermite transform and a time-frequency 
analysis tool, wavelet transform, to allow the extension of Kriging method to non-stationary/non-
Gaussian random processes.  

),( txu i
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2.2 Modified Hermite Transform 
The forward modified Hermite transform (Gurley & Kareem 1998) generates a non-Gaussian 
process through static transformation of a Gaussian process  ngx gx

)3()1( 3
4

2
3 ggggng xxdxdxx −+−+=                                                             (9) 

where the appropriate values of the polynomial coefficients and  are tailored such that 
matches the target skewness and kurtosis. Correspondingly, the backward modified Hermite 

transform identifies the desired coefficients in the inverse relationship of Equation 9 necessary to 
produce a Gaussian process from a non-Gaussian process . Accordingly, the forward and 
backward modified Hermite transform allows a convenient mapping between Gaussian processes 
and non-Gaussian processes and facilitates application of the Kriging method to non-Gaussian 
processes. 

3d 4d

ngx

gx ngx

2.3 Wavelet Transform 
The wavelet transform has been of particular interest for the analysis of signals characterized by 
transient behavior or discontinuities. Aiming to represent a signal as a linear superposition of 
basis functions, wavelet transforms are localized and dependent only on the local properties of a 
signal in the neighborhood [13]. As a convenient tool to extract time-frequency information from 
a non-stationary signal, wavelet transform has found a number of applications in engineering in 
recent years. Through a set of basis functions, i.e., the dilation and translation of the parent 
wavelet function, the wavelet transform provides a bank of wavelet coefficients representing a 
measure of similitude between the basis function and the signal at time t  and scale , as shown 
below: 
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Accordingly, for discrete values of time  and scale , a discrete wavelet transform (DWT) 
is defined as: 
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where represents the wavelet basis function. The dilation of a discrete wavelet can be 
viewed as a tree of low and high pass filtering operations followed by a sub-sampling by 2 which 
successively decompose a signal akin to a dyadic filter bank.  
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Computationally, the DWT is very efficient. However, the classical DWT does not exhibit the 
desirable property of shift-invariance, i.e., in general the DWT of a translated signal is not the 
translated version of the DWT of the signal. To overcome this and provide more precise 
information for the frequency localization, the stationary wavelet transform (SWT) has been 
proposed as a special type of DWT (14). Excluding the step involving sub-sampling, SWT 
ensures the desirable property of translation invariance and requires more computations. This 
study utilizes SWT in the proposed simulation algorithm and invokes decomposition of a non-
stationary process into a summation of mono-component processes: 
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in which N  represents the level of decomposition; denotes the detail function at level n  
and  is the approximation function, which represents the trend in . The SWT 
decomposition facilitates the definition of time-varying correlation map between the wavelet 
coefficients of processes and  at each level of the decomposition. Since the 
localized wavelet coefficients  represent the energy at corresponding time intervals of 
the signal , the representation of the squared wavelet coefficients in the time-scale domain 
has been referred to as scalogram, which represents time-varying energy over frequency. 
Correspondingly, to identify correlation between signals, the squared coefficients are replaced 
with the average of the product of the wavelet coefficients of two different processes, which 
provides a view of the coincident events between the processes, revealing time-varying pockets 
of correlation over frequency. The wavelet-based correlation map may be expressed as follows 
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in which the localized  time integration widow ]2/,2/[ tNttNtT ∆+∆−=  is selected based on 
the time resolution desired in the resulting correlation map. It will be shown in the next section 
that the SWT allows convenient extension of traditional Kriging method to time-frequency 
domain for non-stationary random fields.                                                                                      

3 CONDITIONAL SIMULATION SCHEME 
 
The effectiveness of wavelet transform to present transient characteristics of non-stationary 
processes has led to propose here the use of Kriging estimates of unknown realization , 
denoted as  in terms of stationary wavelet coefficients. Now the problem becomes 
interpolating wavelet coefficients of unknown realizations, , in terms of wavelet 
coefficients   of realizations at 
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iu )1,...,1( −= ni 1−n  locations. With the aid of the Kriging 

method, invocation of the modified Hermite transform and the wavelet transform the proposed 
iterative conditional simulation method proceeds as follows. First, apply SWT to  known 
observations  recorded at locations 

1−n
),( txu i ix )1,...,2,1( −= ni  and obtain the corresponding 

wavelet coefficients  ),( taw
iu )1,...,1( −= ni . This is followed by finding time-varying correlation 

map between the wavelet coefficients of processes and , i.e., , using 

Equation 13, which is then designated as design correlation . The envelop functions 
are determined by spline fitting, which is utilized to demodulate wavelet coefficients 

and determine the correlation at each level as and . The first iteration is started. 
With the aid of forward and backward modified Hermite transformations, the conditional 
simulation is carried out using the Kriging method for Gaussian processes. Like the conventional 
Kriging simulation, the best linear unbiased estimate (BLUE) of  

 is determined using Equations 1 and 4. Unconditional errors 
based on the covariance matrix described in Equation 5 are obtained using the Cholesky 

or modal decomposition method. Thus the conditionally simulated wavelet coefficients for 
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unknown realizations are obtained (Eq. 8). The resulting wavelet coefficients for 
location  are then transformed back to non-Gaussian distribution . By introducing 

envelop functions, simulated wavelet coefficients become with correlation 
structure . The resulting correlations are then compared to the target values and error is 
defined as  
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If the error is unacceptable, second iteration is invoked by sending corrected design correlation 
back to the beginning of the simulation loop which results in the revised value of . The 
iterations continue, until the correlation converges to the target correlation within the prescribed 
tolerance. In this manner, the time-dependent correlation of the resulting simulated wavelet 
coefficients matches the target within user-specified tolerance. In the end, the simulation is 
completed by the inverse stationary transform of simulated wavelet coefficients , that is, 
reconstruction based on the multilevel stationary wavelet decomposition structure. The 
schematic of the simulation procedure is demonstrated in Figure 1.  
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Figure 1:  Schematic of the conditional simulation method          
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weighted on the time and frequency localized wavelet coefficients. However, with the use of 
Fourier transform involved in conventional Kriging method, the underlying global 
decomposition makes it unable to faithfully preserve and demonstrate the inherent non-stationary 
characteristics. In addition to the mathematical elegance, the proposed simulation method based 
on the Kriging method and SWT is computationally efficient, as will be shown in the following 
numerical example.                 

4 EXAMPLE 
 
To demonstrate the effectiveness and efficacy of the proposed simulation method, a set of 
downburst wind data is employed herein. The rapid variation in wind speed and direction 
associated with thunderstorm downbursts characterize wind time histories as non-stationary 
processes with time-varying mean, variance and frequency contents. Thunderstorm related 
winds, e.g., gust fronts are ideal for the conditional simulation of non-stationary processes as 
often very limited data is gathered and there is always a need for data at additional locations, 
therefore, it has been chosen for this example.  

The data is simultaneously recorded on June 15, 2002 at different heights in a field 
experiment by the Department of Atmospheric Science at Texas Tech University (15). Following 
the proposed iterative conditional simulation procedure, the wind speeds at 10m height  is 
simulated based on the data measured at 4m  and 15m  heights (as shown in Fig. 2). 
The simulation preserves the temporal fluctuations of the real measurement at 10m height, as 
compared in Figure 3. The time-varying correlation structure, including the simulated and target 

,  and  are compared in Figures 4-6, in which red lines  
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                 Figure 2:  Measurements                         Figure 3:    Comparison of Measurement and Simulation 
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                 Figure 4:                           Figure 5:                                 Figure 6:    ),(33 taR ),(13 taR ),(23 taR
represent simulation results and blue lines represent target. The simulated results accurately 
maintain the correlation between multiple locations. 
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5 CONCLUDING REMARKS 
 
A framework for the conditional simulation of non-stationary/non-Gaussian space-time random 
processes with target correlation structure is proposed. The simulation framework utilizes 
wavelet transform and modified Hermite transform as a format for time-frequency modeling of 
non-stationary processes and a mapping between Gaussian and non-Gaussian processes, 
respectively in the application of the Kriging method to simulate non-stationary/non-Gaussian 
processes. The introduction of wavelet coefficients based correlation help extend Kriging method 
from time/frequency domain to time-frequency domain. The focus of the simulation scheme on 
non-stationary and non-Gaussian random processes provides a new perspective for the 
conditional simulation of these processes using time-frequency framework. Applications of this 
scheme to transient wind events are particularly noteworthy as on very limited occasions such 
events are captured at limited locations, which can be conveniently expanded by the proposed 
scheme. 
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