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ABSTRACT

The non-stationarity and localization of energetics in the transient wind fields have posed difficulty in proper mod-
eling and simulation of these events. Utilizing recent developments in time-frequency analysis framework, i.e., the
wavelet and Hilbert transforms and empirical mode decomposition, this paper seeks to highlight the evolutionary fea-
tures of these wind fields by offering schemes for their modeling and simulation. With the help of time-frequency
analysis tools, hurricane winds are characterized as a summation of time-varying mean and fluctuating components.
A simulation approach based on a time-frequency framework is proposed for generating winds at different locations
during the passage of a downburst. Numerical examples are presented to demonstrate the efficiency and effectiveness
of the proposed modeling and simulation schemes.
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INTRODUCTION

Extreme winds experienced in hurricanes and thunderstorms are of significant concern to structural en-
gineers since these winds are responsible for their damaging effects on buildings and structures. Rapid
variations in wind speed and direction observed in downburst and hurricane winds underscores the non-
stationary features of these wind fields. The non-stationary wind time histories are characterized not only
by time-varying mean speeds but also by time-dependent power spectra. In recognition of the significance
of capturing these features in predicting the structural response and attendant performance-based design
(Yeh and Wen 1990; Conte and Peng 1992), the limitations of traditional stationary wind model have been
examined (Ashcroft 1994). Autoregressive models have been attempted to model non-stationary wind data
collected in the field (Smith and Mehta 1993). Gurley and Kareem (1999) applied wavelet transforms to
analyse wind time histories and identified response characteristics dependent on higher response modes
when the turbulent structure of the wind changes in time through wavelet transform. Recently, Chen and
Xu (2004), Wang and Kareem (2004%) analyzed typhoon-induced non-stationary wind speed by modeling
it as a deterministic time-varying mean wind speed component plus a zero mean stationary fluctuating wind
speed component. The empirical mode decomposition and wavelet transform were utilized to extract time-
dependent mean. This paper assesses the efficacy of extracting the time varying mean wind speed by the two
different approaches, i.e., discrete wavelet decomposition and empirical mode decomposition. With the re-
definition of turbulence wind characteristics, the wind speed data recorded during Hurricane Lili, 2002 was
analyzed. The results are then compared to those obtained through traditional approach based on assumption
of stationary wind model.

The second part of the study focuses on the simulation of downburst winds. Whereas current wind load-
ing codes and wind engineering tests rely exclusively on boundary layer wind profiles. Field observations
made during the Northern Illinois Meteorological Research on Downburst (NIMROD) project (Fujita 1985)
and the Joint Airport Weather Studies (JAWS) project (McCarthy et al. 1982) have revealed that downburst
winds possess significantly different velocity profiles which have a maxima close to the ground with lower
velocities in the upper part of the outflow layer of cold air. A number of efforts have been made in the lit-



erature to model and simulate thunderstorm downburst winds to study associated wind loads on structures.
Holmes (2000) proposed an empirical model of the horizontal wind speed and direction in a traveling down-
burst, based on the impinging jet model by the vector summation of translation speed and the radial wind
speed induced by an impinging jet. However, the variations of wind speed with height is not incorporated
in this model, which has been accounted by several other researchers. Oseguera and Bowles (1988) have
proposed a vertical profile expression satisfying the requirements of fluid mass continuity, without consider-
ation of the storm movement. Vicroy (1992) has developed an axisymmetric, steady-state empirical model
for the vertical profile which is a modified version of the Oseguera/Bowles’ model. Wood et al. (2001)
have advanced a generic empirical equation to predict the normalized mean velocity profile based on down-
draft wind tunnel experimental data, which showed reasonable agreement with a simplified CFD analysis.
More recently, Chen and Letchford (2004) have proposed a hybrid model, in which the mean wind speed is
modeled combining both Wood’s (2001) vertical velocity profile and Holmes’ (2000) empirical model for
horizontal wind speed, and the fluctuations in velocity are modeled as a uniformly modulated evolutionary
vector stochastic process.

In most of the aforementioned efforts for numerical modeling and simulation of downburst winds, the
variation of wind speed in space (height/radial distance) is described in the profile shape function; how-
ever, the actual time dependence of the evolutionary behavior of the wind field is fully not considered. The
detection of non-stationary structure embedded in downburst wind would make it possible to capture local-
ized pattern in the flow field. Chen and Letchford (2005) applied proper orthogonal decomposition to the
time-varying means, standard deviations and normalized fluctuations for modeling and numerically simu-
lating downbursts. Wang and Kareem (2004%) utilized a wavelet based time-frequency framework to model
flow field in transient flows like eyewall of hurricanes and downburts. This paper seeks to highlight the
evolutionary characteristics of downburst in time-frequency framework, involving the wavelet and Hilbert
transforms. A stochastic simulation model is proposed to generate downburst wind field based on recorded
downburst wind data. Example simulations are presented to demonstrate the effectiveness of the proposed
time-frequency approach to simulate downburst wind flows.

THEORETICAL BACKGROUND

The classical Fourier transform (FT) approach has been a popular tool in the field of signal processing
for decades due to its strength to present the power spectrum of a signal, however, the intrinsic global
sinusoidal decomposition limits its application to stationary processes. The short-time Fourier transform
(STFT) overcomes this limitation by involving a moving-window which permits application of FT to non-
stationary signals. Yet the fixed window width involved in the STFT dictates a constant resolution in time-
frequency domain and impedes its ability to detect highly localized components. Alternatively, the wavelet
transform (WT) provides an attractive venue in which non-stationary signals can be characterized in the
time-frequency domain. The WT in tandem with Hilbert transform (HT) will be used in this study to
extract valuable evolutionary information from the hurricane/downburst wind data and subsequently used
for simulation of these wind fields.

WAVELET TRANSFORM

Generally, WT falls in two categories: continuous wavelet transform (CWT) and discrete wavelet trans-
form (DWT). CWT uses discretely sampled data, but the shifting process is smoothly carried out across the
sample length with a flexibility in the selection of scale (frequency) resolution. On the other hand, DWT has
orthogonal basis and is broken into dyadic blocks which entails shifting and scaling based on a power of 2.
The dilation function of DWT can be viewed as a tree of low and high pass filtering operations followed by



sub-sampling by 2 which successively decomposes a signal like a dyadic filter bank. Through a set of basis
functions, the dilation and translation of the parent wavelet function, the WT provides a bank of wavelet
coefficients representing a measure of similitude between the basis function and the signal at time ¢ and
scale a (Kareem and Kijewski, 2002), as shown below:
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where 1; j(n), the wavelet function, is given by
i j(n) = 2% (2'n - j5) 3)

The localized wavelet coefficients represents the energy at corresponding time intervals of the signal. The
visualization of the squared wavelet coefficients on time-scale domain is referred to as scalogram, which
reveals time-varying energy over frequency. To identify correlation between signals, the squared coefficients
are replaced with the product of the wavelet coefficients of two different processes, which provides a view of
the coincident events between the processes, revealing time-varying pockets of correlation over frequency
(Gurley and Kareem 1999). Besides offering a multi-resolution decomposition, the time-frequency character
of WT allows adaptation of both traditional time and frequency domain system identification approaches to
examine nonlinear and non-stationary data (Kijewski and Kareem 2003). The classical DWT does not
exhibit the desirable property of shift-invariance, i.e., in general the DWT of a translated signal is not the
translated version of the DWT of the signal. As a special version of the DWT, the stationary wavelet
transform (SWT) does not include the sub-sampling step, thus ensuring the desirable property of translation
invariance. For additional details, reference should be made to Percival and Walden (2000).

HILBERT TRANSFORM

The time-frequency contents of a signal can be tracked by way of instantaneous frequency of the signal
encapsulated in the analytic signal format, which is a function of time varying amplitude and phase and can
be obtained by the HT of the signal as expressed by:
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in which 7 is a time variable and P denotes the Cauchy Principle Value. The sum of the random variable
and its HT, which are complex conjugate pair, results in an analytic signal, which can be equally expressed
in an exponential form:
X(t) = X(t) +iH(t) = a(t)e’® (5)

where a(t) and 6(t) denote the instantaneous amplitude and instantaneous phase of X (), respectively. The

instantaneous frequency is defined as the time-varying derivative of the instantaneous phase of the analytic
signal: ®
do(t

w(t) = at (6)

The HT cannot inherently accommodate signals with multiple frequency components thus requiring that

multicomponent signals be transformed into mono-component signals prior to the implementation of the

HT. Huang et al. (1998) introduced an empirical mode decomposition (EMD) to decompose data into a



finite number of “intrinsic mode functions (IMF)”. They preferred this approach over the filtering offered
by the WT to obtain a narrow band signal as they believed that wavelet based filtering may contaminate the
data by spurious harmonics caused by non-linearity and non-stationarity of data. Recently, the efficacy of
EMD and WT based analysis has been highlighted in Kijewski-Correa and Kareem (2004). Also, Olhede
and Walden (2004) have shown that the SWT-based projection produces mono-component separation that
admits well-behaved Hilbert transform with results superior to those obtained by the empirical mode de-
composition, even for sinusoids that theoretically contain intrinsic mode functions. This study utilizes SWT
in the proposed simulation algorithm and decomposes a possibly multi-component non-stationary process
into the summation of mono-component processes:

X(t) = Dn(t) + A(2) (7)

in which n represents the level of decomposition; D,,(¢) denotes the detail function at level n and A(¢) is
the approximation function, which represents the trend of X (¢).

NON-STATIONARY WIND MODEL

In the analysis of wind effects on structures, traditionally, the longitudinal wind speed is assumed to be a
stationary random process, which can be expressed as

Ut) =TU + u(t) (®)

in which U is a constant mean wind speed, u(t) is a longitudinal fluctuating wind speed component. The
constant mean wind speed denotes an average over a time interval 7', which is usually taken as one hour. In
this study, the non-stationary wind speed is modeled as the sum of a deterministic time-varying wind speed
and a zero-mean stationary random process as fluctuating component:

Ut)=U(t) +u(t) ©)

where U (t) is the temporal trend of wind speed and u'(t) is the fluctuating component which can be taken as
a zero-mean stationary process (Wang and Kareem 2004%). After a time-varying mean wind speed U () has
been identified, the fluctuating wind speed u/(t) can be acquired by subtracting the time-varying mean wind
speed U (¢) from the measured wind speed time history, u'(t) = U (t) — U(t). As the fluctuating wind speed
u'(t) is assumed to be a zero-mean stationary process, the standard deviation and the probability density
distribution and the wind spectrum of the fluctuating component can be obtained by replacing u(t) by u'(t)

in the traditional definition of these quantities.

For non-stationary wind speed time history with time-dependent mean, the turbulence intensity of non-
stationary wind speed is proposed to be given by the expected value of the time-dependent turbulence inten-

sity over the time interval 7T'.
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in which E[] denotes the expected value over the time interval T'; o 7 represents the standard deviation of
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the fluctuating wind speed over the time interval 7'. Accordingly, the gust factor is defined as the maximum
ratio of time-varying mean wind speed over time £; to the corresponding hourly time-varying mean wind
speed: -
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in which ¢; is normally equal or less than 3600s. The integral length scale in the direction of the flow is

defined as .
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where R,/ (7) denotes the autocorrelation function of u’(t), and S, represents its Fourier transform. Uti-
lizing the calculated length scale of longitudinal wind speed fluctuations, the commonly used von Karman

spectrum is recast as: o
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The following section deals with data analysis involving wavelets and EMD to capture the time varying
mean wind.

g

DATA ANALYSIS
DISCRETE WAVELET DECOMPOSITION

The set of hurricane data analyzed in this section was measured during Hurricane Lili, 2002 by the
University of Florida researchers (Gurley 2002). As shown in Fig. 1, nineteen consecutive hours of data was
sampled at 1/3 Hz. Fig. 2(a) demonstrates the 5 levels of signal sub-components and residue of the signal
decomposed by DWT at 10 levels. From the figure, it is obvious that as the level number increases, the
frequency component decreases and the residue matches the trend of the corresponding time-averaged mean
quite well. Figs. 2(b) demonstrates the comparison of constant hourly mean and the time varying hourly
mean of the 11%¢ hour of the signal, in which the time-varying means were obtained by DWT. Obviously,
the approximation reflects the trend of the signal, while the hourly mean remains constant during the hour.
Correspondingly, the fluctuating process is the original signal minus hourly mean, or the approximation in
the case of DWT. Probability density functions of the corresponding fluctuating process derived from the
constant mean, and 600s-mean of the 15" hour data are shown in Figs. 2(c) together with the fitted Gaussian
function to the data. It can be noted that the pdf derived from the constant mean deviates from the Gaussian,
while that from the time-varying mean exhibits a better match with the Gaussian. It has been noted that often
hurricane winds have been perceived as non-Gaussian by examining the pdf without any prior conditioning
of the data. Nonetheless, this observation may still be valid in strong convective regions of a hurricane.

For the calculation of the integral length scale (Eq. 12), the low frequency component of S,/ (n) is sen-
sitive to different time-averaged means, which influences the calculated value of the length scale. As the
low frequency component increases in the time varying mean, the value of S,/ (0) decreases, resulting in
smaller integral scale. Using hourly mean, 1200s-mean, 600s-mean, 300s-mean, and 150s-mean, corre-
sponding calculated length scales are 94m, 90m, 85m, 79m and 70m, respectively. Figs. 2(d) shows the
power spectral density functions of the two fluctuating processes of the 18" hour data using hourly mean
given by DWT, together with a fitted von Karman spectrum. It is observed that the fluctuating component
derived from the time-varying mean has lower energy at low frequencies than the corresponding process
with a constant mean. This can be explained as the very low frequency components have already been
filtered out of the fluctuating component. At high frequencies, there is no discernible difference. The von
Karman spectrum was fitted using the respective value of the length scale. Using proposed Egs. (10) and
(11), wind characteristics such as turbulence intensity and gust factor are reported in Figs. 2(e) and 2(f),
along with the traditional approach. It is observed in Fig. 2(f) that by using 1200s time-varying mean, the
turbulence intensity is very similar to that given by the constant mean, with slightly reduced values. Gust
factors obtained by the time-varying mean have a similar trend in comparison with the traditional method.



EMPIRICAL MODE DECOMPOSITION

The empirical mode decomposition was utilized to obtain the time-varying mean of the wind speed data.
Fig. 3(a) shows some of the IMFs of the signal in which the bottom plot shows the residue, which gives
the trend of the original signal. In this study, the residue was taken as the corresponding time-varying
mean. Results are shown with the residue as time varying mean in Fig. 3(b). It can be noted that the time-
dependent mean matches the trend of the signal. The pdf is shown in Fig. 3(c), and the power spectral
density function is presented in Fig. 3(d) using 600s-mean, together with the corresponding von Karman
spectrum. Using hourly mean, 600s-mean, and 150s-mean, corresponding turbulence length scales were
found to be 96m, 90m, and 85m, respectively. Using Eq. 10 and Eq. 11, the turbulence intensity and gust
factor were obtained. The results are compared to the traditional method in Figs. 3(e) and 3(f). It is observed
that the gust factors and the turbulence intensity have trend similar to those of the traditional method with
some exception.

SIMULATION

A host of methods for numerical simulation of non-stationary processes based on one sample process have
been developed over the years. Initially, by utilizing prescribed evolutionary spectrum, stochastic models
including parametric time series (Deodatis and Shinozuka 1988) and stochastic decomposition models (Li
and Kareem 1991) have been proposed to simulate earthquake ground motions and produced satisfactory
results. The difficulty of applying those models to measured signals lies in the fact that the envelop func-
tions utilized in the procedures are predetermined, regardless of the time-varying frequency component
embedded in actual records. This neglect of non-stationarity in frequency has certainly brought mathe-
matical convenience, however, studies have found that the temporal variation of the frequency component
can have a significant effect on the response of structures (Yeh and Wen 1990; Conte 1992). Progress in
the estimation of time dependent spectra of non-stationary progresses (Scherer et al. 1982; Spanos et al.
1987) and the joint time-frequency analysis techniques have given rise to a number of stochastic simulation
models based on time-frequency domain. A non-stationary analytical stochastic model for simulating earth-
quake accelerograms has been proposed by Conte and Peng (1997). The main idea of this model is to fit
the analytical evolutionary power spectrum to the target power spectrum using least-square fitting method,
in which the target power spectrum is determined from a single realization of random process by means of
short-time multi-window (STMW) spectrum estimation method. Alternative ways to track the instantaneous
time-frequency contents of a signal depend on the time-frequency analysis tools such as WT and EMD-HT,
both identify time-dependent frequency information, thus offer different venues for the simulation of non-
stationary random processes (e.g., Gurley and Kareem 1999; Iyama and Kuwamura 1999; Wen and Gu
2004; Wang and Kareem 2004%).

A new simulation method proposed in Wang and Kareem (2004%) for the simulation of non-stationary
random processes is applied to the simulation of downburst wind field. The simulation procedure involves
the wavelet and Hilbert transforms in tandem and relies on the ability of the SWT to decompose multi-
component signal to mono-component signals that admits application the HT to derive instantaneous am-
plitude and frequency from the signal. By utilizing proper orthogonal decomposition of the covariance
matrices of the instantaneous frequency, the simulation is extended to multivariate processes.

SIMULATION MODEL

In the numerical simulation of stationary random processes, typically independent uniformly distributed
phase angles are employed in a Monte Carlo simulation scheme. In order to examine the distribution in case



of a non-stationary signal, an example of data from a downburst shown in Fig. 4 is employed. Details of the
data are discussed in the example. For the measured non-stationary downbust wind velocity, the distribution
of its phase angles at each decomposition level may be regarded as still being approximately uniform,
as presented in Fig. 5(b), but the phase differences do not exhibit a similar shape, as noted in Fig. 5(c).
Several attempts have been reported in the literature to fit statistical distributions to the phase differences.
Ohsaki (1979) has performed analysis on ground motion accelerograms and concluded that the probability
distribution is “normal or normal-like” after introducing an appropriate shift of the phase difference to
account for the asymmetry. Naraoka and Watanabe (1987) have employed a log-normal distribution for the
phase differences to simulate accelerograms and Matsukawa et al. (1987) have fitted a normal distribution
to the phase differences after a proper shift. After exploring the dependence of phase angle difference on
Fourier amplitude, Thrainsson et al.(2000, 2002) propose beta distribution for large and intermediate Fourier
amplitudes and the combination of beta and uniform distributions for small Fourier amplitudes.

Based on this wind data, an assumption of normal distribution is made in the proposed simulation model
to fit instantaneous frequency as a random process at each frequency band. The examination of the instan-
taneous frequency distribution at each level of of the decomposed signal reveals dominant frequency com-
ponent and similarity with the Gaussian distribution, with some departure in the tails, especially at lower
levels such as the first level. To better represent the frequency information, such departure is excluded in a
truncated Gaussian distribution. Therefore, the frequency falls into the range [p; — CL; x 0, ui+ CR; % 0;] is
taken as valid frequency fuv; and further formulate the mean and variance of Gaussian distribution, in which
u; and o; denote the mean value and the standard deviation of the original frequency in each frequency band,
respectively, and CL;, CR; are two constants at level ¢ that define the boundary of the valid frequency, al-
lowing for the flexibility to choose a reasonable range of the valid frequency for individual processes and
levels. Based on the statistical information of valid frequency, instantaneous frequency are produced at each
level using Gaussian assumption. The choice of the constants C'L; and C'R; at each level depends on the
shape of each measured frequency, and may vary from 0.5 to 1.2. Appropriate values of the two constants
provides good agreement between the Gaussian function and the valid frequency. Such comparisons are
demonstrated in Fig. 5(c), in which the bright line representing the Gaussian distribution function is plotted
together with the histogram. A good match between the two is observed.

The aforementioned simulation procedure is extended to multivariate processes by the proper orthog-
onal decomposition of the covariance matrix of instantaneous frequency. For the sample record of the
non-stationary vector processes, X (t) = [X1(t), Xo(t), ..., Xnx(#)]7, its SWT and Hilbert transforms are
obtained in sequence to yield mono-component subprocesses, instantaneous phase/frequency and instan-
taneous amplitude. The instantaneous frequency vector is expressed in terms of the eigenvectors of its
covariance matrix:

M
Grn(t) = D Vg mbp(t) (14)
m=1

where M is an appropriately selected dominant mode number (M < N). Accordingly, the multi-variate
random processes can be simulated as:

K
Xn(t) _ Re[ z G,kyn(t)eifwk’n(t)dt ] (15)
k=1
The covariance function of the process is expressed as:
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EXAMPLES

To demonstrate the strength of the proposed simulation method, a set of wind data simultaneously
recorded on June 04 2002 by the Department of Atmospheric Science of Texas Tech University was em-
ployed herein. Fig. 4(a) shows the wind speed data simultaneously recorded at the same height (10m) at a
Wind Engineering Mobile Instrument Towers 3,4,5 and 6, which are 263m apart, during the passage of a
downburst. Corresponding time-varying mean in Fig. 4(b) presents the rapid velocity change during the pas-
sage of the downburst. The wavelet decomposition of the data recorded at Tower No. 3 is shown in Fig. 5(a),
in which the first six plots present the detail functions and the bottom plot shows the approximation function,
which is taken as the time-varying mean in this study. A comparison of the phase angle distribution to the
uniform distribution, and the instantaneous frequency and the Gaussian distribution are shown in Figs. 5(b)
and (c). In Figs. 6(a) and (b), its time-varying characteristics are noted, with high energy concentration in
the frequency range up to 0.05 Hz during the time between 600 to 800 second. Simulation of a set of data
using the proposed method is shown in Fig. 4(c). The Hilbert spectrum and scalogram of the simulation
shown in Figs. 6(d) and (e) clearly show that the time-varying characteristics of the measured data are cap-
tured and preserved in the simulation process. To further explore the relationship between each component,
Figs. 6(c) and (f) present the measured and simulated cross-scalogram of downburst data recorded at Tower
No. 3 and 6. Obviously, as for the time-varying correlation relationship, the simulation and record show a
good agreement.

DISCUSSION AND CONCLUSION

An alternative approach for analyzing non-stationary wind speed time histories was presented here. The
concept of decomposing wind speed into the sum of a deterministic time-varying mean wind speed plus a
stationary fluctuating wind speed was realized by DWT and EMD, which helped to eliminate the limitations
of the stationarity assumption implied in the traditional approach. Field measurement of wind data recorded
during Hurricane Lili, 2002 was used to verify the proposed approach. The power spectral density of the
fluctuating components obtained by DWT or EMD had lower amplitude in the low frequency range when
compared to the traditional approach, while in the higher frequency range they were found to be very similar.
This is due to the presence of low frequency trend in the wind fluctuations obtained traditionally, which is
filtered out in the process of removing the time varying mean. Turbulence intensities obtained by the DWT
and EMD were very close to those by the traditional approach with slightly reduced values. Intuitively,
the results were more realistic as the constant mean process should yield higher intensity, which is rather
unrealistic. The gust factors obtained by the DWT and EMD are similar to those obtained by the traditional
approach. It can be concluded that the concept of time-varying mean wind speed can be applied in the
analysis of wind speed data through the application of DWT or EMD. From the above observations, it
was concluded that while processing hurricane data, time-varying mean was a more realistic quantity for
separating the original signal into two categories than the constant hourly mean. It represented the trend
of the wind speed, and the remaining fluctuating component complied with the Gaussian assumption. The
proposed approach has the merit of becoming a method of choice for engineering applications in the near
future.

A dual-domain, i.e., time and frequency, method to examine the evolutionary characteristics of a down-
burst wind speed was presented. By invoking both SWT and HT in tandem, it was shown that the instanta-
neous frequency at different decomposition levels followed a distribution close to Gaussian. Based on the
observation, the assumption of instantaneous frequency following Gaussian distribution was introduced to
facilitate the simulation of downburst wind speed. Numerical examples concerning the simulation of actual
downburst simultaneously recorded at the same height and horizontally apart demonstrated the efficacy of



the simulation scheme, which resulted in a simulation that captured the time-varying characteristics of the
measured data and preserved the correlation between components. The proposed description and simula-
tion of the downburst data facilitated better understanding of the phenomena and showed the potential of
effectively simulating downburst related wind loads on structures.
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