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ABSTRACT 

The time-frequency character of wavelet transforms allows increased flexibility – as both traditional 
time and frequency domain system identification approaches can be adapted to examine non-linear and 
non-stationary response data. However, a number of additional processing concerns must be understood to 
fully exploit the power of the multi-resolution, dual-domain transform, particularly for the popular Morlet 
wavelet. Unfortunately, in prior applications of wavelet transforms for system identification, the 
implications of the aforementioned concerns were often negligible, as these studies considered mechanical 
systems  characterized by higher frequency, broader-band signals. It was the subsequent analysis of Civil 
Engineering structures that highlighted the need to understand more fully these processing concerns in 
order to insure the successful identification of dynamic system properties. This study identifies a number of 
these considerations that are a direct consequence of the wavelet’s multi-resolution character, including 
considerations for selection of wavelet central frequencies and strategies to resolve end effects errors. In 
total, this study serves as an overview of these processing considerations for Civil Engineering structures, 
helping to lessen the challenges associated with the transition into the time-frequency domain. 
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INTRODUCTION 
While the Fourier transform has reshaped the manner in which engineers interpret signals, it 

becomes evident that by breaking a signal down into a series of  trigonometric basis functions, 
time-varying features cannot be captured. The realization that non-stationary features often 
characterize processes of interest led to the definition of alternative transforms that rely on bases 
with compact support , one of the most popular of which is the wavelet transform. 

A host of discrete and continuous wavelets have been applied to a variety of problems 
ranging from image and acoustic processing to fractal analysis, though only recently have they 
been extended to Civil Engineering applications (Gurley & Kareem, 1999). Their specific 
application for system identification is still advancing, but shows great promise, particularly 
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since the wavelet transform produces a representation in frequency and time -- permitting the 
adaptation of a number of system identification schemes derived for either domain.  

This flexibility is conceptualized in Figure 1 for a simple harmonic signal. The squared 
modulus of the wavelet transform, or scalogram, is shown three dimensionally in the 
time-frequency domain. As discussed in greater detail in Carmona et al. (1998), the wavelet 
coefficients take on maximum values at the instantaneous frequency , corresponding to the 
dominant frequency component in the signal at that instant in time. This defines a ridge in the 
time-frequency plane. Extracting the values of the wavelet coefficients along this ridge yields the 
wavelet skeleton, whose real and imaginary components approximate the signal and its Hilbert 
transform at that ridge frequency (see left inset of Fig. 1). A time-domain based system 
identification scheme using the amplitude and phase of the asymptotic signal can then take 
advantage of these skeleton components (e.g. Ruzzene et al., 1997; Staszewski, 1998). Similarly, 
a slice taken at a given time, across the range of frequencies, yields the instantaneous spectrum 
of the signal (see  right inset  of Fig. 1), indicating the frequency content at that instant in time. 
Much like Fourier spectra, the peak of this spectrum corresponds to the instantaneous frequency 
defining the ridge and the bandwidth of the spectrum provides an indication of the spread of 
frequencies present in the signal at each instant in time. This spectral information can be utilized 
in more traditional frameworks for system identification via frequency response functions, for 
coherence analysis (Gurley et al., 2002) and for time-frequency signal analysis (Kijewski & 
Kareem, 2002a). As discussed further in Kijewski and Kareem (2002b), researchers have now 
begun to exploit this dual identification potential in Civil Engineering, revealing that, for the 
analysis of more narrowbanded signals, certain processing concerns emerge, which shall be 
summarized herein for a popular class of wavelets – the Morlet. 

 

 

WAVELET TRANSFORM THEORY 
The wavelet is a linear transform that decomposes an arbitrary signal x(t) via basis functions 

that are simply dilations and translations of the parent wavelet g(t) through convolution 
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Dilation by the scale a, inversely proportional to frequency, represents the periodic nature of the 
signal. By this approach, time-frequency localization is possible, since the parent wavelet serves 
as a window function. Since it is quite natural to view information in terms of harmonics instead 
of scales, the Morlet wavelet (Grossman & Morlet, 1985)  

 ( ))2sin()2cos()( 2/2/2 22

tfitfeeetg oo
tttfi o πππ +== −−  (2) 

has become a popular choice for analysis. As a result of obvious analogs, the wavelet scale is 
uniquely related to the Fourier frequency f for this parent wavelet, according to a = fo / f. The 
dilations of this temporally-localized wave allow the effective frequency of this sine-cosine pair, 
oscillating at central frequency fo, to change in order to match the signal’s harmonic components.  

RESOLUTIONS 
The accuracy of Morlet wavelet-based system identification is dependent upon the time and 

frequency resolutions, which are merely scaled versions of the parent wavelet resolutions. 
However, for the Morlet wavelet, the use of a Gaussian window on the Fourier basis functions 
makes the precise definition of temporal duration impractical. Instead Gabor (1946) proposed a 
mean square definition to establish effective durations in time and frequency. Using this approach, 
an effective temporal duration ∆ti and frequency duration ∆fi for a scaled Morlet wavelet at 
frequency fi can be defined as the product of that scale and the mean square duration of the 
Morlet's Gaussian window, given by Chui (1992) as 
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Physically, the measures provided in Eq. (3) indicate that two pulses in time cannot be identified 
unless they are more than ∆t apart. Similarly, two distinct frequency contributions cannot be 
discerned unless they are more than ∆f apart. It is clear from Eq. (3) that the central frequency fo 
is a critical parameter in defining the resolution capability of the Morlet wavelet and should be 
adapted in a given analysis to achieve desired performance. The virtues of progressive adaptation 
of this parameter are discussed more fully in Kijewski and Kareem (2002a). 
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FIG. 2. Real component of Morlet wavelet enveloped by Gaussian window with 
temporal duration measures marked by vertical bars 
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END EFFECTS THEORY 
The resolutions of the resulting wavelet analysis also have direct bearing on the significance 

of end effects, which have been noted in a number of applications, e.g. Staszewski (1998). In 
many cases, the a priori knowledge of the signal characteristics allows anomalies to be 
qualitatively distinguished and neglected in subsequent analyses. However, this is in general not 
possible, requiring a quantitative guideline to establish what portions of the wavelet-transformed 
signal are accurate. By examining the convolution operation in Eq. (1) in light of the parent 
wavelet in Eq. (2), it is evident that, although the wavelet is focused at a given time and 
represents the signal content in that vicinity, the window extends equally into the past and future. 
As further demonstrated by Fig. 2, Eq. (3a) assumes the Morlet wavelet effectively spans 2∆ti in 
the time domain, or one standard deviation of the Guassian window. However , there is a 
considerable portion of the window beyond one standard deviation from t=0.  A stricter 
interpretation would define the effective temporal duration of this wavelet as several standard 
deviations of the Gaussian window. Dependent on the desired level of accuracy, an integer 
multiple β of the measure in Eq. (3a) can be imposed to quantify the reliable region within a set 
of wavelet-transformed data of length T, according to 

 iji tTtt ∆−≤≤∆ ββ . (4) 

Though the implications of end effects are discussed in more detail in Kijewski and Kareem 
(2002c), the end effects can have substantial influence on the quality of wavelet coefficients. An 
illustration of the implications of end effects on spectral amplitude is provided in Fig. 3 where the  
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calculated instantaneous spectra at each time are plotted one atop the other, essentially collapsing 
the scalogram in time. In comparison to the theoretical prediction, the improvement in 
instantaneous spectral amplitude and shape is obvious as the result of progressively neglecting 
more of the end effects region, requiring a value of β = 4 in Eq. (4) to  sufficiently negate the 
end effects phenomenon. However, in the case of more sensitive spectral measures such as the 
bandwidth, β=6 is necessary to eliminate any significant deviation between the theoretical 
prediction and the wavelet result (Kijewski & Kareem, 2002c). Though such deviations are easily 
explained by the end effects phenomenon, simply neglecting these regions in analysis yields to a 
considerable loss of data.  

END EFFECTS MELIORATION: SIGNAL PADDING 
The loss of considerable regions of a signal is the unfortunate consequence of end effects. 

One possible solution to this problem would be to pad the beginning and end of the signal with 
surrogate values, placing the true signal of interest at the center of  an elongated vector and 
leaving the virtual values at the tails to be corrupted by end effects. In the padding operation, the 
signal’s characteristics are locally preserved by reflecting a portion of the signal about its 
beginning and end (Kijewski & Kareem 2002c). As the lowest frequency being considered in the 
analysis f1 will yield the largest duration ∆t1, it dictates the maximum end effects anticipated. β is 
then selected based on the desired accuracy level, and the time ordinates of the sampled time 
vector t = [t1 … tN] closest to the termination of the end effects regions are then identified by 

 [ ]1min tttn ∆>= β  and [ ])(max 1tttt Nm ∆−<= β . (5) 

The modified signal xMOD is constructed by reflecting the signal x (for even functions) or its 
negative (for odd functions) for the duration of β∆t1 about t1 and tN, according to 

 [ ]mNNnnMOD xxxxxxx ±±±±= −− KKK 111  (6) 

where xn and xm are the values of the sampled signal x at tn and tm.  xMOD is then wavelet 
transformed and the coefficients calculated from the padded regions are simply neglected,  
retaining only the coefficients of the true signal for meaningful analysis. 

End Effects Melioration for Spectral Measures 
While the influence of end effects in the frequency domain is visualized in Fig. 3, they may 

be further quantified via time-varying spectral measures. The signal under consideration, shown 
in Fig. 4a, is the free vibration response of a SDOF oscillator with natural frequency fn of 0.15 Hz 
and critical damping ratio ξ of 0.01. In the case of a fo=1 Hz wavelet analysis, the end effects 
have no influence on the estimate of instantaneous frequency from the ridge of the transform, but 
have a considerable effect on the amplitude of the wavelet skeleton for the first and last few 
cycles of oscillation, as shown in Fig. 4b,e. The vertical dotted lines mark increments of ∆t for 
this analysis. It is not until 3∆t that the end effects on the wavelet skeleton amplitude diminish. 
This is rectified by applying the padding operation for β=4, as shown in Fig. 4c,f. After doing so, 
the wavelet skeleton can hardly be discerned from the actual signal, though as Fig. 4d,g reveals, a 
slight deviation of the amplitude is still present at the very beginning and end of the signal, 
though it is small relative to the signal’s amplitude at these points in time. The halfpower 
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bandwidth (HPBW) identified from the wavelet instantaneous spectra is constant, as expected for 
this linear oscillator, with the exception of the end effects region. As shown in Fig. 4h, the 
bandwidth measure, being more sensitive, is significantly influenced by the end effects. When 
padded with β=4, the bandwidth accuracy is vastly improved, though Fig. 4h demonstrates that 
within the first 3∆t, the bandwidth is still deviating, a result that cannot be fully improved with 
larger values of β. This is due to the fact that the remaining slight inaccuracies in the amplitude 
lead to a more marked inaccuracy in the sensitive bandwidth measure. Note also that the 
bandwidth of the resulting wavelet instantaneous spectra are larger than their Fourier equivalent, 
as a result of the windowing applied by the Gaussian function of the Morlet wavelet. 

 

FIG. 4. (a) Signal; (b) & (e) signal (dark) and wavelet skeleton (light) at ends 
without padding; (c) & (f) signal (dark) and wavelet skeleton (light) at ends 

with padding; (d) & (g) signal (dark) and difference between signal and 
wavelet skeleton (light) at ends with padding; (e) bandwidth estimate with & 

without padding 
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TABLE 1. Estimate of damping from wavelet skeleton of SDOF system 

 fo=1 Hz, β=0 fo=1 Hz, β=4 fo=0.5 Hz, β =4 fo=0.25 Hz, β =4 
 5∆t =23.57 s 3∆t =14.14 s 3∆t =7.07 s 3∆t =3.53 s 

1st Cycle (0-6.67 s) -0.0678 0.0034 0.0054 0.0097 
2nd Cycle (6.67-13.33 s) -0.0123 0.0084 0.0099 0.0102 
3rd Cycle (13.33-20.0 s) 0.0067 0.0098 0.0099 0.0101 
4th Cycle (20.0-26.67 s) 0.0099 0.0099 0.0099 0.0101 

End Effects Melioration for Time Domain System Identification 
Time domain system identification on the system in Fig. 4a may proceed  as discussed in the 

introduction, with the full procedure provided in Ruzzene et al. (1997) and Staszewski (1998). As 
a result of the padding operation, the estimation of damping in the time domain is also enhanced , 
though not completely rectified. As shown in Fig. 4e, the deviations in the amplitude with 
padding are slight and diminish with each cycle of oscillation, but still have marked impact for 
the more sensitive estimation of damping in this system. The error in the wavelet skeleton’s 
amplitude is most significant at t=0, though reduced from 50% to about 5% with the addition of 
padding. This does not affect the estimation of instantaneous frequency, which is consistently 
within 1%. Table 1 lists the identified damping from each cycle of the decay. The time span of 
each cycle is provided in parenthesis. As shown in column one, without padding, the damping 
can only be reliably estimated beyond about 5∆t. Therefore, direct application of the techniques 
discussed in Ruzzene et al. (1997) and Staszewski (1998) for such narrowband systems should 
proceed using only the wavelet data beyond 5∆t. However, the padding operation leads to a vast 
improvement in the estimates from the first three cycles and produces highly accurate estimates 
after only 3∆t, allowing more of the signal to be used in system identification. 

Table 2: Wavelet identification of MDOF system with closely spaced modes 

WT Resolutions Actual Identified  
∆t ∆f fn ξ fn ξ 

Mode 1 7.49 s 0.011 Hz 0.567 Hz 0.01 0.567 Hz 0.010 
Mode 2 4.21 s 0.019 Hz 1.007 Hz 0.01 1.007 Hz 0.010 
Mode 3 3.87 s 0.020 Hz 1.095 Hz 0.01 1.095 Hz 0.010 

 
Note that since the identification of this system is proceeding in the time domain, a reduced 

value of fo can be used to diminish end effects, though sacrificing the frequency resolution. When 
doing so, it becomes possible to identify the damping within 1% accuracy using virtually the full 
length of padded data, as demonstrated in the last two columns of Table 1. While this is attractive, 
it is demonstrated in Kijewski and Kareem (2002b) that this may not be plausible for MDOF 
systems, particularly those with closely spaced modes. Results from this study, shown in Table 2, 
show a high level of accuracy is only achievable for sufficiently large values of fo. The results in 
Table 2 were achieved using fo=8 Hz. The poor temporal resolution listed in column one is a 
necessary sacrifice to sufficiently refine the frequency resolutions and fully separate the modes. 

CONCLUSIONS 
The wavelet transform, by virtue of its multi-resolution capabilities, is gaining popularity, not 



 

 

 
 

 
 

8 

only for time-frequency analysis, but also for identification of mechanical systems. In particular, 
the Morlet wavelet has become a popular choice by virtue of its direct relationship to the Fourier 
transform. It was emphasized that application of this parent wavelet requires judicious selection 
of central frequency in light of the resulting time and frequency resolutions. These considerations 
become significant for Civil Engineering structures, whose dynamics are often more 
narrowbanded than traditional mechanical systems. For such systems, the presence of end effects 
can compromise the accuracy of wavelet skeletons and have even more marked effects on 
bandwidth measures. The span of end effects regions was quantified through a flexible criterion, 
and, recognizing the significant losses possible for low frequency systems, a simple padding 
scheme was proposed to extend the length of the signal at both ends. While the padding operation 
is demonstrated to improve the scalogram amplitudes and enhance the accuracy of wavelet-based 
system identification, the reliability of damping estimation is still diminished within 3∆t of the 
beginning and end of the signal. Though an improvement over the results without padding, to 
minimize this effect, the central frequency should be kept to the smallest value possible without 
compromising the ability to separate closely spaced modes. 
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