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Abstract

The analysis, identification, characterization and simulation of random processes utilizing both the continuous and discrete wavelet
transform is addressed. The wavelet transform is used to decompose random processes into localized orthogonal basis functions,
providing a convenient format for the modeling, analysis, and simulation of non-stationary processes. The time and frequency
analysis made possible by the wavelet transform provides insight into the character of transient signals through time-frequency
maps of the time variant spectral decomposition that traditional approaches miss. In the relatively short life of the wavelet transform,
it has found use in a wide variety of applications. This applications-orientated paper will briefly discuss the development of the
continuous and discrete wavelet transform for digital signal analysis and present numerous examples where the authors have found
wavelet analysis useful in their studies concerning the identification and characterization of transient random processes involving
ocean engineering, wind and earthquakes. 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction

Non-stationary signals are frequently encountered in a
variety of engineering fields (e.g. wind, ocean, and earth-
quake engineering). The inability of conventional Four-
ier analysis to preserve the time dependence and describe
the evolutionary spectral characteristics of non-station-
ary processes requires tools which allow time and fre-
quency localization beyond customary Fourier analysis.
The spectral analysis of nonstationary signals cannot
describe the local transient features due to averaging
over the duration of the signal. For example, the
response of a linear system to unit amplitude stationary
white noise and the impulse response function of the
system will have identical spectral descriptions, but both
will have drastically different time histories. One will be
characterized by a filtered white noise, while the other
will represent a decaying signal. An FFT based method
called the short-term Fourier transform (STFT) provides
time and frequency localization to establish a local spec-
trum for any time instant. The key feature of the STFT is
the application of the Fourier transform to a time varying
signal when the signal is viewed through a narrow win-
dow centered at a timet. The local frequency content is
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then obtained at timet. The window is moved to a new
time and the process is repeated. High resolution cannot
be obtained in both time and frequency domains simul-
taneously. The window must be chosen for locating
sharp peaks or low frequency features, because of the
inverse relation between window length and the corre-
sponding frequency bandwidth [1].

This drawback can be alleviated if one has the flexi-
bility to allow the resolution in time and frequency to
vary in the time-frequency plane to reach a multi-resol-
ution representation of the process. Accordingly, the
time-frequency window would narrow automatically to
observe high frequency contents of a signal and widen
to capture low frequency phenomena. This is possible if
the analysis is viewed as a filter bank consisting of band-
pass filters with constant relative bandwidths. Fourier
methods of signal decomposition use infinite sines and
cosines as basis functions, whereas the wavelet trans-
form uses a set of orthogonal basis functions which are
local. A short duration, high frequency phenomenon is
buried in a Fourier representation with the background
averaged spectral content, whereas wavelet transform-
ation allows the retention of local transient signal charac-
teristics beyond the capabilities of the infinite harmonic
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basis functions by allowing a multi-resolution represen-
tation of a process.

1.1. Brief wavelet overview

Digital signal analysis using wavelet transforms begins
with the generation of a single parent wavelet. The signal
is then decomposed into a series of basis functions of
finite length consisting of dilated (stretched) and trans-
lated (shifted) versions of this parent wavelet function,
i.e. wavelets of different scales and positions in time or
space. This process is similar to Fourier analysis, where
the parent wavelet is analogous to the sine wave, and
the basis functions in Fourier decomposition are sine
waves of various amplitude, phase and frequency vari-
ations of the parent sine wave.

Fig. 1 gives a qualitative outlay of the representation

Fig. 1. A structural response signal, a view of the wavelet decomposition basis functions (left column), and a view of the Fourier decomposition
basis functions (right column).

of a random signal using wavelet decomposition and
Fourier decomposition. The top plot is the measured
response of a structure to environmental loads. The right
column shows several sine-wave basis functions of vari-
ous frequencies used by Fourier analysis. Each wave is
represented by a single complex coefficient describing
amplitude and phase. The left column is a qualitative
view of several wavelet-basis functions that might be
used to decompose the structural response. Each of the
three plots in the left column consist of multiple trans-
lations of a single parent wavelet function, which in this
case resembles a windowed sine wave. The first of the
three left plots is built from nine parent wavelets, the
middle left plot consists of five wavelets, encompassing
lower frequency information. The bottom left plot is
built from three parent wavelets dilated still larger, cap-
turing even lower frequency behavior. The essential dif-
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ference between wavelet and Fourier analysis is that the
wavelet basis function for any frequency band consists
of a number of local functions strung together, each with
its own amplitude, and can thus distinguish local events
at different times at the same frequency. The Fourier
basis functions utilize a single function with a single
amplitude over the complete time frame at any given
frequency. Thus, any transient events are blended into
one coefficient, not singled out through multiple coef-
ficients.

There are a variety of parent wavelets available in the
literature, each of which has been developed to meet cer-
tain criteria. One important property, for example, is that
the original signal may be retrieved from the wavelet
transform. This invertibility property is achieved by the
admissibility condition, which requires the total area
under the parent wavelet to be equal to zero. Wavelets
must also have finite duration, i.e. finite spatial support.
This prevents any localized transient signal features from
being propagated in or smeared through time by its
wavelet representation [2].

One of the first widely applied parent wavelets was
developed by Daubechies [3,4]. Development of this
parent wavelet begins with the solution of a dilation equ-
ation to determine a scaling functionf(n), dependent on
certain restrictions. The scaling function is used to define
the parent wavelet function,c(n). The shape of the par-
ent wavelet is not a single unique shape, but depends on
the desired wavelet features. For a wavelet of orderN,
the dilation and wavelet functions are found by the sol-
ution to

f(n) = ON−1

j=0

cj f(2n − j ) and

c(n) = ON−1

j=0

(−1)j cj (2n + j − N + 1) (1)

The constraints on the coefficientscj produceN equa-
tions for their solution. The higher the order, the more
the parent wavelet approaches a windowed Gaussian
weighted harmonic function. The resulting coefficients
have been calculated and reported in References 3 and 4.

1.2. The discrete wavelet transform

The wavelet transformation is a process of determining
how well a series of wavelet functions represent the sig-
nal being analyzed. The goodness of fit of the function
to the signal is described by the wavelet coefficients.
The result is a bank of coefficients associated with two
independent variables, dilation and translation. Trans-
lation typically represents time, while scale is a way of
viewing frequency content. Larger scales correspond to
lower frequencies.

The most efficient and compact form of wavelet
analysis is accomplished by decomposing a signal into
a subset of translated and dilated parent wavelets, where
these various scales and shifts in the parent wavelet are
related based on powers of two. Full representation of
the signal (and thus possible invertibility) can be achi-
eved using a vector of wavelet coefficients the same
length as the signal. Fewer coefficients may be used for
compression purposes.

Consider a signal consisting of 2M data points, where
M is an integer. Discrete wavelet transformation (DWT)
requires 2M wavelet coefficients to fully describe the sig-
nal. DWT decomposes the signal intoM + 1 levels,
where the level is denoted asi, and the levels are num-
bered i = −1, 0, 1, . . .,M − 1. Each leveli consists of
j = 2i translated and partially overlapping wavelets equ-
ally spaced 2M/j intervals apart. Thej = 2i wavelets at
level i are dilated such that an individual wavelet spans
N − 1 of that levels intervals, whereN is the order of
the wavelet being applied. Each of thej = 2i wavelets at
level i is scaled by a coefficientai,j determined by the
forward wavelet transform, a convolution of the signal
with the wavelet. The notation is such thati corresponds
to the wavelet dilation, andj is the wavelet translation
in level i. ai,j is often written as a vectora2i+j , where
j = 0, 1, . . .,i − 1. The level i = −1 is the signal mean
value [5].

The forward wavelet transform determines the wave-
let coefficients,ai,j of the j wavelets at each leveli. For
the signalf (n), the DWT is

ai,j = a2i+j = O
n

f(n)ci,j (n) (2)

and the corresponding inverse wavelet transform IWT is

f (n) = O
i

O
j

ai,j ci,j (n), (3)

whereci,j (n) = 2i /2c(2in − j )

A DWT algorithm was developed by Mallet [6],
which computes the solution of equation (2) without
solving for eitherf(n), or c(n) directly. The algorithm
uses a series of high and low pass filters to progressively
find the wavelet coefficients,ai,j, from the highesti level
to the mean value level. In the first iteration, the upper
half of the frequency content is filtered from the original
signal. The high pass signal is used to generate the 2M−1

wavelet coefficients that describe the high detail portion
of the signal. The low pass filtered data is sent to the
next iteration. In the next iteration the upper one half of
the remaining frequency content of the signal is high
pass filtered once again, this time to generate the next
2M−2 wavelet coefficients. The iterations continue until
all 2M wavelet coefficients are determined. This is
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referred to as Mallet’s tree algorithm or Mallet’s pyra-
mid algorithm [6].

1.3. The continuous wavelet transform

While the DWT is the most efficient and compact, its
power of two relationship in scale fixes its frequency
resolution. Often it is desired to differentiate between
smaller frequency bands than DWT allows. This is poss-
ible by using scales that are more closely spaced together
than the 2i relationship, and is the basis for the continu-
ous wavelet transform (CWT). The form of the CWT is

a(i,j ) = E`

−`

f(t)c(i,j,t) dt (4)

wherei corresponds to dilation, andj to translation. For
a finite digitally sampled signal, the integral will be
replaced with a summation, and the timet is replaced
by the discreten.

The scale may be selected over whatever range the
user desires. The number of coefficients necessary to
describe the signal may be very much larger than the
signal length, as the CWT oversamples the signal and
wavelet coefficients contain partial redundancies of
information. Also, CWT need not contain information
over the complete range of frequencies contained in the
signal. The user may select a very narrow range of scales
to isolate and pull details from a particular frequency
band. In this case the complete signal can no longer be
retrieved, since any information in unsampled scales is
lost.

2. Applications of wavelet analysis

The present research concerns the use of wavelets to aid
in the analysis and simulation of non-stationary data.
Multi-scale decomposition of processes utilizing wave-
lets reveals events otherwise hidden in the original time
history. The wavelet coefficients,ai,j, can be utilized in
a variety of techniques to draw out useful signal infor-
mation. Wavelet coefficients may be used to derive an
estimate of the power spectrum. The wavelet coefficients
also provide the scalogram, which describes the signal
energy on a time-scale domain. This facilitates identifi-
cation of time-varying energy flux, spectral evolution,
and transient bursts not readily discernible using time
or frequency domain methods. The property of accurate
energy representation lends itself well to signal recon-
struction and simulation. The reduction of noise in a
measured signal may be accomplished by altering wave-
let coefficients below a case specific threshold. A variety
of examples are provided herein to demonstrate these
engineering applications of wavelet transforms.

2.1. Wavelet filterbank signal decomposition

The DWT is a convenient and efficient method of moni-
toring the performance of time dependent dynamic sys-
tems. While Fourier coefficients do not contain time
information, the coefficients describing the localized
basis functions do reflect time dependence. Both the
bank of octave band filtered time series, and their wave-
let domain representation as wavelet coefficients provide
unique insights into transient events within a time series.
An example of each is provided below.

2.1.1. Bandpass filtering/offshore platform response to
wind and waves
Fig. 2 presents the time history of the response of a large
floating offshore structure known as a tension leg plat-
form (TLP) to wind and wave loads in the horizontal
plane, and the band-passed time histories using a DWT
based filterbank. This figure unfolds the response time
history into a very revealing display of the time-scale
representation. The top left block is the mean removed
original signal, the plots following column-wise down-
ward are the band-pass filtered signal in order of decreas-
ing frequency. Note the different scales on the plots for
the filtered processes, indicating relative contribution in
that frequency band. The power spectral density of the
signal in Fig. 2 is shown in Fig. 3, on which the fre-
quency bands 1 through 7 of the filtered process are
marked. The higher relative magnitude of bands 3 and
4 correspond to the right peak in the spectrum, and is
due to first-order wave effects. The high relative magni-
tude in bands 6 and 7 correspond to structural resonance
due to wind and second-order wave effects. The wavelet
based filter bank has helped to identify, e.g. high fre-
quency spikes and their time of occurrence, associated
with waves slamming the deck structure, observed in
bands 1 and 2. The origins of these extreme response
events in the response of the TLP are not clearly discern-
ible from the complete time history. Large excursions
may be due to either high frequency impact loading-type
wave slamming events, or to lower frequency hydrodyn-
amic loads on the below-deck structure associated with
the passage of large, but not slamming waves. The
improved efficiency over FFT and other filtering tech-
niques, e.g. multifiltering with simple oscillators [e.g.
Reference 7], renders wavelet filterbanks a quick and
convenient time-scale decomposition method.

Wavelet coefficients in specific octaves may be used
to monitor system performance as well. The occurrence
of large magnitude coefficients in the wavelet domain
may be used to identify the isolated impulsive events
such as the slamming of waves observed in the previous
example. In Fig. 4, the measured pitch rotational
response of the TLP is presented along with two selected
bands of wavelet coefficients from a discrete wavelet
analysis of the response. The top plot is the time record
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Fig. 2. From top left column-wise downward: measured TLP sure response to wind and wave field and its time-scale decomposition using
wavelet transforms.

of pitch response. The second and third plots are the
wavelet coefficients corresponding to the highest octave
band and the octave band which includes the dominant
frequency of incoming waves, respectively. Many spikes
are observable in the time record, indicating large pitch
response excursions. The spikes in the bottom plot are
large magnitude events within the wave frequency band
and include large waves on both the below deck and
topside structure. The wavelet coefficient spikes in the
highest octave are due to sudden high frequency impulse
events and indicate wave slamming on the deck struc-
ture. Thus, the wavelet coefficients help to distinguish
those extreme excursions due to the passage of large
waves and their associated loads on the below-deck TLP
structure from those due to the sudden impact of large
waves on the topside structure.

2.2. Power spectral density estimation

The wavelet coefficients are used to estimate the power
spectrum by summing the squared coefficients in each
octave, as shown schematically in Fig. 5. In the case of
the compact DWT, the wavelet estimation of the spec-
trum of a signal of length 2M over the entire frequency
range consists of a vector of lengthM, whose contents
are the sum of the square of the wavelet coefficients cor-
responding to theM octaves. The sampling rate of the
frequency band is included asDt, and the spectral esti-
mate for theith level is

Si = 2i+2−M Dt O2
i

j=1

(ai,j )2, i = 0, 1, %, M − 1 (5)
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Fig. 3. Power spectral density of measured TLP surge response seen in Fig. 2.

Fig. 4. TLP pitch response, high frequency wavelet coefficient, and
wave frequency wavelet coefficients.

The frequency bandDi corresponding toSi is

Di = F 0.5
Dt2i+1 ,

0.5
Dt2iG (6)

A cospectral estimate between two processes is also

possible by replacing the squared coefficient term with
the product of both process coefficients.

The energy in the DWT spectral estimation closely
predicts the actual signal energy, but lacks the resolution
available to the FFT methods, particularly in the high
frequency range. While it is possible to apply CWT with
higher resolution, this problem may also be overcome
with the DWT by the use of a prototype wavelet which
is slightly dilated with respect to the original parent
wavelet. This is done by replacing the wavelet
2ic(2in − j ) by 2i+p/Pc[2i+p/P(n − j2i )], where P is the
desired number of intra-octave estimates,andp =
0, 1, . . .,P − 1. The DWT is then run P times,
incrementingp from 0 to P − 1. Using this grid, which
is more dense than the octave by octave grid, is equival-
ent to an over-sampling of theai,j coefficients [8].

Another option is the application of standard zoom
techniques to the octave band passed data. The sequen-
tially high pass filtered processes are shifted to lower
frequencies, where further DWT on this zoomed data
resolves more detail in the lower octaves. This method
is similar to another technique known as wavelet packet
analysis [9,10]. The DWT proceeds by a series of low
and high pass filters, each in sequence operating on the
low pass filtered results of the previous filter, with the
high pass results being used to generate the wavelet
coefficients. Wavelet packet analysis, while progress-
ively filtering the previous low pass filter results, also
filters the high pass filter remainder using DWT, rather
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Fig. 5. Summation of wavelet coefficients to estimate power spectrum.

than using the high pass results to generate coefficients.
The octave-banded signal information offered by DWT
is thus further split up into sub-octaves using wavelet
packets.

Fig. 6 shows several power spectrum estimates of a
measured earthquake acceleration record. Included are
an FFT estimate, an octave band estimate using DWT,
and an intra-octave band estimate using DWT and zoo-
ming techniques. Fig. 7 is the cospectral estimate of TLP
surge response and the measured input wind velocity
input using DWT and FFT techniques. Smoothing of the
FFT estimate with segment averaging renders its resol-

Fig. 6. Wavelet and FFT based spectral estimations of earthquake acceleration record.

ution inferior to that of the wavelet estimate at low fre-
quencies. The FFT spectral estimates are the average of
eight segments, while the wavelet estimate is based on
the full data record.

2.3. Time-frequency signal representation: scalogram

The local wavelet coefficients are well suited for analyz-
ing non-stationary events such as transient and evol-
utionary phenomena. For DWT there are 2i coefficients
to describe the energy at theith frequency band, fori =
0, 1, . . .,M − 1, where the signal consists of 2M data
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Fig. 7. Cospectrum of wind input and TLP surge response using FFT and wavelet transform estimation.

points. The coefficients in a particular band represent the
energy at time intervals equally spaced over the duration
of the signal. When the squared coefficients are plotted
on a time-scale grid, the transfer of energy from one
band to the next may be observed along the time scale.
This is called the scalogram or mean square map. The
volume bounded by the surface is the mean square value
of the signal. The scalogram is easily extended to CWT,
where less compact representation is traded for better
resolution.

Examples of scalograms are shown in Figs. 8 and 9.
In Fig. 8 the analyzed signal in the top plot is a sine
wave of constant amplitude and modulated frequency.
The second plot in Fig. 8 is a DWT scalogram of the
signal, where the horizontal axis is time, and the vertical
axis is scale. Note that frequency is inversely pro-
portional to the scale value, thus high frequency is seen
at the bottom of the scalogram at low scale values. The
transfer of energy from lower to higher frequencies in
time is clearly demonstrated as the dark region. The third
plot is a CWT scalogram, where more levels between
the octaves are added to better delineate the transfer of
energy in the signal from low to high frequency. In the
fourth plot, a CWT is applied to the signal with an
additional high frequency noise added from 1000 to
1200. The added noise magnitude is too small to be
detected in the time history, but clearly shows up in the
scalogram in the lowest level.

In Fig. 9, the analyzed signal is a hurricane velocity
record. Pockets of higher and lower levels of energy in
time can be observed in various scales, characterizing

the transient nature of convective turbulence in hurri-
cane wind.

The unavoidable presence of noise in measured sig-
nals tends to reduce the clarity of scalograms, and in
some cases may hide fine structure in coefficient ampli-
tude variation. Denoising, or cleaning noisy signals, is
one possible approach to improving the clarity of wave-
let analysis, and some DWT based denoising techniques
are addressed in a later section. A simple approach to
removing noise distortion in scalograms is to remove all
coefficients below a certain percentage of the maximum
coefficient amplitude when plotting the scalogram. An
example can be seen in Reference 11, where a seismic
event is analyzed via CWT. Insight into possible physi-
cal interpretations of the scalogram are made possible
by plotting only those wavelet coefficients within 5 dB
of the maximum amplitude.

2.4. Scalogram applications

2.4.1. Structural performance/nondestructive testing
The scalogram reveals much information about the nat-
ure of non-stationary processes that was previously hid-
den. An example application is the diagnosis of special
events in structural behavior during earthquake exci-
tation. Any change in frequency content, e.g. initiation of
stiffness degradation, sudden occurrence of non-ductile
events, energy exchange between modes through
response coupling, or pounding between structural
components can be identified by the scalogram. Refer-
ring to Fig. 10, the wavelet scalogram of ground acceler-
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Fig. 8. Frequency modulated sine wave, DWT-scalogram, CWT-scalogram, and CWT-scalogram with high frequency transient noise added to
signal between 1000 and 1200.

ation indicates the presence of high frequency energy
early in the record which attenuates with time. The pres-
ence of high frequency energy will tend to excite higher
structural modes. This information may be useful in pre-
dicting the building response modes that may be excited

during similar earthquakes and the time such excitation
begins. The monitoring of such performance information
is not available via STFT due to the inflexibility of the
time-frequency window which precludes identification
of discontinuities in a signal. A multifilter approach util-
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Fig. 9. Measured hurricane data and CWT-scalogram.
Fig. 10. Ground motion record and wavelet scalogram.
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izing simple oscillators has been addressed by other
researchers to avoid the STFT shortcomings and present
time dependent frequency fluctuations [7,12]. This
approach has its own shortcomings which are discussed
later in the paper.

The propagation of waves in a medium of a structure
is widely studied in engineering and science, namely,
identification of material properties, crack detection and
health monitoring of structures via ultrasound, and moni-
toring the structural vibration characteristics using
impact type techniques. Central to most techniques is the
quantification of dispersive features of wave propagation
in structures, i.e. wave velocity at different frequencies.
The time-frequency analysis offers a most attractive tool
for examining and mapping wave propagation at differ-
ent frequencies. Hodges et al. [13] utilized a STFT
approach for the analysis of a string, at beam and a cylin-
drical shell. By measuring strain at two locations on a
structure excited by an arbitrary impact force, travel
times of waves between the measurement locations were
obtained from the peaks in the time-frequency plots. In
their study, a shortcoming was noted in this approach
due to inflexibility in the arbitrary selection of time and
frequency resolutions. This can be attributed to the fact
that the time window for the STFT can either be chosen
for resolving sharp local peaks or for identifying low
frequency features, but it is impossible to accommodate
both desired features due to Heisenberg’s uncertainty
principle [14,15]. An improvement is possible using
Wigner–Ville Distribution, but this approach has its
limitations as well [16]. The wavelet transform offers
alternative techniques by providing additional flexibility
in terms of allowing the resolution in time and frequency
to vary in the time-frequency plane, thus considerably
reducing analysis.

2.4.2. Ground motion analysis
The time-dependent frequency content of ground motion
records provides information on the non-stationary spec-
tral characteristics of the motion, i.e. frequency depen-
dence of ground motion durations, time above a thres-
hold, interval duration, shape wave duration, and
identification of energy bursts in the signature. The time-
frequency analysis of non-stationary ground motion rec-
ords has been undertaken by researchers using a multi-
filter approach [7,12]. The STFT technique has its short-
comings due to the fixed time-frequency relations as
alluded to earlier. Following Arnold [17], multifilter
techniques have been employed in seismic applications.
A set of simple oscillators is used as a multifilter [7].
This approach has the advantage over STFT techniques
as a constant damping in the oscillators has the same
effect as varying the length of the data window such that
it is inversely proportional to frequency. As noted earl-
ier, this is a desired feature for obtaining details of time
variations in the high frequency range. Kameda [7] also

formulates an evolutionary power spectrum in terms of
filter outputs. Scherer [12] utilizes this approach to
obtain time-frequency contours of the evolutionary
power spectra. Here, the shortcoming of time leakage is
reduced by approximating and removing the effects of
filter inertness. The application of wavelet analysis will
improve resolution while reducing the leakage, thus ren-
dering a wavelet based method as the tool of choice for
a time-frequency analysis of ground motion. Fig. 10
illustrates a time-frequency description of the 1940
El Centro earthquake. The El Centro ground motion rec-
ord contains energy at a wide band of frequencies which
may result in exciting higher modes of a building
depending on the energy distribution. The arrival of
energy bursts at different times can be noted in the time
history and more clearly from the scalogram. Wavelet
based analysis may lead to improved understanding of
the events noted in ground motion in light of geophysical
reasoning that relates these energy bursts to S-wave
arrivals. Similar results are presented by Sherer et al.
[18] using a multifilter technique. However, the present
approach offers more flexibility and versatility to ana-
lyze a wide range of records with varying frequency con-
tents.

2.4.3. Transient building response to wind storms
Wavelet analysis of hurricane wind time histories, which
contain significant contributions from convective turbu-
lence, provides useful information regarding the distri-
bution of energy as a function of time. The response of
a slender structure to wind may contain contributions
from the fundamental mode and higher modes depending
on how the turbulent structure of the wind changes in
time. The relative contribution of each mode may vary
significantly or the total building response may suddenly
increase for apparently the same mean wind speed due
to instantaneous changes in the distribution of energy at
different frequencies. Such a response behavior cannot
be identified through classical spectral techniques, while
wavelet analysis is ideal for such an analysis.

As an example, a 600 ft tall, 100 ft square, building
is modeled with five modes, and subjected to high
(100 ft/sec at 30 ft) wind as correlated point loads along
its face. Fig. 11 is a scalogram of the response at the top
floor of the building for two input cases. The scalogram
plots energy with respect to time (x-axis) and scale (y-
axis), where here the scale is marked as levels. The
levels 1 through five are five frequency bands, with
level 1 containing energy from one half the cutoff fre-
quency up to the cutoff. Level 2 contains energy from
1/4 to 1/2 of cutoff, and so on. Levels 2 through 5 con-
tain all five modes of building response, with the funda-
mental mode in the 5th level, the second mode in the
4th level, the third and fourth modes in level 3, and the
highest mode in level 2. The top plot in Fig. 11 is the
response of the top floor to stationary input. The middle
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Fig. 11. Top floor building response to hurricane wind (top), scalogram of top floor response to stationary wind (middle), and scalogram of top
floor response to wind with transient high frequency fluctuations (bottom).

picture is the scalogram of the 5th floor response to
stationary data. The fundamental mode is represented by
the darkest band seen in the 5th level, while the 5th mode
at level 2 is hardly visible. The bottom picture is the top
floor response scalogram when the wind input contains
a transient burst of high frequency fluctuations which
stimulates the 5th mode for a short duration, visible as
level 2 darkens then lightens with time between 300 and
500 s. The response with transient energy in the fifth
mode is indistinguishable from the response to stationary
wind using Fourier methods or viewing the time histor-
ies, while the wavelet transformation clearly brings out
the transient characteristics.

2.4.4. Identification of correlation through co-
scalogram: a wind/pressure example
The scalogram provides the energy evolution with time
in a single process by viewing a map of the square of
the wavelet coefficients. If the squared coefficient value
is replaced with the product of the wavelet coefficients
of two different processes, the result is a view of the
correlation between the processes. This is called the
coscalogram, analogous to the cospectrum in spectral
analysis. Like the scalogram, it has the advantage of

revealing time varying pockets of high and low corre-
lation in different frequency bands.

Measured full scale wind data is used to demonstrate
the application of the coscalogram. Pressure measured
on the rooftop of a full scale building and wind velocity
measured upstream of the building are utilized in two
examples. The first example is seen in the three plots on
the left column of Fig. 12, where the scalogram of wind
velocity and simultaneously measured pressure are
presented along with their coscalogram. It is known that
these two records are only slightly correlated, and light
patches in the coscalogram help to identify areas of cor-
relation. The right side of Fig. 12 is the scalogram of a
different wind velocity record and the same pressure rec-
ord as the left side example. In this case the wind velo-
city was measured at a different time, and is not related
to the pressure record. The resulting coscalogram of
these two unrelated processes in the bottom right corner
shows no distinct correlation. Initial analysis shows little
correlation between the incident turbulence and the
pressure in separated flow regions, suggesting the pres-
ence of more complex interactions. Nonetheless, wavelet
transforms provide a tool for delineating any relationship
between intermittence at certain wave lengths in the
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Fig. 12. Left: scalogram of upstream wind velocity and correlated rooftop pressure, and coscalogram of these two processes. Right: scalogram
of uncorrelated wind velocity and pressure records, and the coscalogram of these two records.

approach flow with pressure fluctuations at a corre-
sponding time instant. More carefully collected data in
a controlled experiment is needed to further investigate
this behavior.

2.4.5. Analysis of bridge response due to vortex
shedding
A very instructive potential application of wavelet
decomposition using the measured data in Reference 19
can be seen concerning the response behavior of a bridge
due to vortex shedding. In their paper the authors note
that spectral methods of data analysis are not very help-
ful due to non-stationarity of the measured data. To
understand the behavior of the system the transition
between regular and large amplitude response needs to
be investigated. The spectral methods with constant
bandwidth schemes do not permit zooming in time with-
out losing resolution in frequency. The authors attempt
to overcome the shortcomings of the spectral approach
by decomposing energy into different structural modes,
using a finite element model of the bridge to estimate

the mode shapes of the three dominant modes of
vibration. Fitting these mode shapes to the bridge
response, they are able to approximate shifts in the rela-
tive contributions of the three modes as the response
entered larger amplitude transient phases. Their investi-
gation of response analysis can be aided through wavelet
analysis as their data suggests changes in turbulence
structure and switching of response from one mode of
oscillation to another during their measurements.

Wavelet analysis is applied to a measured acceleration
record made available by the authors of Reference 19.
A modal analysis of the bridge separates the response
into three main contributing modes which are first verti-
cal, first torsional, and second vertical (|0.51, 0.74 and
0.81 Hz, respectively) [19]. A spectral analysis of the
record shows the majority of response energy is due to
the first vertical mode, but cannot reveal any changes
in relative mode contributions in time. Fig. 13 shows a
measured acceleration record with transient bursts of
large amplitude response in the top plot, a scalogram of
that record over a large range of scales (frequencies) in
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Fig. 13. Mesured bridge acceleration under the effect of vortex shedding, scalogram of response on course scale grid, and scalogram of same
record on fine scale grid.

the middle plot, and a second more detailed scalogram
over a smaller scale range in the bottom plot. Level 8
on the horizontal scale axis of the middle plot represents
the frequency range of the first vertical mode of vibration
(|0.51 Hz), and level 4 covers the frequency range of
the two higher frequency modes. The darkest bands, rep-
resenting large energy increases, can be seen in level 8,
corresponding to the large amplitude bursts in the
response record. The energy in the 4th level is more
evenly distributed, showing no drastic increase associa-
ted with the large amplitude response.

The scalogram in the bottom plot is over a more nar-
row range of scales, and includes only the frequency
range of the three modes of vibration. Here oversam-
pling is employed using continuous wavelets to capture
more detail. Levels 4 and 5 are now associated with the
two higher modes of vibration, and levels 6 through 14
encompass the first mode of vertical vibration. Here it
is more clearly seen that the energy content of the lowest
frequency mode is strongly correlated with the large

amplitude response, while the energy of the second and
third modes is more evenly distributed through both low
and high amplitude response. It is also noteworthy that
a change in turbulence intensity of the approach flow
may change the vortex excited loads, thus changing
associated response. This observation was made based
on full-scale data not reported here.

We can conclude that there is a strong shift to the first
mode vibration for large amplitude response, and the
higher modes of vibration make larger relative contri-
butions to response at lower amplitudes. This was also
concluded by the authors of Reference 19. Note however
that the application of wavelet analysis eliminated the
need for a finite element modal analysis. Spectral analy-
sis is used to identify the major modes, and wavelet
analysis is used to delineate their contributions in time.

2.5. Wavelet simulation of non-stationary processes

The retention of both time and frequency information
makes wavelets a useful tool for the simulation of non-
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stationary signals. This can be done given either a parent
non-stationary signal, or a target spectrum and modulator
function for each octave. Given a parent non-stationary
signal, e.g. a local wind velocity record, an ensemble of
signals may be simulated whose average statistics
closely resemble those of the parent process. The parent
signal is discrete wavelet transformed (DWT), and the
coefficients are multiplied by a Gaussian white noise of
unit variance w(n). The inverse wavelet transform
(IWT) then produces a simulation statistically similar to
the parent process.

x̂(n) = IWT(w(n)*DWT( x(n))) (7)

The concept of a modulated stationary process cent-
ered at narrow-banded frequencies to model ground
motion has been used extensively [7,20–25]. In this rep-
resentation each component process is modulated by a
different modulating function,

x(t) = O
j

mj (t)sj (t) (8)

where mj and sj represent thejth modulator and the
stationary component process, respectively. There are
different approaches to modellingmj andsj to describex.
One such choice is to normalize the modulator such that

E`

−`

m2
j (t) dt = 1 (9)

andsj is constant over a frequency band.
The DWT provides an elegant framework to perform

such modelling [23,26]. The measured wavelet coef-
ficients ai,j and spectrum may be used to estimate the
modulator function from a parent signal by applying

mi,j = Ai Î2i+2−M
uai,j u
ÎSi

(10)

whereAi is a level-dependent amplitude constant andSi

is the energy corresponding to theith octave from the
power spectrum. An example of identified modulator
functions using equation (10) is given in Fig. 14. Here
an earthquake ground motion record is broken into
octave bands using DWT, the filtered time histories of
several bands are shown along with the resulting modu-
lator function.

Given a target spectrum and modulator functions, the
simulation is done by first finding the energy contained
in each octave from the target spectrum. The wavelet
coefficients for the simulated process are multiplied with
the appropriate modulator, and normalized such that the
energy equals that in the corresponding octave. These
modulated and normalized coefficients are then multi-

plied through by white noise and inverse wavelet trans-
formed. The process is represented by [26]

x̂(n) = IWT Sw(n)* Smi,jÎSi

Î2i+2−M DD (11)

Fig. 15 shows a measured and a wavelet simulated
earthquake ground motion record, and Fig. 16 compares
the power spectral density of both records. Both the non-
stationary characteristics and the energy distribution are
well represented in the simulation. Fig. 17 is an example
of measured non-stationary wind velocity and a wavelet
simulation. Again the non-stationary characteristics are
well represented.

2.6. Denoising

Small details in a signal are manifested in the wavelet
transform as small magnitude coefficients. These low
energy processes may distort the true signal if they are
assumed to be due to noise. Their removal is
accomplished in the wavelet domain by eliminating or
reducing coefficients under a certain magnitude thres-
hold. The inverse wavelet transform then gives back a
‘cleaned’ or denoised signal without the small details in
the original signal. Two thresholding methods con-
sidered here are hard and soft thresholding.

Hard thresholding sets to zero the coefficients below
the threshold through

ahard
i,j = S 0,ai,j , l

ai,j ,ai,j $ lD (12)

where l is the assigned threshold. Soft thresholding
alters the coefficients, for example

asoft
i,j = sign(ai,j ) (uai,j u − l) + (13)

where+ indicates that if the sign ofas
i
o
,
f
j
t does not equal

the sign ofai,j, as
i
o
,
f
j
t is set to zero [27]. Equation (13)

results in a smooth reduction of all coefficients toward
zero, and sets equal to zero those closest to the origin.
Each method has advantages, depending on the proper-
ties of the signal being cleaned. An example of a thres-
hold parameter defined in terms of noise level is found
in Reference 27, and written as

l = s Î2log(n)/În (14)

wheres is a noise scale parameter, andn is the number
of points in the signal.

For qualitative analysis, an iterative increase in the
threshold will clean the signal to a desired level, but, as
is the problem with all noise reduction methods, a trade-
off between removing noise and removing important low
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Fig. 14. Octave band filtered ground motion signals and their identified envelopes using DWT.

Fig. 15. Measured and simulated non-stationary ground motion signal using DWT.

energy information cannot be avoided. Some concept of
the desired level of noise to be removed is thus neces-
sary. For the purpose of demonstration, two signals are
contaminated with noise such that both the noise and the
desired clean signal are known exactly. A minimization

of the mean squared error (MSE) is performed using
soft and hard thresholding in which the optimal threshold
parameter,lopt, for that signal is found, where

MSE =
1
N ON

M

n=1

(f(n) − f̂(n))2 (15)



165K. Gurley, A. Kareem / Engineering Structures 21 (1999) 149–167

Fig. 16. Power spectral density of measured earthquake ground motion and wavelet simulated signals.

Fig. 17. Measured wind velocity and a simulation using DWT.
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and

min(MSE) = MSE(f,f̂opt(lopt)) (16)

Here,f (n) is the uncontaminated signal,f̂ (n) is the esti-
mated clean signal from an inverse wavelet transform of
the coefficients after thresholding atl, and f̂opt(lopt) is
the optimal estimated clean signal as a function of the
optimal threshold value which minimizes the MSE.

Demonstrations of wavelet transform-based optimized
noise removal are given in Figs. 18 and 19. In the top
plot of Fig. 18 the uncontaminated signal is the superpo-
sition of two sine waves, the same signal is then con-
taminated with white noise. The contaminated signal is
cleaned using soft and hard thresholding in the center
and bottom plots, respectively. Both techniques apply
minimization of the MSE between the uncontaminated
signal and the iteratively estimated cleaned signal.
Fig. 19 demonstrates the application of the wavelet
denoising method using a measured wind pressure signal
contaminated with added white noise. Both figures list
the resulting minimum MSE along with the MSE
between the original contaminated and uncontaminated
signal. Hard thresholding better reduces the MSE for the

Fig. 18. Denoising of two superimposed sine waves contaminated by
white noise using DWT thresholding.

Fig. 19. Noise reduction of a pressure record contaminated by white
noise using DWT thresholding.

first example, while the opposite is true for the second
example. Denoising using wavelet techniques is typi-
cally performed using a pre-estimate of the noise level
to establish the threshold.

3. Concluding remarks

Progress in quantifying and simulating non-stationary
signals has been elusive due to the limitations of tra-
ditional analytical tools. The analysis and simulation of
non-stationary processes involving wind, wave and
earthquake applications is accomplished here by
decomposition into localized basis functions via the dis-
crete or continuous wavelet transform, whose popularity
is growing as more researchers from a wide range of
disciplines find their application useful. This paper
briefly introduces the wavelet transformation and pro-
vides examples of their usefulness in spectral and
cospectral analysis, time-scale decomposition for the
identification of transient events, structural performance
monitoring via the scalogram, non-stationary signal
simulation, and the cleaning of noisy signals. Readers
are encouraged to consult the reference list for a more
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detailed mathematical treatment of wavelet decompo-
sition.
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