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ABSTRACT: A new analysis framework that offers direct and explicit expressions for 
estimating the bimodal coupled flutter is presented. Its accuracy and effectiveness are 
demonstrated through a flutter analysis of a cable-stayed bridge. This framework is utilized to 
emphasize significance of the role played by both structural dynamics and aerodynamics on 
bridge flutter, which helps in better tailoring of the bridge structural systems and deck sections 
for superior bridge flutter performance. Based on this framework, guidance on the selection of 
modes and the role of different aerodynamic force components in multimode coupled flutter are 
offered. The potential importance of the consideration of inter-modal coupling in predicting 
bridge flutter dominated by the action of torsional mode is highlighted. Finally, a clear insight to 
the contribution of drag force to bridge flutter is provided.  

KEYWORDS: Flutter, Wind loads, Aerodynamics, Aeroelasticity, Structural dynamics, Bridges.

1    INTRODUCTION

The flutter instability has primarily been the major concern in design of long span bridges that
reiterates the needs for advanced understanding of wind-bridge interaction to meet the increasing 
safety and economic needs called for by increasing spans. The multimode flutter analysis 
framework has played an increasingly important role in seeking design solutions for advanced 
flutter performance of long span bridges (e.g., Scanlan 1978; Jones et al. 1998; Chen et al. 
2000a). In this context, time domain analysis schemes facilitate consideration of nonlinearities in 
both structural dynamics and aerodynamics and the influence of turbulence on flutter (Diana et al. 
1999; Chen et al. 2000b; Chen and Kareem 2003a).   

The bimodal coupled flutter involving fundamental vertical bending and torsional modes 
has laid a firm foundation for understanding multimode coupled bridge flutter which is often 
dominated by the aerodynamic coupling of fundamental vertical bending and torsional modes 
with secondary contributions from other modes (Chen et al. 2000a). A step-by-step iterative 
analysis framework for bimodal coupled flutter presented in Matsumoto et al. (1997) has 
attempted to more closely capture the physics of bridge flutter. 

The contributions of the motion-induced drag force and lateral motion-induced lift and 
pitching moment have been considered to be less important to bridge flutter. However, recent 
experience of the Akashi Kaikyo Bridge revealed the significant contribution of the torsional 
displacement induced drag force to the negative damping at the higher wind velocity range 
(Miyata et al. 1994). Since then, modeling and measurement of drag force and its potential 
importance to bridge flutter have been addressed (e.g., Jones et al. 1998), while a fundamental 
understanding of this issue remains unclear to the bridge aerodynamicists.

In this paper, a new framework that offers explicit expressions for estimating modal 
characteristics of bimodal coupled bridge system and for determining flutter condition is 
presented. Its accuracy and effectiveness are demonstrated through a flutter analysis of a cable-
stayed bridge. This framework is utilized to emphasize the significance of role played by both 



structural dynamics and aerodynamics on bridge flutter. Based on this framework, guidance on 
the selection of modes and the role of different aerodynamic force components in multimode 
coupled flutter are offered. The potential importance of consideration of inter-modal coupling in 
predicting bridge flutter dominated by the action of torsional mode is highlighted. Finally, a clear 
insight to the contribution of drag force to bridge flutter is provided.

2   THEORETICAL BACKGROUND

The bridge dynamic response components in the vertical, lateral and torsional directions, i.e., 
h(x,t), p(x,t) and α(x,t), respectively, around the statically deformed position, are expressed as
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where hj(x), pj(x) and αj(x,t) are the j-th mode shapes in each respective direction; qj(t) is the j-th 
modal coordinate; and x is the spanwise position.

The self-excited forces per unit length linearized around the statically deformed position, 
i.e., lift (downward), drag (downwind) and pitching moment (nose-up), are given by (Scanlan 
1978; Jones et al. 1998; Chen and Kareem 2002)
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where ρ is the air density; U is the mean wind velocity; B=2b is the bridge deck width; k=ωb/U
is the reduced frequency; ω is the frequency of motion; and **, jj PH and *

jA (j=1,2,...,6) are the 

flutter derivatives that are functions of reduced frequency.
The governing equations of bridge motion in terms of the modal coordinates are given by
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where M=diag[mj], C=diag[2mjξjωj] and K=diag[mjωj
2] are the generalized mass, damping and 

stiffness matrices, respectively; mj, ξj andωj are the j-th modal mass, damping ratio and frequency; 
As and Ad are the aerodynamic stiffness and damping matrices, respectively, and their elements 
are given by the following that represent terms involving the i and j-th modes:  
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and the modal integral dxxsxrG jispansr ji
)()(∫= (where r, s=h, p, α).

The modal frequencies and damping ratios as well as inter-modal coupling of the bridge at 
a given wind velocity, with the contributions of aerodynamic stiffness and damping terms, can be 
analyzed through the solution of the following complex eigenvalue problem:
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where ;1 2ξωξωλ −+−= i ξ and ω are the damping ratio and frequency of the complex mode 

branch of interest; ;)1(/ 2 kiUb ξξλλ −+−==  and 1−=i . The flutter condition is 

determined by seeking the flutter onset velocity that corresponds to zero damping.
When the bridge is modeled by its fundamental vertical bending and torsional modes, i.e., 

h1(x) ≠0, p1(x)=0, α1(x)=0 and h2(x)=0, p2(x)≠0, α2(x)≠0, and only the lift and pitching moment 
caused by the vertical and torsional motions are considered, the aerodynamic matrices are 
described by
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By assuming that ,dsds ikAAAA +≈+ λ  2ξ2ω2≈0, ωωξξ 112 ≈0, ωωξξ 222 ≈0 and 

11 2 ≈−ξ , Eq. (8) can be rewritten as
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where jω  and jξ  (j=1, 2) are the frequencies and damping ratios that include contributions from 

uncoupled aerodynamic stiffness and damping terms: 
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Consider the solution of the mode branch with the frequency ω that is closer to 1ω than 2ω . 
The complex mode shape in terms of bq20 /q10 can be determined from Eq. (11) as
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The frequency and damping ratio of the mode branch are then determined from Eq. (10) as
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Similar expressions can be derived for the mode branch with the frequency ω that is closer 
to 2ω  than 1ω . The complex mode shape in terms of q10 /(bq20) is given by 
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where ./ 11
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and the frequency and damping ratio of the mode branch are given by 
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It should be noted that all flutter derivatives in the preceding expressions are defined at the 
respective reduced frequency of each mode branch. Each modal frequency is often very close to 
the respective frequency that only includes the contribution from uncoupled aerodynamic terms, 
i.e., 1ω  or 2ω . In addition, the influences of damping ratio ξ on the amplitude ratio and phase 
difference are often small and even can be neglected by setting ξ=0, particularly, in cases where 

1ω  and 2ω are well separated and ξ is relatively low. Therefore, while iterative calculations for 
both frequency and damping ratio of each mode branch are required, they converge very fast. 
The iterative calculations may even be eliminated by using their values at a slightly lower wind 
velocity, or even by using the values at zero wind velocity. 

It is very important to emphasize that the proposed framework invoked approximations 
related only to the damping ratio. In fact, a similar approximation has implicitly been made in the 
definition of flutter derivatives which have traditionally been assumed to be independent of 
damping. Different treatments of damping in the aerodynamic modeling can also be observed in 
flutter analysis schemes such as so-called p-k and p methods (e.g., Chen et al. 2000a). At the 
flutter onset velocity with zero damping, the proposed framework for the flutter mode branch 
results in the exact solution as the invoked approximations vanish. 

3    ILLUSTRATION AND DISCUSSION

In the following, the accuracy and effectiveness of the proposed framework is demonstrated 
using a long span cable-stayed bridge with a center span of about 1000 m. The modal damping 



ratio for the fundamental vertical bending and torsional modes, i.e., modes 3 and 13, are assumed 
to be 0.0032. Only the lift and pitching moment acting on the bridge deck related to flutter 
derivatives Hi

*, Ai
* (i=1, 2, 3, 4) are considered. For comparison, two cases referred to as cases A 

and B respectively corresponding to a slender and a bluff bridge deck section are considered. In 
case A, the flutter derivatives are calculated from Theoderson function, H1

*, H3
*, H4

*, A2
* < 0, 

and H2
*, A1

*, A3
*, A4

* >0. In case B, they are measured using a rectangular section with width to 
height ratio of 5 (Matsumoto et al. 1997), H1

*, H3
*, H4

*, A4
* < 0, H2

* >0, A1
* >0 then <0, A2

* < 0 
then >0, and A3

* >0 then <0 as the reduced wind velocity increases. 
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Fig. 1 Comparison of flutter analysis for the cable-stayed bridge in case A 

Figs. 1(a) to 1(d) show the predicted frequencies and damping ratios as well as mode 
shapes in terms of amplitude ratios and phase differences for both mode branches in case A. The 
amplitude ratios are given in terms of the ratio between the vertical and torsional displacements 
of the bridge deck at the main span center so that these are independent of the normalization 
scheme of the mode shapes. The solid lines and circles respectively correspond to the complex 
eigenvalue analysis and the analysis based on the proposed framework. Fig. 2 shows the results 
for case B. It can be seen that the proposed framework provides predictions for both branches 
that show a good agreement with the complex eigenvalue analysis. There are some minor 
differences between the two approaches, which only surface at high values of damping. This 
demonstrates the accuracy and effectiveness of the proposed framework. 

The proposed framework clearly highlights the contributions of different aerodynamic 
force components to damping ratios of two mode branches (Eqs. (16) and (21)).  Figs. 1(e) and 
1(f) show the result in case A where the term A2

*, for example, represents .)2/(
22
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22
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As A2
* < 0, no torsional flutter exists at the action of only the single torsional mode. However, 

the coupled aerodynamic forces generate negative damping which leads the bridge to a coupled 
flutter initiated from the torsional mode branch at 119 m/s. In contrast, for the vertical mode 
branch, the coupled forces result in an increase in damping. This opposite contribution of the 
coupled forces are attributed to the different signs of sinφ' and sinψ', which are mainly attributed 
to the different values of 2ω /ω and 1ω /ω for these two mode branches. This contrasting behavior 
clearly points at the energy transfer between these two mode branches.

(e) Contributions to damping  
      ratio of mode branch 3

(f) Contributions to damping  
      ratio of mode branch 13 



Figs. 2(e) and 2(f) show the results in case B. As A2
* turns to positive from negative as 

wind velocity increases, a torsional flutter exists beyond 69.6 m/s even at the action of single 
torsional mode. While the contribution of the coupled forces is relatively week, it reduces the 
damping of the torsional mode branch and leads to a lower flutter onset velocity of 64.3 m/s. 
This suggests that the multimode coupled flutter analysis framework is generally required for not 
only bridges with slender sections but also bridges with relatively bluff sections as has been 
pointed out in Chen et al. (2000a). Consideration of inter-modal coupling is potentially more 
important in the cases of a soft-type flutter in which negative damping builds up slowly with 
increasing wind velocity.  
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Fig. 2 Comparison of flutter analysis for the cable-stayed bridge in case B

The proposed framework offers valuable insights to the significance of the both structural 
dynamics and aerodynamics on coupled bridge flutter that help in developing design solutions to 
enhance flutter performance. For instance, increases in structural mass and torsional frequency as 
well as the frequency ratio between the torsional and vertical modes help to improve flutter 
performance. Higher structural damping contributes not only to the increase in the damping of 
the respective mode branch but also to the reduction of coupled motion and therefore is 
beneficial to flutter. Modification of bridge structural system can potentially change structural 
dynamics including mode shapes hence the modal integrals and the contributions of aerodynamic 
forces. The uncoupled self-excited forces due to displacements, i.e., terms related to H4

* and A3
*,

in particular, A3
*, reduce the modal frequencies thus have unfavorable influences on flutter.  The 

uncoupled self-excited forces due to bridge velocities, i.e., terms related to H1
* and A2

*, in 
particular, A2

*, increase the modal damping thus is beneficial to flutter. The negative damping 
generated by the coupled forces, i.e., terms related to H2

*, H3
*, A1

* and A4
*, particularly, H3

* and 
A1

*, is the main source that drives bridge to coupled flutter instability. In order to improve and 
better tailor bridge flutter performance, it is essential to enhance the beneficial and reduce the 
unfavorable contributions to system damping. It can be realized through the introduction of 
aerodynamically tailored bridge decks and effective bridge structural systems. 

 The proposed framework also helps to understand the participation of structural modes in a 
multimode coupled flutter, which can guide the selection of modes in a flutter analysis. It is clear 
that a mode comprising of large values of coupled terms in aerodynamic stiffness and damping
with the torsional mode of interest, which are functions of flutter derivatives and modal integrals, 

(e) Contributions to damping  
      ratio of mode branch 3

(f) Contributions to damping  
      ratio of mode branch 13 



is more likely to be coupled with the torsional mode. This coupling will be enhanced when its 
damping is low and its frequency is close to the torsional frequency. The modes that are most 
likely to be excited should be considered in the analysis. The understanding of modes that play a 
major role in flutter not only helps in better understand multimode coupled bridge flutter, but 
equally offers valuable information on the design and interpretation of wind tunnel studies using 
full aeroelastic bridge models which may only replicate a limited number of modes of the 
prototypes. 

4 INTER-MODAL COUPLING AND CONTRIBUTION OF DRAG FORCE

Fig. 3 shows the predicted frequencies and damping ratios of mode branches 3, 10 and 13, for the 
cable-stayed bridge with the bluff deck section (case B). Mode 10 is the second symmetric lateral 
bending mode with coupled motion in torsion. The results for cases that include and ignore the 
inter-modal coupling are compared. Without the consideration of inter-modal coupling, the 
action of mode 13 leads to a torsional flutter beyond 69.6 m/s and the action of mode 10 
develops a torsional flutter beyond 74.3 m/s. The aerodynamic damping of mode 10 is very low 
as compared to mode 13. With the consideration of inter-modal coupling, the curve veering of 
frequency and damping loci of mode branches 10 and 13 is observed at about 80 m/s where these 
two modal frequencies are close to each other. The curve veering is due to strong interactions of 
these two modes (Chen and Kareem 2003).  These two mode branches continuously exchange 
their properties as these experience veering. At the end of veering action, mode branch 13 
becomes dominated by structural mode 10, and mode branch 10 is dominated by structural mode 
13. Based on the expression for the amplitude ratio, it is clear that the coupling between modes 
10 and 13 becomes significant only at the region where their frequencies are close to each other. 
A negative peak in the damping loci of mode branch 13 at the wind velocity of around 80 m/s 
clearly indicates this strong interaction. The flutter onset velocities for these two branches are 
58.7 m/s and 65.9 m/s. Results demonstrate the importance of inter-modal coupling for flutter 
prediction of bridges with even bluff deck sections.

Fig. 3 Influence of inter-modal coupling and drag force on torsional flutter

 In Figs. 3(b) and 3(c), the influence of drag damping force related to P1
*=-2CD/k (where 

CD=0.2 is the static drag force coefficient) is presented. It is seen that, while the additional 
damping associated with the lateral motion is small, it apparently increases the flutter onset 
velocity of the torsional flutter initiated from mode 10 from 74.3 m/s to 86.8 m/s. However it has 
almost no influence on the torsional flutter initiated from mode 13. The influence of drag force 
on these mode branches become negligible when the inter-modal coupling is further considered 
as shown in Fig. 3(c). 

This relative significance of different force components or flutter derivatives can be easily 
clarified based on the Eqs. (6) and (7) and the framework presented in this study. The drag force 
may become relatively important such as in the case of soft-type flutter as demonstrated in Fig.
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3(b) for mode 10. However, the contribution of drag force will remain insignificant in the cases
of hard-type flutter where aerodynamic damping generated by lift and pitching moment rapidly 
develops as wind velocity increases as demonstrated in Fig. 3(b) for mode 13 and in Fig. 3(c) for 
both mode branches 10 and 13. It is noteworthy that the flutter analysis framework that offers 
information concerning changes in modal frequencies and damping ratios and associated mode 
shapes with increasing wind velocity provides more valuable insights to the physics of 
multimode coupled flutter in comparison with the analysis that only focuses on the evaluation of 
flutter onset velocity. 

5    CONCLUDING REMARKS

A new analysis framework with direct and explicit expressions for estimating bimodal coupled 
flutter was presented and its accuracy and effectiveness were demonstrated by way of examples. 
This framework offered valuable insights to the significance of both structural dynamics and 
aerodynamics to bridge flutter that helped in enhancing bridge flutter performance. This 
framework helped in providing improved understanding of the inter-modal coupling and the role 
of each mode to coupled bridge flutter. The example of cabled-stayed bridge with relatively bluff 
deck section highlighted the potential importance of inter-modal coupling in torsional flutter. 
The discussion concerning the influence of drag force and curve veering of eigenvalue loci aided 
further in enhancing our understanding of the physics of bridge flutter.  
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